Properties

Label 324.4.b.c.323.23
Level $324$
Weight $4$
Character 324.323
Analytic conductor $19.117$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,4,Mod(323,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.323"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.23
Character \(\chi\) \(=\) 324.323
Dual form 324.4.b.c.323.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.82820 - 0.0360939i) q^{2} +(7.99739 - 0.204161i) q^{4} +16.9163i q^{5} +3.56763i q^{7} +(22.6108 - 0.866066i) q^{8} +(0.610574 + 47.8425i) q^{10} -50.1376 q^{11} +37.9933 q^{13} +(0.128770 + 10.0900i) q^{14} +(63.9166 - 3.26552i) q^{16} +84.3819i q^{17} +62.9237i q^{19} +(3.45365 + 135.286i) q^{20} +(-141.799 + 1.80966i) q^{22} -75.2133 q^{23} -161.160 q^{25} +(107.453 - 1.37133i) q^{26} +(0.728372 + 28.5317i) q^{28} -121.988i q^{29} -19.9532i q^{31} +(180.651 - 11.5425i) q^{32} +(3.04567 + 238.649i) q^{34} -60.3510 q^{35} +17.7622 q^{37} +(2.27116 + 177.961i) q^{38} +(14.6506 + 382.491i) q^{40} +345.339i q^{41} -130.719i q^{43} +(-400.970 + 10.2362i) q^{44} +(-212.718 + 2.71474i) q^{46} +306.165 q^{47} +330.272 q^{49} +(-455.793 + 5.81690i) q^{50} +(303.847 - 7.75676i) q^{52} +479.464i q^{53} -848.142i q^{55} +(3.08980 + 80.6671i) q^{56} +(-4.40301 - 345.005i) q^{58} +491.548 q^{59} +99.8337 q^{61} +(-0.720188 - 56.4315i) q^{62} +(510.500 - 39.1649i) q^{64} +642.705i q^{65} -619.691i q^{67} +(17.2275 + 674.836i) q^{68} +(-170.684 + 2.17830i) q^{70} +254.455 q^{71} +100.485 q^{73} +(50.2349 - 0.641106i) q^{74} +(12.8466 + 503.226i) q^{76} -178.873i q^{77} -988.765i q^{79} +(55.2404 + 1081.23i) q^{80} +(12.4646 + 976.687i) q^{82} -503.510 q^{83} -1427.43 q^{85} +(-4.71816 - 369.700i) q^{86} +(-1133.65 + 43.4225i) q^{88} -1019.86i q^{89} +135.546i q^{91} +(-601.510 + 15.3556i) q^{92} +(865.896 - 11.0507i) q^{94} -1064.43 q^{95} +1007.18 q^{97} +(934.074 - 11.9208i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 96 q^{10} + 432 q^{13} + 144 q^{16} + 384 q^{22} - 504 q^{25} - 672 q^{28} + 1320 q^{34} + 1248 q^{37} - 1272 q^{40} + 960 q^{46} - 696 q^{49} - 264 q^{52} - 1032 q^{58} + 528 q^{61} + 960 q^{64}+ \cdots - 1176 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82820 0.0360939i 0.999919 0.0127611i
\(3\) 0 0
\(4\) 7.99739 0.204161i 0.999674 0.0255202i
\(5\) 16.9163i 1.51304i 0.653972 + 0.756519i \(0.273101\pi\)
−0.653972 + 0.756519i \(0.726899\pi\)
\(6\) 0 0
\(7\) 3.56763i 0.192634i 0.995351 + 0.0963170i \(0.0307062\pi\)
−0.995351 + 0.0963170i \(0.969294\pi\)
\(8\) 22.6108 0.866066i 0.999267 0.0382750i
\(9\) 0 0
\(10\) 0.610574 + 47.8425i 0.0193080 + 1.51291i
\(11\) −50.1376 −1.37428 −0.687139 0.726526i \(-0.741134\pi\)
−0.687139 + 0.726526i \(0.741134\pi\)
\(12\) 0 0
\(13\) 37.9933 0.810573 0.405286 0.914190i \(-0.367172\pi\)
0.405286 + 0.914190i \(0.367172\pi\)
\(14\) 0.128770 + 10.0900i 0.00245822 + 0.192618i
\(15\) 0 0
\(16\) 63.9166 3.26552i 0.998697 0.0510237i
\(17\) 84.3819i 1.20386i 0.798549 + 0.601930i \(0.205601\pi\)
−0.798549 + 0.601930i \(0.794399\pi\)
\(18\) 0 0
\(19\) 62.9237i 0.759773i 0.925033 + 0.379887i \(0.124037\pi\)
−0.925033 + 0.379887i \(0.875963\pi\)
\(20\) 3.45365 + 135.286i 0.0386130 + 1.51254i
\(21\) 0 0
\(22\) −141.799 + 1.80966i −1.37417 + 0.0175373i
\(23\) −75.2133 −0.681872 −0.340936 0.940087i \(-0.610744\pi\)
−0.340936 + 0.940087i \(0.610744\pi\)
\(24\) 0 0
\(25\) −161.160 −1.28928
\(26\) 107.453 1.37133i 0.810507 0.0103438i
\(27\) 0 0
\(28\) 0.728372 + 28.5317i 0.00491605 + 0.192571i
\(29\) 121.988i 0.781122i −0.920577 0.390561i \(-0.872281\pi\)
0.920577 0.390561i \(-0.127719\pi\)
\(30\) 0 0
\(31\) 19.9532i 0.115603i −0.998328 0.0578016i \(-0.981591\pi\)
0.998328 0.0578016i \(-0.0184091\pi\)
\(32\) 180.651 11.5425i 0.997965 0.0637640i
\(33\) 0 0
\(34\) 3.04567 + 238.649i 0.0153626 + 1.20376i
\(35\) −60.3510 −0.291462
\(36\) 0 0
\(37\) 17.7622 0.0789211 0.0394606 0.999221i \(-0.487436\pi\)
0.0394606 + 0.999221i \(0.487436\pi\)
\(38\) 2.27116 + 177.961i 0.00969556 + 0.759712i
\(39\) 0 0
\(40\) 14.6506 + 382.491i 0.0579116 + 1.51193i
\(41\) 345.339i 1.31544i 0.753264 + 0.657718i \(0.228478\pi\)
−0.753264 + 0.657718i \(0.771522\pi\)
\(42\) 0 0
\(43\) 130.719i 0.463593i −0.972764 0.231796i \(-0.925540\pi\)
0.972764 0.231796i \(-0.0744603\pi\)
\(44\) −400.970 + 10.2362i −1.37383 + 0.0350718i
\(45\) 0 0
\(46\) −212.718 + 2.71474i −0.681816 + 0.00870145i
\(47\) 306.165 0.950188 0.475094 0.879935i \(-0.342414\pi\)
0.475094 + 0.879935i \(0.342414\pi\)
\(48\) 0 0
\(49\) 330.272 0.962892
\(50\) −455.793 + 5.81690i −1.28918 + 0.0164527i
\(51\) 0 0
\(52\) 303.847 7.75676i 0.810309 0.0206859i
\(53\) 479.464i 1.24263i 0.783561 + 0.621315i \(0.213401\pi\)
−0.783561 + 0.621315i \(0.786599\pi\)
\(54\) 0 0
\(55\) 848.142i 2.07933i
\(56\) 3.08980 + 80.6671i 0.00737307 + 0.192493i
\(57\) 0 0
\(58\) −4.40301 345.005i −0.00996799 0.781058i
\(59\) 491.548 1.08465 0.542323 0.840170i \(-0.317545\pi\)
0.542323 + 0.840170i \(0.317545\pi\)
\(60\) 0 0
\(61\) 99.8337 0.209547 0.104774 0.994496i \(-0.466588\pi\)
0.104774 + 0.994496i \(0.466588\pi\)
\(62\) −0.720188 56.4315i −0.00147523 0.115594i
\(63\) 0 0
\(64\) 510.500 39.1649i 0.997070 0.0764940i
\(65\) 642.705i 1.22643i
\(66\) 0 0
\(67\) 619.691i 1.12996i −0.825104 0.564980i \(-0.808884\pi\)
0.825104 0.564980i \(-0.191116\pi\)
\(68\) 17.2275 + 674.836i 0.0307227 + 1.20347i
\(69\) 0 0
\(70\) −170.684 + 2.17830i −0.291439 + 0.00371939i
\(71\) 254.455 0.425327 0.212663 0.977125i \(-0.431786\pi\)
0.212663 + 0.977125i \(0.431786\pi\)
\(72\) 0 0
\(73\) 100.485 0.161108 0.0805541 0.996750i \(-0.474331\pi\)
0.0805541 + 0.996750i \(0.474331\pi\)
\(74\) 50.2349 0.641106i 0.0789147 0.00100712i
\(75\) 0 0
\(76\) 12.8466 + 503.226i 0.0193895 + 0.759526i
\(77\) 178.873i 0.264733i
\(78\) 0 0
\(79\) 988.765i 1.40816i −0.710120 0.704080i \(-0.751359\pi\)
0.710120 0.704080i \(-0.248641\pi\)
\(80\) 55.2404 + 1081.23i 0.0772008 + 1.51107i
\(81\) 0 0
\(82\) 12.4646 + 976.687i 0.0167864 + 1.31533i
\(83\) −503.510 −0.665873 −0.332936 0.942949i \(-0.608039\pi\)
−0.332936 + 0.942949i \(0.608039\pi\)
\(84\) 0 0
\(85\) −1427.43 −1.82149
\(86\) −4.71816 369.700i −0.00591596 0.463555i
\(87\) 0 0
\(88\) −1133.65 + 43.4225i −1.37327 + 0.0526006i
\(89\) 1019.86i 1.21467i −0.794448 0.607333i \(-0.792239\pi\)
0.794448 0.607333i \(-0.207761\pi\)
\(90\) 0 0
\(91\) 135.546i 0.156144i
\(92\) −601.510 + 15.3556i −0.681650 + 0.0174015i
\(93\) 0 0
\(94\) 865.896 11.0507i 0.950110 0.0121255i
\(95\) −1064.43 −1.14957
\(96\) 0 0
\(97\) 1007.18 1.05426 0.527131 0.849784i \(-0.323268\pi\)
0.527131 + 0.849784i \(0.323268\pi\)
\(98\) 934.074 11.9208i 0.962814 0.0122876i
\(99\) 0 0
\(100\) −1288.86 + 32.9027i −1.28886 + 0.0329027i
\(101\) 420.983i 0.414747i 0.978262 + 0.207373i \(0.0664915\pi\)
−0.978262 + 0.207373i \(0.933509\pi\)
\(102\) 0 0
\(103\) 1728.13i 1.65318i −0.562803 0.826591i \(-0.690277\pi\)
0.562803 0.826591i \(-0.309723\pi\)
\(104\) 859.060 32.9047i 0.809979 0.0310247i
\(105\) 0 0
\(106\) 17.3057 + 1356.02i 0.0158574 + 1.24253i
\(107\) 63.1607 0.0570652 0.0285326 0.999593i \(-0.490917\pi\)
0.0285326 + 0.999593i \(0.490917\pi\)
\(108\) 0 0
\(109\) −835.373 −0.734076 −0.367038 0.930206i \(-0.619628\pi\)
−0.367038 + 0.930206i \(0.619628\pi\)
\(110\) −30.6127 2398.71i −0.0265346 2.07917i
\(111\) 0 0
\(112\) 11.6502 + 228.031i 0.00982890 + 0.192383i
\(113\) 1029.89i 0.857384i −0.903451 0.428692i \(-0.858975\pi\)
0.903451 0.428692i \(-0.141025\pi\)
\(114\) 0 0
\(115\) 1272.33i 1.03170i
\(116\) −24.9051 975.583i −0.0199343 0.780867i
\(117\) 0 0
\(118\) 1390.19 17.7419i 1.08456 0.0138413i
\(119\) −301.044 −0.231904
\(120\) 0 0
\(121\) 1182.78 0.888642
\(122\) 282.349 3.60339i 0.209530 0.00267406i
\(123\) 0 0
\(124\) −4.07367 159.573i −0.00295021 0.115565i
\(125\) 611.695i 0.437693i
\(126\) 0 0
\(127\) 794.523i 0.555138i −0.960706 0.277569i \(-0.910471\pi\)
0.960706 0.277569i \(-0.0895287\pi\)
\(128\) 1442.38 129.192i 0.996013 0.0892115i
\(129\) 0 0
\(130\) 23.1977 + 1817.70i 0.0156506 + 1.22633i
\(131\) 222.078 0.148115 0.0740575 0.997254i \(-0.476405\pi\)
0.0740575 + 0.997254i \(0.476405\pi\)
\(132\) 0 0
\(133\) −224.489 −0.146358
\(134\) −22.3671 1752.61i −0.0144196 1.12987i
\(135\) 0 0
\(136\) 73.0803 + 1907.95i 0.0460778 + 1.20298i
\(137\) 1217.38i 0.759181i −0.925155 0.379591i \(-0.876065\pi\)
0.925155 0.379591i \(-0.123935\pi\)
\(138\) 0 0
\(139\) 2204.42i 1.34516i 0.740026 + 0.672578i \(0.234813\pi\)
−0.740026 + 0.672578i \(0.765187\pi\)
\(140\) −482.651 + 12.3213i −0.291367 + 0.00743817i
\(141\) 0 0
\(142\) 719.648 9.18426i 0.425292 0.00542765i
\(143\) −1904.89 −1.11395
\(144\) 0 0
\(145\) 2063.57 1.18187
\(146\) 284.192 3.62690i 0.161095 0.00205592i
\(147\) 0 0
\(148\) 142.051 3.62635i 0.0788954 0.00201408i
\(149\) 406.594i 0.223553i −0.993733 0.111777i \(-0.964346\pi\)
0.993733 0.111777i \(-0.0356541\pi\)
\(150\) 0 0
\(151\) 3452.75i 1.86080i 0.366549 + 0.930399i \(0.380539\pi\)
−0.366549 + 0.930399i \(0.619461\pi\)
\(152\) 54.4961 + 1422.76i 0.0290804 + 0.759217i
\(153\) 0 0
\(154\) −6.45621 505.887i −0.00337829 0.264711i
\(155\) 337.533 0.174912
\(156\) 0 0
\(157\) −880.574 −0.447627 −0.223813 0.974632i \(-0.571851\pi\)
−0.223813 + 0.974632i \(0.571851\pi\)
\(158\) −35.6884 2796.42i −0.0179697 1.40805i
\(159\) 0 0
\(160\) 195.256 + 3055.94i 0.0964774 + 1.50996i
\(161\) 268.333i 0.131352i
\(162\) 0 0
\(163\) 1693.56i 0.813802i −0.913472 0.406901i \(-0.866609\pi\)
0.913472 0.406901i \(-0.133391\pi\)
\(164\) 70.5049 + 2761.81i 0.0335702 + 1.31501i
\(165\) 0 0
\(166\) −1424.03 + 18.1737i −0.665818 + 0.00849728i
\(167\) 1640.10 0.759970 0.379985 0.924993i \(-0.375929\pi\)
0.379985 + 0.924993i \(0.375929\pi\)
\(168\) 0 0
\(169\) −753.509 −0.342972
\(170\) −4037.05 + 51.5214i −1.82134 + 0.0232442i
\(171\) 0 0
\(172\) −26.6878 1045.41i −0.0118310 0.463442i
\(173\) 2181.42i 0.958672i −0.877631 0.479336i \(-0.840877\pi\)
0.877631 0.479336i \(-0.159123\pi\)
\(174\) 0 0
\(175\) 574.960i 0.248359i
\(176\) −3204.63 + 163.725i −1.37249 + 0.0701208i
\(177\) 0 0
\(178\) −36.8108 2884.37i −0.0155005 1.21457i
\(179\) 2350.24 0.981370 0.490685 0.871337i \(-0.336747\pi\)
0.490685 + 0.871337i \(0.336747\pi\)
\(180\) 0 0
\(181\) −2280.14 −0.936362 −0.468181 0.883633i \(-0.655090\pi\)
−0.468181 + 0.883633i \(0.655090\pi\)
\(182\) 4.89239 + 383.351i 0.00199257 + 0.156131i
\(183\) 0 0
\(184\) −1700.64 + 65.1396i −0.681372 + 0.0260987i
\(185\) 300.470i 0.119411i
\(186\) 0 0
\(187\) 4230.71i 1.65444i
\(188\) 2448.53 62.5071i 0.949878 0.0242489i
\(189\) 0 0
\(190\) −3010.43 + 38.4196i −1.14947 + 0.0146697i
\(191\) 3932.95 1.48994 0.744970 0.667098i \(-0.232464\pi\)
0.744970 + 0.667098i \(0.232464\pi\)
\(192\) 0 0
\(193\) 2713.19 1.01192 0.505958 0.862558i \(-0.331139\pi\)
0.505958 + 0.862558i \(0.331139\pi\)
\(194\) 2848.50 36.3530i 1.05418 0.0134536i
\(195\) 0 0
\(196\) 2641.32 67.4288i 0.962579 0.0245732i
\(197\) 1997.91i 0.722565i 0.932456 + 0.361282i \(0.117661\pi\)
−0.932456 + 0.361282i \(0.882339\pi\)
\(198\) 0 0
\(199\) 2409.09i 0.858170i 0.903264 + 0.429085i \(0.141164\pi\)
−0.903264 + 0.429085i \(0.858836\pi\)
\(200\) −3643.97 + 139.575i −1.28834 + 0.0493473i
\(201\) 0 0
\(202\) 15.1949 + 1190.62i 0.00529263 + 0.414713i
\(203\) 435.207 0.150471
\(204\) 0 0
\(205\) −5841.85 −1.99030
\(206\) −62.3750 4887.49i −0.0210965 1.65305i
\(207\) 0 0
\(208\) 2428.40 124.068i 0.809517 0.0413584i
\(209\) 3154.85i 1.04414i
\(210\) 0 0
\(211\) 1819.43i 0.593626i −0.954936 0.296813i \(-0.904076\pi\)
0.954936 0.296813i \(-0.0959238\pi\)
\(212\) 97.8880 + 3834.46i 0.0317121 + 1.24223i
\(213\) 0 0
\(214\) 178.631 2.27971i 0.0570605 0.000728215i
\(215\) 2211.28 0.701433
\(216\) 0 0
\(217\) 71.1856 0.0222691
\(218\) −2362.60 + 30.1519i −0.734016 + 0.00936763i
\(219\) 0 0
\(220\) −173.158 6782.92i −0.0530650 2.07866i
\(221\) 3205.95i 0.975816i
\(222\) 0 0
\(223\) 2674.44i 0.803110i 0.915835 + 0.401555i \(0.131530\pi\)
−0.915835 + 0.401555i \(0.868470\pi\)
\(224\) 41.1795 + 644.496i 0.0122831 + 0.192242i
\(225\) 0 0
\(226\) −37.1729 2912.74i −0.0109412 0.857314i
\(227\) −5899.16 −1.72485 −0.862425 0.506184i \(-0.831056\pi\)
−0.862425 + 0.506184i \(0.831056\pi\)
\(228\) 0 0
\(229\) 3032.75 0.875152 0.437576 0.899181i \(-0.355837\pi\)
0.437576 + 0.899181i \(0.355837\pi\)
\(230\) −45.9233 3598.39i −0.0131656 1.03161i
\(231\) 0 0
\(232\) −105.649 2758.24i −0.0298975 0.780549i
\(233\) 1294.13i 0.363867i 0.983311 + 0.181934i \(0.0582356\pi\)
−0.983311 + 0.181934i \(0.941764\pi\)
\(234\) 0 0
\(235\) 5179.18i 1.43767i
\(236\) 3931.10 100.355i 1.08429 0.0276803i
\(237\) 0 0
\(238\) −851.410 + 10.8658i −0.231885 + 0.00295936i
\(239\) −5750.29 −1.55630 −0.778149 0.628080i \(-0.783841\pi\)
−0.778149 + 0.628080i \(0.783841\pi\)
\(240\) 0 0
\(241\) 6017.64 1.60842 0.804212 0.594343i \(-0.202588\pi\)
0.804212 + 0.594343i \(0.202588\pi\)
\(242\) 3345.14 42.6912i 0.888570 0.0113401i
\(243\) 0 0
\(244\) 798.409 20.3822i 0.209479 0.00534769i
\(245\) 5586.97i 1.45689i
\(246\) 0 0
\(247\) 2390.68i 0.615852i
\(248\) −17.2808 451.158i −0.00442472 0.115518i
\(249\) 0 0
\(250\) −22.0785 1729.99i −0.00558546 0.437658i
\(251\) −3207.28 −0.806541 −0.403270 0.915081i \(-0.632127\pi\)
−0.403270 + 0.915081i \(0.632127\pi\)
\(252\) 0 0
\(253\) 3771.02 0.937082
\(254\) −28.6774 2247.07i −0.00708418 0.555093i
\(255\) 0 0
\(256\) 4074.67 417.442i 0.994793 0.101914i
\(257\) 2907.84i 0.705784i −0.935664 0.352892i \(-0.885198\pi\)
0.935664 0.352892i \(-0.114802\pi\)
\(258\) 0 0
\(259\) 63.3688i 0.0152029i
\(260\) 131.215 + 5139.96i 0.0312986 + 1.22603i
\(261\) 0 0
\(262\) 628.081 8.01567i 0.148103 0.00189011i
\(263\) 312.106 0.0731761 0.0365880 0.999330i \(-0.488351\pi\)
0.0365880 + 0.999330i \(0.488351\pi\)
\(264\) 0 0
\(265\) −8110.74 −1.88015
\(266\) −634.898 + 8.10267i −0.146346 + 0.00186769i
\(267\) 0 0
\(268\) −126.517 4955.92i −0.0288368 1.12959i
\(269\) 1826.27i 0.413939i −0.978347 0.206969i \(-0.933640\pi\)
0.978347 0.206969i \(-0.0663600\pi\)
\(270\) 0 0
\(271\) 4987.26i 1.11791i −0.829197 0.558956i \(-0.811202\pi\)
0.829197 0.558956i \(-0.188798\pi\)
\(272\) 275.551 + 5393.41i 0.0614254 + 1.20229i
\(273\) 0 0
\(274\) −43.9400 3442.99i −0.00968800 0.759119i
\(275\) 8080.19 1.77183
\(276\) 0 0
\(277\) 4251.84 0.922268 0.461134 0.887330i \(-0.347443\pi\)
0.461134 + 0.887330i \(0.347443\pi\)
\(278\) 79.5662 + 6234.54i 0.0171657 + 1.34505i
\(279\) 0 0
\(280\) −1364.59 + 52.2679i −0.291249 + 0.0111557i
\(281\) 2934.87i 0.623059i 0.950237 + 0.311529i \(0.100841\pi\)
−0.950237 + 0.311529i \(0.899159\pi\)
\(282\) 0 0
\(283\) 4003.62i 0.840956i 0.907303 + 0.420478i \(0.138138\pi\)
−0.907303 + 0.420478i \(0.861862\pi\)
\(284\) 2034.97 51.9498i 0.425188 0.0108544i
\(285\) 0 0
\(286\) −5387.42 + 68.7551i −1.11386 + 0.0142153i
\(287\) −1232.04 −0.253398
\(288\) 0 0
\(289\) −2207.31 −0.449280
\(290\) 5836.20 74.4825i 1.18177 0.0150819i
\(291\) 0 0
\(292\) 803.620 20.5152i 0.161056 0.00411151i
\(293\) 2695.37i 0.537424i 0.963221 + 0.268712i \(0.0865980\pi\)
−0.963221 + 0.268712i \(0.913402\pi\)
\(294\) 0 0
\(295\) 8315.16i 1.64111i
\(296\) 401.617 15.3832i 0.0788633 0.00302071i
\(297\) 0 0
\(298\) −14.6755 1149.93i −0.00285279 0.223535i
\(299\) −2857.60 −0.552707
\(300\) 0 0
\(301\) 466.358 0.0893037
\(302\) 124.623 + 9765.04i 0.0237459 + 1.86065i
\(303\) 0 0
\(304\) 205.479 + 4021.87i 0.0387665 + 0.758784i
\(305\) 1688.81i 0.317053i
\(306\) 0 0
\(307\) 4575.16i 0.850547i 0.905065 + 0.425274i \(0.139822\pi\)
−0.905065 + 0.425274i \(0.860178\pi\)
\(308\) −36.5189 1430.51i −0.00675602 0.264647i
\(309\) 0 0
\(310\) 954.611 12.1829i 0.174898 0.00223207i
\(311\) −8238.91 −1.50221 −0.751103 0.660185i \(-0.770478\pi\)
−0.751103 + 0.660185i \(0.770478\pi\)
\(312\) 0 0
\(313\) −5319.81 −0.960682 −0.480341 0.877082i \(-0.659487\pi\)
−0.480341 + 0.877082i \(0.659487\pi\)
\(314\) −2490.44 + 31.7833i −0.447591 + 0.00571222i
\(315\) 0 0
\(316\) −201.867 7907.54i −0.0359365 1.40770i
\(317\) 8823.47i 1.56333i 0.623699 + 0.781665i \(0.285629\pi\)
−0.623699 + 0.781665i \(0.714371\pi\)
\(318\) 0 0
\(319\) 6116.17i 1.07348i
\(320\) 662.525 + 8635.75i 0.115738 + 1.50860i
\(321\) 0 0
\(322\) −9.68519 758.899i −0.00167619 0.131341i
\(323\) −5309.63 −0.914661
\(324\) 0 0
\(325\) −6123.01 −1.04506
\(326\) −61.1271 4789.72i −0.0103850 0.813736i
\(327\) 0 0
\(328\) 299.086 + 7808.41i 0.0503484 + 1.31447i
\(329\) 1092.29i 0.183038i
\(330\) 0 0
\(331\) 2374.33i 0.394275i 0.980376 + 0.197138i \(0.0631645\pi\)
−0.980376 + 0.197138i \(0.936835\pi\)
\(332\) −4026.77 + 102.797i −0.665656 + 0.0169932i
\(333\) 0 0
\(334\) 4638.53 59.1977i 0.759908 0.00969806i
\(335\) 10482.9 1.70967
\(336\) 0 0
\(337\) −643.776 −0.104062 −0.0520308 0.998645i \(-0.516569\pi\)
−0.0520308 + 0.998645i \(0.516569\pi\)
\(338\) −2131.07 + 27.1971i −0.342944 + 0.00437671i
\(339\) 0 0
\(340\) −11415.7 + 291.425i −1.82089 + 0.0464846i
\(341\) 1000.41i 0.158871i
\(342\) 0 0
\(343\) 2401.99i 0.378120i
\(344\) −113.211 2955.67i −0.0177440 0.463253i
\(345\) 0 0
\(346\) −78.7360 6169.49i −0.0122337 0.958594i
\(347\) 1536.53 0.237710 0.118855 0.992912i \(-0.462078\pi\)
0.118855 + 0.992912i \(0.462078\pi\)
\(348\) 0 0
\(349\) 6865.30 1.05298 0.526492 0.850180i \(-0.323507\pi\)
0.526492 + 0.850180i \(0.323507\pi\)
\(350\) −20.7525 1626.10i −0.00316934 0.248339i
\(351\) 0 0
\(352\) −9057.41 + 578.715i −1.37148 + 0.0876296i
\(353\) 124.671i 0.0187976i −0.999956 0.00939881i \(-0.997008\pi\)
0.999956 0.00939881i \(-0.00299178\pi\)
\(354\) 0 0
\(355\) 4304.42i 0.643535i
\(356\) −208.216 8156.24i −0.0309985 1.21427i
\(357\) 0 0
\(358\) 6646.94 84.8293i 0.981290 0.0125234i
\(359\) 4489.49 0.660017 0.330009 0.943978i \(-0.392948\pi\)
0.330009 + 0.943978i \(0.392948\pi\)
\(360\) 0 0
\(361\) 2899.60 0.422744
\(362\) −6448.68 + 82.2991i −0.936285 + 0.0119490i
\(363\) 0 0
\(364\) 27.6733 + 1084.02i 0.00398482 + 0.156093i
\(365\) 1699.83i 0.243763i
\(366\) 0 0
\(367\) 867.177i 0.123341i 0.998097 + 0.0616707i \(0.0196429\pi\)
−0.998097 + 0.0616707i \(0.980357\pi\)
\(368\) −4807.38 + 245.610i −0.680984 + 0.0347916i
\(369\) 0 0
\(370\) 10.8451 + 849.787i 0.00152381 + 0.119401i
\(371\) −1710.55 −0.239373
\(372\) 0 0
\(373\) −4339.15 −0.602340 −0.301170 0.953570i \(-0.597377\pi\)
−0.301170 + 0.953570i \(0.597377\pi\)
\(374\) −152.703 11965.3i −0.0211125 1.65430i
\(375\) 0 0
\(376\) 6922.66 265.159i 0.949491 0.0363685i
\(377\) 4634.71i 0.633156i
\(378\) 0 0
\(379\) 14096.9i 1.91058i 0.295677 + 0.955288i \(0.404455\pi\)
−0.295677 + 0.955288i \(0.595545\pi\)
\(380\) −8512.71 + 217.316i −1.14919 + 0.0293371i
\(381\) 0 0
\(382\) 11123.2 141.956i 1.48982 0.0190133i
\(383\) 8268.91 1.10319 0.551594 0.834112i \(-0.314020\pi\)
0.551594 + 0.834112i \(0.314020\pi\)
\(384\) 0 0
\(385\) 3025.86 0.400550
\(386\) 7673.45 97.9297i 1.01183 0.0129132i
\(387\) 0 0
\(388\) 8054.80 205.627i 1.05392 0.0269050i
\(389\) 5742.29i 0.748446i −0.927339 0.374223i \(-0.877909\pi\)
0.927339 0.374223i \(-0.122091\pi\)
\(390\) 0 0
\(391\) 6346.64i 0.820878i
\(392\) 7467.73 286.037i 0.962187 0.0368547i
\(393\) 0 0
\(394\) 72.1124 + 5650.48i 0.00922073 + 0.722506i
\(395\) 16726.2 2.13060
\(396\) 0 0
\(397\) 10494.4 1.32670 0.663349 0.748310i \(-0.269134\pi\)
0.663349 + 0.748310i \(0.269134\pi\)
\(398\) 86.9535 + 6813.38i 0.0109512 + 0.858100i
\(399\) 0 0
\(400\) −10300.8 + 526.271i −1.28760 + 0.0657839i
\(401\) 8163.95i 1.01668i −0.861157 0.508339i \(-0.830260\pi\)
0.861157 0.508339i \(-0.169740\pi\)
\(402\) 0 0
\(403\) 758.087i 0.0937047i
\(404\) 85.9485 + 3366.77i 0.0105844 + 0.414611i
\(405\) 0 0
\(406\) 1230.85 15.7083i 0.150458 0.00192017i
\(407\) −890.553 −0.108460
\(408\) 0 0
\(409\) 4074.86 0.492638 0.246319 0.969189i \(-0.420779\pi\)
0.246319 + 0.969189i \(0.420779\pi\)
\(410\) −16521.9 + 210.855i −1.99014 + 0.0253985i
\(411\) 0 0
\(412\) −352.817 13820.5i −0.0421895 1.65264i
\(413\) 1753.66i 0.208940i
\(414\) 0 0
\(415\) 8517.52i 1.00749i
\(416\) 6863.53 438.539i 0.808923 0.0516854i
\(417\) 0 0
\(418\) −113.871 8922.53i −0.0133244 1.04406i
\(419\) −693.073 −0.0808086 −0.0404043 0.999183i \(-0.512865\pi\)
−0.0404043 + 0.999183i \(0.512865\pi\)
\(420\) 0 0
\(421\) −10725.4 −1.24162 −0.620810 0.783961i \(-0.713196\pi\)
−0.620810 + 0.783961i \(0.713196\pi\)
\(422\) −65.6705 5145.72i −0.00757533 0.593577i
\(423\) 0 0
\(424\) 415.247 + 10841.1i 0.0475618 + 1.24172i
\(425\) 13599.0i 1.55211i
\(426\) 0 0
\(427\) 356.170i 0.0403660i
\(428\) 505.121 12.8950i 0.0570466 0.00145631i
\(429\) 0 0
\(430\) 6253.94 79.8137i 0.701376 0.00895107i
\(431\) −10013.8 −1.11914 −0.559569 0.828784i \(-0.689033\pi\)
−0.559569 + 0.828784i \(0.689033\pi\)
\(432\) 0 0
\(433\) −9726.02 −1.07945 −0.539726 0.841841i \(-0.681472\pi\)
−0.539726 + 0.841841i \(0.681472\pi\)
\(434\) 201.327 2.56936i 0.0222673 0.000284178i
\(435\) 0 0
\(436\) −6680.81 + 170.551i −0.733836 + 0.0187337i
\(437\) 4732.70i 0.518068i
\(438\) 0 0
\(439\) 6554.02i 0.712542i −0.934383 0.356271i \(-0.884048\pi\)
0.934383 0.356271i \(-0.115952\pi\)
\(440\) −734.546 19177.2i −0.0795866 2.07781i
\(441\) 0 0
\(442\) 115.715 + 9067.05i 0.0124525 + 0.975737i
\(443\) −5879.21 −0.630542 −0.315271 0.949002i \(-0.602095\pi\)
−0.315271 + 0.949002i \(0.602095\pi\)
\(444\) 0 0
\(445\) 17252.3 1.83783
\(446\) 96.5309 + 7563.84i 0.0102486 + 0.803045i
\(447\) 0 0
\(448\) 139.726 + 1821.27i 0.0147353 + 0.192070i
\(449\) 6761.00i 0.710627i −0.934747 0.355313i \(-0.884374\pi\)
0.934747 0.355313i \(-0.115626\pi\)
\(450\) 0 0
\(451\) 17314.5i 1.80778i
\(452\) −210.265 8236.47i −0.0218806 0.857104i
\(453\) 0 0
\(454\) −16684.0 + 212.924i −1.72471 + 0.0220110i
\(455\) −2292.93 −0.236251
\(456\) 0 0
\(457\) −15240.3 −1.55998 −0.779992 0.625790i \(-0.784777\pi\)
−0.779992 + 0.625790i \(0.784777\pi\)
\(458\) 8577.22 109.464i 0.875081 0.0111679i
\(459\) 0 0
\(460\) −259.760 10175.3i −0.0263291 1.03136i
\(461\) 13741.4i 1.38828i −0.719838 0.694142i \(-0.755784\pi\)
0.719838 0.694142i \(-0.244216\pi\)
\(462\) 0 0
\(463\) 17657.3i 1.77237i −0.463336 0.886183i \(-0.653348\pi\)
0.463336 0.886183i \(-0.346652\pi\)
\(464\) −398.352 7797.04i −0.0398557 0.780104i
\(465\) 0 0
\(466\) 46.7101 + 3660.05i 0.00464335 + 0.363838i
\(467\) −6165.12 −0.610895 −0.305447 0.952209i \(-0.598806\pi\)
−0.305447 + 0.952209i \(0.598806\pi\)
\(468\) 0 0
\(469\) 2210.83 0.217669
\(470\) 186.937 + 14647.7i 0.0183463 + 1.43755i
\(471\) 0 0
\(472\) 11114.3 425.713i 1.08385 0.0415149i
\(473\) 6553.95i 0.637106i
\(474\) 0 0
\(475\) 10140.8i 0.979562i
\(476\) −2407.56 + 61.4614i −0.231829 + 0.00591824i
\(477\) 0 0
\(478\) −16262.9 + 207.550i −1.55617 + 0.0198601i
\(479\) −17318.1 −1.65195 −0.825976 0.563705i \(-0.809376\pi\)
−0.825976 + 0.563705i \(0.809376\pi\)
\(480\) 0 0
\(481\) 674.843 0.0639713
\(482\) 17019.1 217.200i 1.60829 0.0205253i
\(483\) 0 0
\(484\) 9459.18 241.478i 0.888353 0.0226783i
\(485\) 17037.7i 1.59514i
\(486\) 0 0
\(487\) 7352.14i 0.684101i 0.939682 + 0.342050i \(0.111121\pi\)
−0.939682 + 0.342050i \(0.888879\pi\)
\(488\) 2257.32 86.4625i 0.209394 0.00802044i
\(489\) 0 0
\(490\) 201.656 + 15801.1i 0.0185916 + 1.45677i
\(491\) −8442.54 −0.775981 −0.387991 0.921663i \(-0.626831\pi\)
−0.387991 + 0.921663i \(0.626831\pi\)
\(492\) 0 0
\(493\) 10293.5 0.940361
\(494\) 86.2890 + 6761.31i 0.00785896 + 0.615801i
\(495\) 0 0
\(496\) −65.1574 1275.34i −0.00589850 0.115453i
\(497\) 907.800i 0.0819324i
\(498\) 0 0
\(499\) 7554.44i 0.677722i 0.940837 + 0.338861i \(0.110042\pi\)
−0.940837 + 0.338861i \(0.889958\pi\)
\(500\) −124.884 4891.97i −0.0111700 0.437551i
\(501\) 0 0
\(502\) −9070.82 + 115.763i −0.806475 + 0.0102924i
\(503\) −604.632 −0.0535968 −0.0267984 0.999641i \(-0.508531\pi\)
−0.0267984 + 0.999641i \(0.508531\pi\)
\(504\) 0 0
\(505\) −7121.47 −0.627527
\(506\) 10665.2 136.111i 0.937006 0.0119582i
\(507\) 0 0
\(508\) −162.211 6354.11i −0.0141672 0.554957i
\(509\) 10232.6i 0.891061i 0.895267 + 0.445531i \(0.146985\pi\)
−0.895267 + 0.445531i \(0.853015\pi\)
\(510\) 0 0
\(511\) 358.494i 0.0310349i
\(512\) 11508.9 1327.68i 0.993412 0.114601i
\(513\) 0 0
\(514\) −104.955 8223.96i −0.00900659 0.705726i
\(515\) 29233.5 2.50133
\(516\) 0 0
\(517\) −15350.4 −1.30582
\(518\) 2.28723 + 179.220i 0.000194006 + 0.0152017i
\(519\) 0 0
\(520\) 556.624 + 14532.1i 0.0469415 + 1.22553i
\(521\) 18465.3i 1.55274i −0.630276 0.776371i \(-0.717058\pi\)
0.630276 0.776371i \(-0.282942\pi\)
\(522\) 0 0
\(523\) 15941.5i 1.33284i −0.745579 0.666418i \(-0.767827\pi\)
0.745579 0.666418i \(-0.232173\pi\)
\(524\) 1776.05 45.3398i 0.148067 0.00377992i
\(525\) 0 0
\(526\) 882.698 11.2651i 0.0731701 0.000933809i
\(527\) 1683.69 0.139170
\(528\) 0 0
\(529\) −6509.96 −0.535051
\(530\) −22938.8 + 292.748i −1.87999 + 0.0239928i
\(531\) 0 0
\(532\) −1795.32 + 45.8319i −0.146310 + 0.00373508i
\(533\) 13120.6i 1.06626i
\(534\) 0 0
\(535\) 1068.44i 0.0863417i
\(536\) −536.693 14011.7i −0.0432493 1.12913i
\(537\) 0 0
\(538\) −65.9171 5165.04i −0.00528232 0.413905i
\(539\) −16559.1 −1.32328
\(540\) 0 0
\(541\) 7256.04 0.576638 0.288319 0.957534i \(-0.406904\pi\)
0.288319 + 0.957534i \(0.406904\pi\)
\(542\) −180.010 14104.9i −0.0142658 1.11782i
\(543\) 0 0
\(544\) 973.981 + 15243.7i 0.0767630 + 1.20141i
\(545\) 14131.4i 1.11068i
\(546\) 0 0
\(547\) 433.011i 0.0338468i 0.999857 + 0.0169234i \(0.00538715\pi\)
−0.999857 + 0.0169234i \(0.994613\pi\)
\(548\) −248.542 9735.87i −0.0193744 0.758934i
\(549\) 0 0
\(550\) 22852.4 291.646i 1.77169 0.0226106i
\(551\) 7675.91 0.593475
\(552\) 0 0
\(553\) 3527.55 0.271260
\(554\) 12025.0 153.466i 0.922193 0.0117692i
\(555\) 0 0
\(556\) 450.058 + 17629.6i 0.0343286 + 1.34472i
\(557\) 9185.88i 0.698776i 0.936978 + 0.349388i \(0.113610\pi\)
−0.936978 + 0.349388i \(0.886390\pi\)
\(558\) 0 0
\(559\) 4966.45i 0.375776i
\(560\) −3857.43 + 197.077i −0.291083 + 0.0148715i
\(561\) 0 0
\(562\) 105.931 + 8300.38i 0.00795093 + 0.623008i
\(563\) −12998.2 −0.973019 −0.486510 0.873675i \(-0.661730\pi\)
−0.486510 + 0.873675i \(0.661730\pi\)
\(564\) 0 0
\(565\) 17422.0 1.29725
\(566\) 144.506 + 11323.0i 0.0107315 + 0.840888i
\(567\) 0 0
\(568\) 5753.43 220.374i 0.425015 0.0162794i
\(569\) 6263.58i 0.461482i −0.973015 0.230741i \(-0.925885\pi\)
0.973015 0.230741i \(-0.0741149\pi\)
\(570\) 0 0
\(571\) 25216.1i 1.84809i −0.382278 0.924047i \(-0.624860\pi\)
0.382278 0.924047i \(-0.375140\pi\)
\(572\) −15234.2 + 388.906i −1.11359 + 0.0284283i
\(573\) 0 0
\(574\) −3484.46 + 44.4692i −0.253377 + 0.00323364i
\(575\) 12121.4 0.879125
\(576\) 0 0
\(577\) 18112.2 1.30680 0.653398 0.757014i \(-0.273343\pi\)
0.653398 + 0.757014i \(0.273343\pi\)
\(578\) −6242.71 + 79.6705i −0.449243 + 0.00573331i
\(579\) 0 0
\(580\) 16503.2 421.302i 1.18148 0.0301614i
\(581\) 1796.34i 0.128270i
\(582\) 0 0
\(583\) 24039.2i 1.70772i
\(584\) 2272.05 87.0268i 0.160990 0.00616643i
\(585\) 0 0
\(586\) 97.2865 + 7623.04i 0.00685813 + 0.537380i
\(587\) −26344.3 −1.85238 −0.926189 0.377060i \(-0.876935\pi\)
−0.926189 + 0.377060i \(0.876935\pi\)
\(588\) 0 0
\(589\) 1255.53 0.0878322
\(590\) 300.126 + 23516.9i 0.0209424 + 1.64098i
\(591\) 0 0
\(592\) 1135.30 58.0027i 0.0788183 0.00402685i
\(593\) 11633.4i 0.805609i −0.915286 0.402804i \(-0.868035\pi\)
0.915286 0.402804i \(-0.131965\pi\)
\(594\) 0 0
\(595\) 5092.53i 0.350880i
\(596\) −83.0107 3251.69i −0.00570512 0.223481i
\(597\) 0 0
\(598\) −8081.86 + 103.142i −0.552662 + 0.00705316i
\(599\) 22120.9 1.50891 0.754454 0.656353i \(-0.227902\pi\)
0.754454 + 0.656353i \(0.227902\pi\)
\(600\) 0 0
\(601\) −1693.85 −0.114964 −0.0574820 0.998347i \(-0.518307\pi\)
−0.0574820 + 0.998347i \(0.518307\pi\)
\(602\) 1318.95 16.8327i 0.0892964 0.00113962i
\(603\) 0 0
\(604\) 704.917 + 27613.0i 0.0474879 + 1.86019i
\(605\) 20008.3i 1.34455i
\(606\) 0 0
\(607\) 13184.9i 0.881642i 0.897595 + 0.440821i \(0.145313\pi\)
−0.897595 + 0.440821i \(0.854687\pi\)
\(608\) 726.299 + 11367.2i 0.0484462 + 0.758227i
\(609\) 0 0
\(610\) 60.9559 + 4776.30i 0.00404595 + 0.317027i
\(611\) 11632.2 0.770196
\(612\) 0 0
\(613\) −18052.3 −1.18944 −0.594719 0.803934i \(-0.702737\pi\)
−0.594719 + 0.803934i \(0.702737\pi\)
\(614\) 165.135 + 12939.4i 0.0108539 + 0.850478i
\(615\) 0 0
\(616\) −154.915 4044.46i −0.0101327 0.264539i
\(617\) 21820.6i 1.42377i −0.702297 0.711884i \(-0.747842\pi\)
0.702297 0.711884i \(-0.252158\pi\)
\(618\) 0 0
\(619\) 18059.5i 1.17265i 0.810075 + 0.586326i \(0.199426\pi\)
−0.810075 + 0.586326i \(0.800574\pi\)
\(620\) 2699.39 68.9112i 0.174855 0.00446378i
\(621\) 0 0
\(622\) −23301.3 + 297.374i −1.50208 + 0.0191698i
\(623\) 3638.49 0.233986
\(624\) 0 0
\(625\) −9797.42 −0.627035
\(626\) −15045.5 + 192.013i −0.960604 + 0.0122594i
\(627\) 0 0
\(628\) −7042.30 + 179.779i −0.447481 + 0.0114235i
\(629\) 1498.81i 0.0950100i
\(630\) 0 0
\(631\) 7301.94i 0.460674i 0.973111 + 0.230337i \(0.0739829\pi\)
−0.973111 + 0.230337i \(0.926017\pi\)
\(632\) −856.335 22356.8i −0.0538974 1.40713i
\(633\) 0 0
\(634\) 318.473 + 24954.5i 0.0199498 + 1.56320i
\(635\) 13440.4 0.839944
\(636\) 0 0
\(637\) 12548.1 0.780494
\(638\) 220.756 + 17297.7i 0.0136988 + 1.07339i
\(639\) 0 0
\(640\) 2185.45 + 24399.7i 0.134980 + 1.50700i
\(641\) 849.848i 0.0523666i −0.999657 0.0261833i \(-0.991665\pi\)
0.999657 0.0261833i \(-0.00833535\pi\)
\(642\) 0 0
\(643\) 1136.85i 0.0697245i −0.999392 0.0348622i \(-0.988901\pi\)
0.999392 0.0348622i \(-0.0110992\pi\)
\(644\) −54.7833 2145.97i −0.00335212 0.131309i
\(645\) 0 0
\(646\) −15016.7 + 191.645i −0.914587 + 0.0116721i
\(647\) 995.889 0.0605138 0.0302569 0.999542i \(-0.490367\pi\)
0.0302569 + 0.999542i \(0.490367\pi\)
\(648\) 0 0
\(649\) −24645.0 −1.49061
\(650\) −17317.1 + 221.003i −1.04497 + 0.0133361i
\(651\) 0 0
\(652\) −345.759 13544.1i −0.0207684 0.813537i
\(653\) 28285.8i 1.69511i 0.530704 + 0.847557i \(0.321928\pi\)
−0.530704 + 0.847557i \(0.678072\pi\)
\(654\) 0 0
\(655\) 3756.74i 0.224104i
\(656\) 1127.71 + 22072.9i 0.0671185 + 1.31372i
\(657\) 0 0
\(658\) 39.4248 + 3089.20i 0.00233577 + 0.183023i
\(659\) 25443.9 1.50403 0.752014 0.659147i \(-0.229083\pi\)
0.752014 + 0.659147i \(0.229083\pi\)
\(660\) 0 0
\(661\) −4218.61 −0.248237 −0.124119 0.992267i \(-0.539610\pi\)
−0.124119 + 0.992267i \(0.539610\pi\)
\(662\) 85.6989 + 6715.08i 0.00503139 + 0.394243i
\(663\) 0 0
\(664\) −11384.8 + 436.073i −0.665385 + 0.0254863i
\(665\) 3797.51i 0.221445i
\(666\) 0 0
\(667\) 9175.09i 0.532625i
\(668\) 13116.5 334.845i 0.759722 0.0193945i
\(669\) 0 0
\(670\) 29647.6 378.368i 1.70953 0.0218173i
\(671\) −5005.43 −0.287977
\(672\) 0 0
\(673\) 14425.7 0.826257 0.413129 0.910673i \(-0.364436\pi\)
0.413129 + 0.910673i \(0.364436\pi\)
\(674\) −1820.73 + 23.2364i −0.104053 + 0.00132794i
\(675\) 0 0
\(676\) −6026.11 + 153.837i −0.342860 + 0.00875270i
\(677\) 32182.1i 1.82697i 0.406871 + 0.913486i \(0.366620\pi\)
−0.406871 + 0.913486i \(0.633380\pi\)
\(678\) 0 0
\(679\) 3593.24i 0.203087i
\(680\) −32275.3 + 1236.25i −1.82015 + 0.0697174i
\(681\) 0 0
\(682\) 36.1085 + 2829.34i 0.00202737 + 0.158858i
\(683\) 28383.3 1.59012 0.795062 0.606528i \(-0.207438\pi\)
0.795062 + 0.606528i \(0.207438\pi\)
\(684\) 0 0
\(685\) 20593.5 1.14867
\(686\) 86.6970 + 6793.29i 0.00482523 + 0.378089i
\(687\) 0 0
\(688\) −426.866 8355.13i −0.0236542 0.462989i
\(689\) 18216.4i 1.00724i
\(690\) 0 0
\(691\) 5303.09i 0.291952i −0.989288 0.145976i \(-0.953368\pi\)
0.989288 0.145976i \(-0.0466323\pi\)
\(692\) −445.362 17445.7i −0.0244655 0.958360i
\(693\) 0 0
\(694\) 4345.61 55.4594i 0.237690 0.00303344i
\(695\) −37290.6 −2.03527
\(696\) 0 0
\(697\) −29140.4 −1.58360
\(698\) 19416.4 247.796i 1.05290 0.0134372i
\(699\) 0 0
\(700\) −117.385 4598.18i −0.00633817 0.248278i
\(701\) 10087.7i 0.543519i 0.962365 + 0.271760i \(0.0876056\pi\)
−0.962365 + 0.271760i \(0.912394\pi\)
\(702\) 0 0
\(703\) 1117.66i 0.0599622i
\(704\) −25595.3 + 1963.64i −1.37025 + 0.105124i
\(705\) 0 0
\(706\) −4.49986 352.594i −0.000239879 0.0187961i
\(707\) −1501.91 −0.0798943
\(708\) 0 0
\(709\) −25739.3 −1.36341 −0.681706 0.731626i \(-0.738762\pi\)
−0.681706 + 0.731626i \(0.738762\pi\)
\(710\) 155.363 + 12173.8i 0.00821223 + 0.643483i
\(711\) 0 0
\(712\) −883.268 23059.9i −0.0464914 1.21378i
\(713\) 1500.74i 0.0788265i
\(714\) 0 0
\(715\) 32223.7i 1.68545i
\(716\) 18795.8 479.828i 0.981050 0.0250447i
\(717\) 0 0
\(718\) 12697.2 162.043i 0.659964 0.00842256i
\(719\) −7178.86 −0.372359 −0.186180 0.982516i \(-0.559611\pi\)
−0.186180 + 0.982516i \(0.559611\pi\)
\(720\) 0 0
\(721\) 6165.33 0.318459
\(722\) 8200.65 104.658i 0.422710 0.00539469i
\(723\) 0 0
\(724\) −18235.2 + 465.516i −0.936057 + 0.0238961i
\(725\) 19659.5i 1.00709i
\(726\) 0 0
\(727\) 21074.1i 1.07510i −0.843233 0.537548i \(-0.819351\pi\)
0.843233 0.537548i \(-0.180649\pi\)
\(728\) 117.392 + 3064.81i 0.00597641 + 0.156029i
\(729\) 0 0
\(730\) 61.3537 + 4807.47i 0.00311069 + 0.243743i
\(731\) 11030.3 0.558101
\(732\) 0 0
\(733\) 20228.0 1.01929 0.509645 0.860385i \(-0.329777\pi\)
0.509645 + 0.860385i \(0.329777\pi\)
\(734\) 31.2998 + 2452.55i 0.00157397 + 0.123331i
\(735\) 0 0
\(736\) −13587.4 + 868.151i −0.680484 + 0.0434789i
\(737\) 31069.9i 1.55288i
\(738\) 0 0
\(739\) 8782.55i 0.437173i −0.975818 0.218587i \(-0.929855\pi\)
0.975818 0.218587i \(-0.0701447\pi\)
\(740\) 61.3443 + 2402.97i 0.00304738 + 0.119372i
\(741\) 0 0
\(742\) −4837.77 + 61.7404i −0.239353 + 0.00305467i
\(743\) −23353.5 −1.15311 −0.576553 0.817060i \(-0.695603\pi\)
−0.576553 + 0.817060i \(0.695603\pi\)
\(744\) 0 0
\(745\) 6878.05 0.338245
\(746\) −12272.0 + 156.617i −0.602291 + 0.00768654i
\(747\) 0 0
\(748\) −863.747 33834.7i −0.0422216 1.65390i
\(749\) 225.334i 0.0109927i
\(750\) 0 0
\(751\) 16887.9i 0.820569i 0.911957 + 0.410285i \(0.134571\pi\)
−0.911957 + 0.410285i \(0.865429\pi\)
\(752\) 19569.1 999.788i 0.948950 0.0484821i
\(753\) 0 0
\(754\) −167.285 13107.9i −0.00807978 0.633104i
\(755\) −58407.6 −2.81546
\(756\) 0 0
\(757\) 6838.01 0.328311 0.164156 0.986434i \(-0.447510\pi\)
0.164156 + 0.986434i \(0.447510\pi\)
\(758\) 508.811 + 39868.8i 0.0243811 + 1.91042i
\(759\) 0 0
\(760\) −24067.8 + 921.870i −1.14872 + 0.0439997i
\(761\) 23675.9i 1.12779i −0.825846 0.563896i \(-0.809302\pi\)
0.825846 0.563896i \(-0.190698\pi\)
\(762\) 0 0
\(763\) 2980.30i 0.141408i
\(764\) 31453.4 802.957i 1.48945 0.0380235i
\(765\) 0 0
\(766\) 23386.1 298.457i 1.10310 0.0140779i
\(767\) 18675.5 0.879184
\(768\) 0 0
\(769\) 36837.3 1.72742 0.863711 0.503988i \(-0.168134\pi\)
0.863711 + 0.503988i \(0.168134\pi\)
\(770\) 8557.72 109.215i 0.400518 0.00511147i
\(771\) 0 0
\(772\) 21698.5 553.929i 1.01159 0.0258243i
\(773\) 7505.51i 0.349230i 0.984637 + 0.174615i \(0.0558680\pi\)
−0.984637 + 0.174615i \(0.944132\pi\)
\(774\) 0 0
\(775\) 3215.66i 0.149045i
\(776\) 22773.1 872.282i 1.05349 0.0403520i
\(777\) 0 0
\(778\) −207.261 16240.3i −0.00955101 0.748385i
\(779\) −21730.0 −0.999434
\(780\) 0 0
\(781\) −12757.8 −0.584518
\(782\) −229.075 17949.6i −0.0104753 0.820812i
\(783\) 0 0
\(784\) 21109.9 1078.51i 0.961638 0.0491303i
\(785\) 14896.0i 0.677276i
\(786\) 0 0
\(787\) 19472.8i 0.881997i 0.897508 + 0.440998i \(0.145376\pi\)
−0.897508 + 0.440998i \(0.854624\pi\)
\(788\) 407.896 + 15978.1i 0.0184400 + 0.722329i
\(789\) 0 0
\(790\) 47305.0 603.714i 2.13043 0.0271888i
\(791\) 3674.28 0.165161
\(792\) 0 0
\(793\) 3793.01 0.169853
\(794\) 29680.2 378.784i 1.32659 0.0169302i
\(795\) 0 0
\(796\) 491.843 + 19266.4i 0.0219006 + 0.857891i
\(797\) 35777.2i 1.59008i −0.606557 0.795040i \(-0.707450\pi\)
0.606557 0.795040i \(-0.292550\pi\)
\(798\) 0 0
\(799\) 25834.8i 1.14389i
\(800\) −29113.7 + 1860.20i −1.28666 + 0.0822098i
\(801\) 0 0
\(802\) −294.669 23089.3i −0.0129740 1.01660i
\(803\) −5038.09 −0.221408
\(804\) 0 0
\(805\) 4539.20 0.198740
\(806\) −27.3623 2144.02i −0.00119578 0.0936971i
\(807\) 0 0
\(808\) 364.599 + 9518.78i 0.0158744 + 0.414443i
\(809\) 16519.8i 0.717932i −0.933351 0.358966i \(-0.883129\pi\)
0.933351 0.358966i \(-0.116871\pi\)
\(810\) 0 0
\(811\) 18594.4i 0.805103i −0.915397 0.402552i \(-0.868123\pi\)
0.915397 0.402552i \(-0.131877\pi\)
\(812\) 3480.52 88.8523i 0.150422 0.00384003i
\(813\) 0 0
\(814\) −2518.66 + 32.1435i −0.108451 + 0.00138407i
\(815\) 28648.7 1.23131
\(816\) 0 0
\(817\) 8225.34 0.352225
\(818\) 11524.5 147.078i 0.492598 0.00628661i
\(819\) 0 0
\(820\) −46719.6 + 1192.68i −1.98966 + 0.0507929i
\(821\) 41224.9i 1.75244i −0.481907 0.876222i \(-0.660056\pi\)
0.481907 0.876222i \(-0.339944\pi\)
\(822\) 0 0
\(823\) 4287.73i 0.181605i 0.995869 + 0.0908025i \(0.0289432\pi\)
−0.995869 + 0.0908025i \(0.971057\pi\)
\(824\) −1496.67 39074.5i −0.0632756 1.65197i
\(825\) 0 0
\(826\) 63.2965 + 4959.70i 0.00266630 + 0.208922i
\(827\) 24944.4 1.04885 0.524426 0.851456i \(-0.324280\pi\)
0.524426 + 0.851456i \(0.324280\pi\)
\(828\) 0 0
\(829\) −31040.8 −1.30047 −0.650235 0.759733i \(-0.725330\pi\)
−0.650235 + 0.759733i \(0.725330\pi\)
\(830\) −307.430 24089.2i −0.0128567 1.00741i
\(831\) 0 0
\(832\) 19395.6 1488.00i 0.808198 0.0620040i
\(833\) 27869.0i 1.15919i
\(834\) 0 0
\(835\) 27744.4i 1.14986i
\(836\) −644.098 25230.6i −0.0266466 1.04380i
\(837\) 0 0
\(838\) −1960.15 + 25.0157i −0.0808021 + 0.00103121i
\(839\) −12787.2 −0.526178 −0.263089 0.964772i \(-0.584741\pi\)
−0.263089 + 0.964772i \(0.584741\pi\)
\(840\) 0 0
\(841\) 9508.03 0.389849
\(842\) −30333.4 + 387.120i −1.24152 + 0.0158445i
\(843\) 0 0
\(844\) −371.458 14550.7i −0.0151494 0.593432i
\(845\) 12746.6i 0.518929i
\(846\) 0 0
\(847\) 4219.73i 0.171183i
\(848\) 1565.70 + 30645.7i 0.0634036 + 1.24101i
\(849\) 0 0
\(850\) −490.841 38460.7i −0.0198067 1.55199i
\(851\) −1335.95 −0.0538141
\(852\) 0 0
\(853\) −46982.9 −1.88589 −0.942946 0.332947i \(-0.891957\pi\)
−0.942946 + 0.332947i \(0.891957\pi\)
\(854\) 12.8556 + 1007.32i 0.000515115 + 0.0403627i
\(855\) 0 0
\(856\) 1428.12 54.7013i 0.0570234 0.00218417i
\(857\) 46178.0i 1.84062i −0.391189 0.920310i \(-0.627936\pi\)
0.391189 0.920310i \(-0.372064\pi\)
\(858\) 0 0
\(859\) 6548.05i 0.260089i −0.991508 0.130045i \(-0.958488\pi\)
0.991508 0.130045i \(-0.0415120\pi\)
\(860\) 17684.5 451.458i 0.701205 0.0179007i
\(861\) 0 0
\(862\) −28321.1 + 361.438i −1.11905 + 0.0142815i
\(863\) −29442.2 −1.16133 −0.580663 0.814144i \(-0.697207\pi\)
−0.580663 + 0.814144i \(0.697207\pi\)
\(864\) 0 0
\(865\) 36901.5 1.45051
\(866\) −27507.1 + 351.050i −1.07936 + 0.0137750i
\(867\) 0 0
\(868\) 569.299 14.5333i 0.0222618 0.000568311i
\(869\) 49574.3i 1.93521i
\(870\) 0 0
\(871\) 23544.1i 0.915915i
\(872\) −18888.5 + 723.488i −0.733538 + 0.0280968i
\(873\) 0 0
\(874\) −170.822 13385.0i −0.00661113 0.518026i
\(875\) 2182.30 0.0843146
\(876\) 0 0
\(877\) −32768.6 −1.26171 −0.630853 0.775903i \(-0.717295\pi\)
−0.630853 + 0.775903i \(0.717295\pi\)
\(878\) −236.560 18536.0i −0.00909284 0.712484i
\(879\) 0 0
\(880\) −2769.62 54210.4i −0.106095 2.07663i
\(881\) 15082.2i 0.576769i −0.957515 0.288384i \(-0.906882\pi\)
0.957515 0.288384i \(-0.0931181\pi\)
\(882\) 0 0
\(883\) 425.340i 0.0162105i 0.999967 + 0.00810523i \(0.00258000\pi\)
−0.999967 + 0.00810523i \(0.997420\pi\)
\(884\) 654.531 + 25639.2i 0.0249030 + 0.975498i
\(885\) 0 0
\(886\) −16627.6 + 212.204i −0.630490 + 0.00804642i
\(887\) 12156.8 0.460188 0.230094 0.973168i \(-0.426097\pi\)
0.230094 + 0.973168i \(0.426097\pi\)
\(888\) 0 0
\(889\) 2834.56 0.106938
\(890\) 48792.8 622.702i 1.83768 0.0234528i
\(891\) 0 0
\(892\) 546.017 + 21388.5i 0.0204955 + 0.802849i
\(893\) 19265.1i 0.721927i
\(894\) 0 0
\(895\) 39757.3i 1.48485i
\(896\) 460.910 + 5145.88i 0.0171852 + 0.191866i
\(897\) 0 0
\(898\) −244.031 19121.4i −0.00906839 0.710569i
\(899\) −2434.04 −0.0903001
\(900\) 0 0
\(901\) −40458.1 −1.49595
\(902\) −624.947 48968.8i −0.0230693 1.80763i
\(903\) 0 0
\(904\) −891.956 23286.8i −0.0328164 0.856755i
\(905\) 38571.5i 1.41675i
\(906\) 0 0
\(907\) 45812.3i 1.67715i 0.544788 + 0.838574i \(0.316610\pi\)
−0.544788 + 0.838574i \(0.683390\pi\)
\(908\) −47177.9 + 1204.38i −1.72429 + 0.0440185i
\(909\) 0 0
\(910\) −6484.87 + 82.7609i −0.236232 + 0.00301483i
\(911\) −28823.7 −1.04827 −0.524134 0.851636i \(-0.675611\pi\)
−0.524134 + 0.851636i \(0.675611\pi\)
\(912\) 0 0
\(913\) 25244.8 0.915095
\(914\) −43102.6 + 550.083i −1.55986 + 0.0199071i
\(915\) 0 0
\(916\) 24254.1 619.171i 0.874867 0.0223340i
\(917\) 792.293i 0.0285320i
\(918\) 0 0
\(919\) 41488.4i 1.48920i 0.667511 + 0.744600i \(0.267360\pi\)
−0.667511 + 0.744600i \(0.732640\pi\)
\(920\) −1101.92 28768.4i −0.0394883 1.03094i
\(921\) 0 0
\(922\) −495.980 38863.3i −0.0177161 1.38817i
\(923\) 9667.57 0.344758
\(924\) 0 0
\(925\) −2862.55 −0.101752
\(926\) −637.321 49938.4i −0.0226174 1.77222i
\(927\) 0 0
\(928\) −1408.04 22037.2i −0.0498075 0.779532i
\(929\) 4226.17i 0.149253i −0.997212 0.0746266i \(-0.976224\pi\)
0.997212 0.0746266i \(-0.0237765\pi\)
\(930\) 0 0
\(931\) 20782.0i 0.731580i
\(932\) 264.211 + 10349.6i 0.00928595 + 0.363749i
\(933\) 0 0
\(934\) −17436.2 + 222.523i −0.610845 + 0.00779570i
\(935\) 71567.8 2.50323
\(936\) 0 0
\(937\) 31514.2 1.09875 0.549373 0.835577i \(-0.314867\pi\)
0.549373 + 0.835577i \(0.314867\pi\)
\(938\) 6252.66 79.7975i 0.217651 0.00277770i
\(939\) 0 0
\(940\) 1057.39 + 41419.9i 0.0366895 + 1.43720i
\(941\) 26604.6i 0.921664i −0.887487 0.460832i \(-0.847551\pi\)
0.887487 0.460832i \(-0.152449\pi\)
\(942\) 0 0
\(943\) 25974.1i 0.896959i
\(944\) 31418.1 1605.16i 1.08323 0.0553426i
\(945\) 0 0
\(946\) 236.558 + 18535.9i 0.00813018 + 0.637054i
\(947\) 51629.3 1.77162 0.885811 0.464046i \(-0.153603\pi\)
0.885811 + 0.464046i \(0.153603\pi\)
\(948\) 0 0
\(949\) 3817.76 0.130590
\(950\) −366.021 28680.2i −0.0125003 0.979482i
\(951\) 0 0
\(952\) −6806.85 + 260.723i −0.231734 + 0.00887615i
\(953\) 25766.7i 0.875829i 0.899017 + 0.437915i \(0.144283\pi\)
−0.899017 + 0.437915i \(0.855717\pi\)
\(954\) 0 0
\(955\) 66530.9i 2.25433i
\(956\) −45987.3 + 1173.99i −1.55579 + 0.0397170i
\(957\) 0 0
\(958\) −48979.1 + 625.079i −1.65182 + 0.0210808i
\(959\) 4343.16 0.146244
\(960\) 0 0
\(961\) 29392.9 0.986636
\(962\) 1908.59 24.3577i 0.0639661 0.000816346i
\(963\) 0 0
\(964\) 48125.4 1228.57i 1.60790 0.0410472i
\(965\) 45897.1i 1.53107i
\(966\) 0 0
\(967\) 45989.7i 1.52940i −0.644387 0.764700i \(-0.722887\pi\)
0.644387 0.764700i \(-0.277113\pi\)
\(968\) 26743.7 1024.37i 0.887991 0.0340128i
\(969\) 0 0
\(970\) 614.957 + 48186.0i 0.0203558 + 1.59501i
\(971\) 22109.4 0.730714 0.365357 0.930867i \(-0.380947\pi\)
0.365357 + 0.930867i \(0.380947\pi\)
\(972\) 0 0
\(973\) −7864.57 −0.259123
\(974\) 265.367 + 20793.3i 0.00872989 + 0.684045i
\(975\) 0 0
\(976\) 6381.03 326.009i 0.209275 0.0106919i
\(977\) 50634.6i 1.65808i −0.559189 0.829040i \(-0.688887\pi\)
0.559189 0.829040i \(-0.311113\pi\)
\(978\) 0 0
\(979\) 51133.5i 1.66929i
\(980\) 1140.64 + 44681.2i 0.0371801 + 1.45642i
\(981\) 0 0
\(982\) −23877.2 + 304.724i −0.775918 + 0.00990239i
\(983\) −13979.6 −0.453590 −0.226795 0.973943i \(-0.572825\pi\)
−0.226795 + 0.973943i \(0.572825\pi\)
\(984\) 0 0
\(985\) −33797.2 −1.09327
\(986\) 29112.2 371.534i 0.940285 0.0120001i
\(987\) 0 0
\(988\) 488.084 + 19119.2i 0.0157166 + 0.615651i
\(989\) 9831.82i 0.316111i
\(990\) 0 0
\(991\) 29526.4i 0.946456i 0.880940 + 0.473228i \(0.156911\pi\)
−0.880940 + 0.473228i \(0.843089\pi\)
\(992\) −230.310 3604.56i −0.00737132 0.115368i
\(993\) 0 0
\(994\) 32.7661 + 2567.44i 0.00104555 + 0.0819257i
\(995\) −40752.8 −1.29844
\(996\) 0 0
\(997\) 5027.73 0.159709 0.0798545 0.996807i \(-0.474554\pi\)
0.0798545 + 0.996807i \(0.474554\pi\)
\(998\) 272.669 + 21365.4i 0.00864849 + 0.677667i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.b.c.323.23 24
3.2 odd 2 inner 324.4.b.c.323.2 24
4.3 odd 2 inner 324.4.b.c.323.1 24
9.2 odd 6 36.4.h.b.23.9 yes 24
9.4 even 3 36.4.h.b.11.5 24
9.5 odd 6 108.4.h.b.35.8 24
9.7 even 3 108.4.h.b.71.4 24
12.11 even 2 inner 324.4.b.c.323.24 24
36.7 odd 6 108.4.h.b.71.8 24
36.11 even 6 36.4.h.b.23.5 yes 24
36.23 even 6 108.4.h.b.35.4 24
36.31 odd 6 36.4.h.b.11.9 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.4.h.b.11.5 24 9.4 even 3
36.4.h.b.11.9 yes 24 36.31 odd 6
36.4.h.b.23.5 yes 24 36.11 even 6
36.4.h.b.23.9 yes 24 9.2 odd 6
108.4.h.b.35.4 24 36.23 even 6
108.4.h.b.35.8 24 9.5 odd 6
108.4.h.b.71.4 24 9.7 even 3
108.4.h.b.71.8 24 36.7 odd 6
324.4.b.c.323.1 24 4.3 odd 2 inner
324.4.b.c.323.2 24 3.2 odd 2 inner
324.4.b.c.323.23 24 1.1 even 1 trivial
324.4.b.c.323.24 24 12.11 even 2 inner