Properties

Label 324.4.b.c.323.12
Level $324$
Weight $4$
Character 324.323
Analytic conductor $19.117$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,4,Mod(323,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.323"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.12
Character \(\chi\) \(=\) 324.323
Dual form 324.4.b.c.323.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.513200 + 2.78148i) q^{2} +(-7.47325 - 2.85491i) q^{4} -2.40947i q^{5} +2.66000i q^{7} +(11.7761 - 19.3216i) q^{8} +(6.70190 + 1.23654i) q^{10} -48.2857 q^{11} +40.7140 q^{13} +(-7.39872 - 1.36511i) q^{14} +(47.6990 + 42.6709i) q^{16} +36.3729i q^{17} -125.173i q^{19} +(-6.87883 + 18.0066i) q^{20} +(24.7802 - 134.306i) q^{22} +194.112 q^{23} +119.194 q^{25} +(-20.8944 + 113.245i) q^{26} +(7.59405 - 19.8788i) q^{28} +177.354i q^{29} +175.582i q^{31} +(-143.167 + 110.775i) q^{32} +(-101.171 - 18.6666i) q^{34} +6.40918 q^{35} +199.364 q^{37} +(348.167 + 64.2389i) q^{38} +(-46.5547 - 28.3743i) q^{40} +233.037i q^{41} -291.623i q^{43} +(360.851 + 137.851i) q^{44} +(-99.6182 + 539.918i) q^{46} +61.8953 q^{47} +335.924 q^{49} +(-61.1706 + 331.537i) q^{50} +(-304.266 - 116.235i) q^{52} +352.175i q^{53} +116.343i q^{55} +(51.3952 + 31.3245i) q^{56} +(-493.308 - 91.0183i) q^{58} -141.582 q^{59} +15.4304 q^{61} +(-488.377 - 90.1086i) q^{62} +(-234.645 - 455.067i) q^{64} -98.0993i q^{65} -152.024i q^{67} +(103.841 - 271.824i) q^{68} +(-3.28919 + 17.8270i) q^{70} +28.0331 q^{71} +124.499 q^{73} +(-102.314 + 554.527i) q^{74} +(-357.358 + 935.451i) q^{76} -128.440i q^{77} +748.721i q^{79} +(102.814 - 114.929i) q^{80} +(-648.187 - 119.595i) q^{82} +348.888 q^{83} +87.6396 q^{85} +(811.144 + 149.661i) q^{86} +(-568.619 + 932.955i) q^{88} -416.864i q^{89} +108.299i q^{91} +(-1450.65 - 554.172i) q^{92} +(-31.7647 + 172.160i) q^{94} -301.601 q^{95} +1505.13 q^{97} +(-172.396 + 934.367i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 96 q^{10} + 432 q^{13} + 144 q^{16} + 384 q^{22} - 504 q^{25} - 672 q^{28} + 1320 q^{34} + 1248 q^{37} - 1272 q^{40} + 960 q^{46} - 696 q^{49} - 264 q^{52} - 1032 q^{58} + 528 q^{61} + 960 q^{64}+ \cdots - 1176 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.513200 + 2.78148i −0.181444 + 0.983401i
\(3\) 0 0
\(4\) −7.47325 2.85491i −0.934156 0.356864i
\(5\) 2.40947i 0.215510i −0.994177 0.107755i \(-0.965634\pi\)
0.994177 0.107755i \(-0.0343662\pi\)
\(6\) 0 0
\(7\) 2.66000i 0.143626i 0.997418 + 0.0718131i \(0.0228785\pi\)
−0.997418 + 0.0718131i \(0.977121\pi\)
\(8\) 11.7761 19.3216i 0.520437 0.853900i
\(9\) 0 0
\(10\) 6.70190 + 1.23654i 0.211933 + 0.0391029i
\(11\) −48.2857 −1.32352 −0.661758 0.749717i \(-0.730190\pi\)
−0.661758 + 0.749717i \(0.730190\pi\)
\(12\) 0 0
\(13\) 40.7140 0.868618 0.434309 0.900764i \(-0.356993\pi\)
0.434309 + 0.900764i \(0.356993\pi\)
\(14\) −7.39872 1.36511i −0.141242 0.0260601i
\(15\) 0 0
\(16\) 47.6990 + 42.6709i 0.745297 + 0.666733i
\(17\) 36.3729i 0.518925i 0.965753 + 0.259463i \(0.0835455\pi\)
−0.965753 + 0.259463i \(0.916455\pi\)
\(18\) 0 0
\(19\) 125.173i 1.51141i −0.654914 0.755703i \(-0.727295\pi\)
0.654914 0.755703i \(-0.272705\pi\)
\(20\) −6.87883 + 18.0066i −0.0769076 + 0.201320i
\(21\) 0 0
\(22\) 24.7802 134.306i 0.240144 1.30155i
\(23\) 194.112 1.75979 0.879894 0.475169i \(-0.157613\pi\)
0.879894 + 0.475169i \(0.157613\pi\)
\(24\) 0 0
\(25\) 119.194 0.953556
\(26\) −20.8944 + 113.245i −0.157605 + 0.854200i
\(27\) 0 0
\(28\) 7.59405 19.8788i 0.0512550 0.134169i
\(29\) 177.354i 1.13565i 0.823149 + 0.567826i \(0.192215\pi\)
−0.823149 + 0.567826i \(0.807785\pi\)
\(30\) 0 0
\(31\) 175.582i 1.01727i 0.860982 + 0.508636i \(0.169850\pi\)
−0.860982 + 0.508636i \(0.830150\pi\)
\(32\) −143.167 + 110.775i −0.790895 + 0.611951i
\(33\) 0 0
\(34\) −101.171 18.6666i −0.510312 0.0941557i
\(35\) 6.40918 0.0309529
\(36\) 0 0
\(37\) 199.364 0.885818 0.442909 0.896566i \(-0.353946\pi\)
0.442909 + 0.896566i \(0.353946\pi\)
\(38\) 348.167 + 64.2389i 1.48632 + 0.274235i
\(39\) 0 0
\(40\) −46.5547 28.3743i −0.184024 0.112159i
\(41\) 233.037i 0.887665i 0.896110 + 0.443832i \(0.146381\pi\)
−0.896110 + 0.443832i \(0.853619\pi\)
\(42\) 0 0
\(43\) 291.623i 1.03424i −0.855914 0.517118i \(-0.827005\pi\)
0.855914 0.517118i \(-0.172995\pi\)
\(44\) 360.851 + 137.851i 1.23637 + 0.472315i
\(45\) 0 0
\(46\) −99.6182 + 539.918i −0.319302 + 1.73058i
\(47\) 61.8953 0.192093 0.0960463 0.995377i \(-0.469380\pi\)
0.0960463 + 0.995377i \(0.469380\pi\)
\(48\) 0 0
\(49\) 335.924 0.979372
\(50\) −61.1706 + 331.537i −0.173017 + 0.937728i
\(51\) 0 0
\(52\) −304.266 116.235i −0.811425 0.309978i
\(53\) 352.175i 0.912735i 0.889791 + 0.456367i \(0.150850\pi\)
−0.889791 + 0.456367i \(0.849150\pi\)
\(54\) 0 0
\(55\) 116.343i 0.285231i
\(56\) 51.3952 + 31.3245i 0.122642 + 0.0747484i
\(57\) 0 0
\(58\) −493.308 91.0183i −1.11680 0.206057i
\(59\) −141.582 −0.312414 −0.156207 0.987724i \(-0.549927\pi\)
−0.156207 + 0.987724i \(0.549927\pi\)
\(60\) 0 0
\(61\) 15.4304 0.0323878 0.0161939 0.999869i \(-0.494845\pi\)
0.0161939 + 0.999869i \(0.494845\pi\)
\(62\) −488.377 90.1086i −1.00039 0.184577i
\(63\) 0 0
\(64\) −234.645 455.067i −0.458291 0.888802i
\(65\) 98.0993i 0.187196i
\(66\) 0 0
\(67\) 152.024i 0.277204i −0.990348 0.138602i \(-0.955739\pi\)
0.990348 0.138602i \(-0.0442609\pi\)
\(68\) 103.841 271.824i 0.185186 0.484758i
\(69\) 0 0
\(70\) −3.28919 + 17.8270i −0.00561620 + 0.0304391i
\(71\) 28.0331 0.0468580 0.0234290 0.999726i \(-0.492542\pi\)
0.0234290 + 0.999726i \(0.492542\pi\)
\(72\) 0 0
\(73\) 124.499 0.199609 0.0998047 0.995007i \(-0.468178\pi\)
0.0998047 + 0.995007i \(0.468178\pi\)
\(74\) −102.314 + 554.527i −0.160726 + 0.871115i
\(75\) 0 0
\(76\) −357.358 + 935.451i −0.539366 + 1.41189i
\(77\) 128.440i 0.190092i
\(78\) 0 0
\(79\) 748.721i 1.06630i 0.846021 + 0.533150i \(0.178992\pi\)
−0.846021 + 0.533150i \(0.821008\pi\)
\(80\) 102.814 114.929i 0.143687 0.160619i
\(81\) 0 0
\(82\) −648.187 119.595i −0.872931 0.161061i
\(83\) 348.888 0.461390 0.230695 0.973026i \(-0.425900\pi\)
0.230695 + 0.973026i \(0.425900\pi\)
\(84\) 0 0
\(85\) 87.6396 0.111833
\(86\) 811.144 + 149.661i 1.01707 + 0.187655i
\(87\) 0 0
\(88\) −568.619 + 932.955i −0.688807 + 1.13015i
\(89\) 416.864i 0.496488i −0.968698 0.248244i \(-0.920146\pi\)
0.968698 0.248244i \(-0.0798535\pi\)
\(90\) 0 0
\(91\) 108.299i 0.124756i
\(92\) −1450.65 554.172i −1.64392 0.628005i
\(93\) 0 0
\(94\) −31.7647 + 172.160i −0.0348540 + 0.188904i
\(95\) −301.601 −0.325723
\(96\) 0 0
\(97\) 1505.13 1.57549 0.787747 0.615999i \(-0.211248\pi\)
0.787747 + 0.615999i \(0.211248\pi\)
\(98\) −172.396 + 934.367i −0.177701 + 0.963115i
\(99\) 0 0
\(100\) −890.770 340.289i −0.890770 0.340289i
\(101\) 435.424i 0.428973i 0.976727 + 0.214487i \(0.0688078\pi\)
−0.976727 + 0.214487i \(0.931192\pi\)
\(102\) 0 0
\(103\) 1745.36i 1.66966i −0.550506 0.834831i \(-0.685565\pi\)
0.550506 0.834831i \(-0.314435\pi\)
\(104\) 479.454 786.658i 0.452061 0.741713i
\(105\) 0 0
\(106\) −979.567 180.736i −0.897585 0.165610i
\(107\) 783.805 0.708161 0.354081 0.935215i \(-0.384794\pi\)
0.354081 + 0.935215i \(0.384794\pi\)
\(108\) 0 0
\(109\) 1581.89 1.39007 0.695035 0.718976i \(-0.255389\pi\)
0.695035 + 0.718976i \(0.255389\pi\)
\(110\) −323.606 59.7072i −0.280496 0.0517533i
\(111\) 0 0
\(112\) −113.504 + 126.879i −0.0957604 + 0.107044i
\(113\) 443.829i 0.369486i 0.982787 + 0.184743i \(0.0591453\pi\)
−0.982787 + 0.184743i \(0.940855\pi\)
\(114\) 0 0
\(115\) 467.707i 0.379252i
\(116\) 506.331 1325.41i 0.405273 1.06088i
\(117\) 0 0
\(118\) 72.6600 393.808i 0.0566855 0.307228i
\(119\) −96.7518 −0.0745313
\(120\) 0 0
\(121\) 1000.51 0.751697
\(122\) −7.91886 + 42.9192i −0.00587656 + 0.0318502i
\(123\) 0 0
\(124\) 501.270 1312.17i 0.363027 0.950291i
\(125\) 588.380i 0.421010i
\(126\) 0 0
\(127\) 425.829i 0.297529i 0.988873 + 0.148765i \(0.0475297\pi\)
−0.988873 + 0.148765i \(0.952470\pi\)
\(128\) 1386.18 419.120i 0.957203 0.289416i
\(129\) 0 0
\(130\) 272.861 + 50.3445i 0.184088 + 0.0339654i
\(131\) −1743.67 −1.16294 −0.581471 0.813567i \(-0.697522\pi\)
−0.581471 + 0.813567i \(0.697522\pi\)
\(132\) 0 0
\(133\) 332.960 0.217078
\(134\) 422.851 + 78.0187i 0.272603 + 0.0502969i
\(135\) 0 0
\(136\) 702.782 + 428.333i 0.443110 + 0.270068i
\(137\) 1471.46i 0.917632i −0.888531 0.458816i \(-0.848274\pi\)
0.888531 0.458816i \(-0.151726\pi\)
\(138\) 0 0
\(139\) 1278.30i 0.780030i 0.920809 + 0.390015i \(0.127530\pi\)
−0.920809 + 0.390015i \(0.872470\pi\)
\(140\) −47.8974 18.2976i −0.0289148 0.0110459i
\(141\) 0 0
\(142\) −14.3866 + 77.9735i −0.00850209 + 0.0460802i
\(143\) −1965.90 −1.14963
\(144\) 0 0
\(145\) 427.331 0.244744
\(146\) −63.8928 + 346.291i −0.0362179 + 0.196296i
\(147\) 0 0
\(148\) −1489.90 569.167i −0.827493 0.316116i
\(149\) 2149.07i 1.18160i −0.806818 0.590800i \(-0.798812\pi\)
0.806818 0.590800i \(-0.201188\pi\)
\(150\) 0 0
\(151\) 956.815i 0.515659i −0.966190 0.257829i \(-0.916993\pi\)
0.966190 0.257829i \(-0.0830073\pi\)
\(152\) −2418.54 1474.06i −1.29059 0.786592i
\(153\) 0 0
\(154\) 357.252 + 65.9152i 0.186936 + 0.0344909i
\(155\) 423.059 0.219232
\(156\) 0 0
\(157\) 2093.20 1.06405 0.532024 0.846729i \(-0.321431\pi\)
0.532024 + 0.846729i \(0.321431\pi\)
\(158\) −2082.55 384.243i −1.04860 0.193473i
\(159\) 0 0
\(160\) 266.909 + 344.958i 0.131881 + 0.170446i
\(161\) 516.337i 0.252752i
\(162\) 0 0
\(163\) 1468.60i 0.705703i −0.935679 0.352851i \(-0.885212\pi\)
0.935679 0.352851i \(-0.114788\pi\)
\(164\) 665.299 1741.54i 0.316775 0.829218i
\(165\) 0 0
\(166\) −179.049 + 970.424i −0.0837163 + 0.453732i
\(167\) 3048.38 1.41252 0.706261 0.707952i \(-0.250381\pi\)
0.706261 + 0.707952i \(0.250381\pi\)
\(168\) 0 0
\(169\) −539.369 −0.245503
\(170\) −44.9766 + 243.768i −0.0202915 + 0.109977i
\(171\) 0 0
\(172\) −832.558 + 2179.37i −0.369081 + 0.966137i
\(173\) 2775.57i 1.21978i −0.792484 0.609892i \(-0.791213\pi\)
0.792484 0.609892i \(-0.208787\pi\)
\(174\) 0 0
\(175\) 317.057i 0.136956i
\(176\) −2303.18 2060.39i −0.986413 0.882432i
\(177\) 0 0
\(178\) 1159.50 + 213.934i 0.488247 + 0.0900846i
\(179\) 477.618 0.199435 0.0997174 0.995016i \(-0.468206\pi\)
0.0997174 + 0.995016i \(0.468206\pi\)
\(180\) 0 0
\(181\) −732.350 −0.300747 −0.150373 0.988629i \(-0.548048\pi\)
−0.150373 + 0.988629i \(0.548048\pi\)
\(182\) −301.232 55.5791i −0.122686 0.0226362i
\(183\) 0 0
\(184\) 2285.89 3750.54i 0.915859 1.50268i
\(185\) 480.363i 0.190902i
\(186\) 0 0
\(187\) 1756.29i 0.686807i
\(188\) −462.559 176.705i −0.179445 0.0685509i
\(189\) 0 0
\(190\) 154.782 838.898i 0.0591003 0.320316i
\(191\) −3086.00 −1.16908 −0.584542 0.811364i \(-0.698726\pi\)
−0.584542 + 0.811364i \(0.698726\pi\)
\(192\) 0 0
\(193\) −1634.32 −0.609539 −0.304769 0.952426i \(-0.598579\pi\)
−0.304769 + 0.952426i \(0.598579\pi\)
\(194\) −772.433 + 4186.49i −0.285863 + 1.54934i
\(195\) 0 0
\(196\) −2510.45 959.034i −0.914886 0.349502i
\(197\) 3350.67i 1.21181i −0.795539 0.605903i \(-0.792812\pi\)
0.795539 0.605903i \(-0.207188\pi\)
\(198\) 0 0
\(199\) 1046.61i 0.372826i −0.982471 0.186413i \(-0.940314\pi\)
0.982471 0.186413i \(-0.0596863\pi\)
\(200\) 1403.65 2303.02i 0.496266 0.814241i
\(201\) 0 0
\(202\) −1211.12 223.459i −0.421853 0.0778344i
\(203\) −471.762 −0.163109
\(204\) 0 0
\(205\) 561.496 0.191300
\(206\) 4854.68 + 895.718i 1.64195 + 0.302950i
\(207\) 0 0
\(208\) 1942.02 + 1737.30i 0.647378 + 0.579136i
\(209\) 6044.08i 2.00037i
\(210\) 0 0
\(211\) 5277.87i 1.72201i 0.508598 + 0.861004i \(0.330164\pi\)
−0.508598 + 0.861004i \(0.669836\pi\)
\(212\) 1005.43 2631.89i 0.325722 0.852637i
\(213\) 0 0
\(214\) −402.249 + 2180.14i −0.128491 + 0.696407i
\(215\) −702.658 −0.222888
\(216\) 0 0
\(217\) −467.047 −0.146107
\(218\) −811.826 + 4400.00i −0.252219 + 1.36700i
\(219\) 0 0
\(220\) 332.149 869.461i 0.101789 0.266450i
\(221\) 1480.89i 0.450748i
\(222\) 0 0
\(223\) 4759.70i 1.42930i 0.699484 + 0.714648i \(0.253413\pi\)
−0.699484 + 0.714648i \(0.746587\pi\)
\(224\) −294.661 380.824i −0.0878923 0.113593i
\(225\) 0 0
\(226\) −1234.50 227.773i −0.363353 0.0670409i
\(227\) −2230.45 −0.652161 −0.326080 0.945342i \(-0.605728\pi\)
−0.326080 + 0.945342i \(0.605728\pi\)
\(228\) 0 0
\(229\) −5834.58 −1.68367 −0.841833 0.539737i \(-0.818524\pi\)
−0.841833 + 0.539737i \(0.818524\pi\)
\(230\) 1300.92 + 240.027i 0.372957 + 0.0688128i
\(231\) 0 0
\(232\) 3426.76 + 2088.55i 0.969733 + 0.591035i
\(233\) 3080.09i 0.866022i 0.901389 + 0.433011i \(0.142549\pi\)
−0.901389 + 0.433011i \(0.857451\pi\)
\(234\) 0 0
\(235\) 149.135i 0.0413978i
\(236\) 1058.08 + 404.204i 0.291844 + 0.111489i
\(237\) 0 0
\(238\) 49.6530 269.113i 0.0135232 0.0732942i
\(239\) 5291.45 1.43212 0.716058 0.698041i \(-0.245945\pi\)
0.716058 + 0.698041i \(0.245945\pi\)
\(240\) 0 0
\(241\) −5003.21 −1.33728 −0.668642 0.743585i \(-0.733124\pi\)
−0.668642 + 0.743585i \(0.733124\pi\)
\(242\) −513.461 + 2782.89i −0.136391 + 0.739220i
\(243\) 0 0
\(244\) −115.315 44.0523i −0.0302553 0.0115580i
\(245\) 809.401i 0.211064i
\(246\) 0 0
\(247\) 5096.31i 1.31283i
\(248\) 3392.51 + 2067.68i 0.868648 + 0.529426i
\(249\) 0 0
\(250\) 1636.57 + 301.956i 0.414022 + 0.0763896i
\(251\) 2577.68 0.648215 0.324107 0.946020i \(-0.394936\pi\)
0.324107 + 0.946020i \(0.394936\pi\)
\(252\) 0 0
\(253\) −9372.83 −2.32911
\(254\) −1184.43 218.535i −0.292591 0.0539848i
\(255\) 0 0
\(256\) 454.386 + 4070.72i 0.110934 + 0.993828i
\(257\) 870.567i 0.211301i 0.994403 + 0.105651i \(0.0336925\pi\)
−0.994403 + 0.105651i \(0.966307\pi\)
\(258\) 0 0
\(259\) 530.308i 0.127227i
\(260\) −280.065 + 733.121i −0.0668033 + 0.174870i
\(261\) 0 0
\(262\) 894.852 4849.99i 0.211008 1.14364i
\(263\) 4310.39 1.01061 0.505304 0.862942i \(-0.331380\pi\)
0.505304 + 0.862942i \(0.331380\pi\)
\(264\) 0 0
\(265\) 848.556 0.196703
\(266\) −170.875 + 926.122i −0.0393873 + 0.213474i
\(267\) 0 0
\(268\) −434.015 + 1136.11i −0.0989241 + 0.258952i
\(269\) 5603.52i 1.27008i 0.772478 + 0.635042i \(0.219017\pi\)
−0.772478 + 0.635042i \(0.780983\pi\)
\(270\) 0 0
\(271\) 2149.22i 0.481756i 0.970555 + 0.240878i \(0.0774353\pi\)
−0.970555 + 0.240878i \(0.922565\pi\)
\(272\) −1552.07 + 1734.95i −0.345985 + 0.386753i
\(273\) 0 0
\(274\) 4092.84 + 755.155i 0.902400 + 0.166498i
\(275\) −5755.39 −1.26205
\(276\) 0 0
\(277\) −3209.99 −0.696279 −0.348140 0.937443i \(-0.613186\pi\)
−0.348140 + 0.937443i \(0.613186\pi\)
\(278\) −3555.57 656.025i −0.767083 0.141531i
\(279\) 0 0
\(280\) 75.4755 123.835i 0.0161090 0.0264306i
\(281\) 940.375i 0.199637i −0.995006 0.0998187i \(-0.968174\pi\)
0.995006 0.0998187i \(-0.0318263\pi\)
\(282\) 0 0
\(283\) 2050.10i 0.430621i 0.976546 + 0.215310i \(0.0690763\pi\)
−0.976546 + 0.215310i \(0.930924\pi\)
\(284\) −209.499 80.0320i −0.0437727 0.0167219i
\(285\) 0 0
\(286\) 1008.90 5468.12i 0.208593 1.13055i
\(287\) −619.877 −0.127492
\(288\) 0 0
\(289\) 3590.01 0.730716
\(290\) −219.306 + 1188.61i −0.0444072 + 0.240682i
\(291\) 0 0
\(292\) −930.411 355.433i −0.186466 0.0712334i
\(293\) 4436.71i 0.884625i 0.896861 + 0.442312i \(0.145842\pi\)
−0.896861 + 0.442312i \(0.854158\pi\)
\(294\) 0 0
\(295\) 341.138i 0.0673283i
\(296\) 2347.74 3852.03i 0.461013 0.756400i
\(297\) 0 0
\(298\) 5977.58 + 1102.90i 1.16199 + 0.214394i
\(299\) 7903.08 1.52858
\(300\) 0 0
\(301\) 775.716 0.148543
\(302\) 2661.36 + 491.037i 0.507100 + 0.0935630i
\(303\) 0 0
\(304\) 5341.26 5970.64i 1.00770 1.12645i
\(305\) 37.1790i 0.00697988i
\(306\) 0 0
\(307\) 7392.80i 1.37436i 0.726486 + 0.687181i \(0.241152\pi\)
−0.726486 + 0.687181i \(0.758848\pi\)
\(308\) −366.684 + 959.862i −0.0678368 + 0.177575i
\(309\) 0 0
\(310\) −217.114 + 1176.73i −0.0397782 + 0.215593i
\(311\) −4896.50 −0.892782 −0.446391 0.894838i \(-0.647291\pi\)
−0.446391 + 0.894838i \(0.647291\pi\)
\(312\) 0 0
\(313\) 681.722 0.123109 0.0615546 0.998104i \(-0.480394\pi\)
0.0615546 + 0.998104i \(0.480394\pi\)
\(314\) −1074.23 + 5822.20i −0.193065 + 1.04639i
\(315\) 0 0
\(316\) 2137.53 5595.38i 0.380524 0.996091i
\(317\) 1552.07i 0.274993i 0.990502 + 0.137497i \(0.0439056\pi\)
−0.990502 + 0.137497i \(0.956094\pi\)
\(318\) 0 0
\(319\) 8563.69i 1.50305i
\(320\) −1096.47 + 565.370i −0.191546 + 0.0987661i
\(321\) 0 0
\(322\) −1436.18 264.984i −0.248556 0.0458602i
\(323\) 4552.92 0.784307
\(324\) 0 0
\(325\) 4852.88 0.828276
\(326\) 4084.88 + 753.685i 0.693989 + 0.128045i
\(327\) 0 0
\(328\) 4502.63 + 2744.28i 0.757977 + 0.461973i
\(329\) 164.641i 0.0275895i
\(330\) 0 0
\(331\) 7401.89i 1.22914i −0.788863 0.614569i \(-0.789330\pi\)
0.788863 0.614569i \(-0.210670\pi\)
\(332\) −2607.33 996.043i −0.431011 0.164653i
\(333\) 0 0
\(334\) −1564.43 + 8479.02i −0.256293 + 1.38908i
\(335\) −366.297 −0.0597402
\(336\) 0 0
\(337\) −9743.17 −1.57491 −0.787454 0.616373i \(-0.788601\pi\)
−0.787454 + 0.616373i \(0.788601\pi\)
\(338\) 276.804 1500.24i 0.0445449 0.241428i
\(339\) 0 0
\(340\) −654.953 250.203i −0.104470 0.0399093i
\(341\) 8478.09i 1.34638i
\(342\) 0 0
\(343\) 1805.94i 0.284290i
\(344\) −5634.61 3434.20i −0.883134 0.538254i
\(345\) 0 0
\(346\) 7720.19 + 1424.42i 1.19954 + 0.221322i
\(347\) −7047.49 −1.09029 −0.545143 0.838343i \(-0.683525\pi\)
−0.545143 + 0.838343i \(0.683525\pi\)
\(348\) 0 0
\(349\) −1207.55 −0.185210 −0.0926052 0.995703i \(-0.529519\pi\)
−0.0926052 + 0.995703i \(0.529519\pi\)
\(350\) −881.886 162.713i −0.134682 0.0248497i
\(351\) 0 0
\(352\) 6912.94 5348.85i 1.04676 0.809928i
\(353\) 1520.13i 0.229201i 0.993412 + 0.114601i \(0.0365589\pi\)
−0.993412 + 0.114601i \(0.963441\pi\)
\(354\) 0 0
\(355\) 67.5450i 0.0100984i
\(356\) −1190.11 + 3115.33i −0.177179 + 0.463798i
\(357\) 0 0
\(358\) −245.114 + 1328.48i −0.0361862 + 0.196125i
\(359\) −6515.20 −0.957825 −0.478912 0.877863i \(-0.658969\pi\)
−0.478912 + 0.877863i \(0.658969\pi\)
\(360\) 0 0
\(361\) −8809.35 −1.28435
\(362\) 375.842 2037.02i 0.0545686 0.295755i
\(363\) 0 0
\(364\) 309.184 809.346i 0.0445210 0.116542i
\(365\) 299.977i 0.0430178i
\(366\) 0 0
\(367\) 4032.62i 0.573573i 0.957995 + 0.286786i \(0.0925870\pi\)
−0.957995 + 0.286786i \(0.907413\pi\)
\(368\) 9258.94 + 8282.93i 1.31156 + 1.17331i
\(369\) 0 0
\(370\) 1336.12 + 246.522i 0.187734 + 0.0346380i
\(371\) −936.784 −0.131093
\(372\) 0 0
\(373\) 2455.35 0.340840 0.170420 0.985372i \(-0.445488\pi\)
0.170420 + 0.985372i \(0.445488\pi\)
\(374\) 4885.09 + 901.329i 0.675407 + 0.124617i
\(375\) 0 0
\(376\) 728.888 1195.91i 0.0999721 0.164028i
\(377\) 7220.81i 0.986448i
\(378\) 0 0
\(379\) 9518.27i 1.29003i −0.764171 0.645014i \(-0.776851\pi\)
0.764171 0.645014i \(-0.223149\pi\)
\(380\) 2253.94 + 861.045i 0.304276 + 0.116239i
\(381\) 0 0
\(382\) 1583.73 8583.64i 0.212123 1.14968i
\(383\) 9455.44 1.26149 0.630744 0.775991i \(-0.282750\pi\)
0.630744 + 0.775991i \(0.282750\pi\)
\(384\) 0 0
\(385\) −309.472 −0.0409666
\(386\) 838.733 4545.83i 0.110597 0.599421i
\(387\) 0 0
\(388\) −11248.2 4297.01i −1.47176 0.562236i
\(389\) 2966.07i 0.386596i −0.981140 0.193298i \(-0.938082\pi\)
0.981140 0.193298i \(-0.0619184\pi\)
\(390\) 0 0
\(391\) 7060.42i 0.913199i
\(392\) 3955.89 6490.58i 0.509701 0.836285i
\(393\) 0 0
\(394\) 9319.83 + 1719.57i 1.19169 + 0.219874i
\(395\) 1804.02 0.229798
\(396\) 0 0
\(397\) 1296.85 0.163947 0.0819733 0.996635i \(-0.473878\pi\)
0.0819733 + 0.996635i \(0.473878\pi\)
\(398\) 2911.13 + 537.122i 0.366638 + 0.0676469i
\(399\) 0 0
\(400\) 5685.45 + 5086.14i 0.710682 + 0.635767i
\(401\) 2057.85i 0.256270i 0.991757 + 0.128135i \(0.0408991\pi\)
−0.991757 + 0.128135i \(0.959101\pi\)
\(402\) 0 0
\(403\) 7148.64i 0.883620i
\(404\) 1243.10 3254.03i 0.153085 0.400728i
\(405\) 0 0
\(406\) 242.108 1312.20i 0.0295951 0.160402i
\(407\) −9626.44 −1.17240
\(408\) 0 0
\(409\) 5795.08 0.700607 0.350304 0.936636i \(-0.386078\pi\)
0.350304 + 0.936636i \(0.386078\pi\)
\(410\) −288.160 + 1561.79i −0.0347102 + 0.188125i
\(411\) 0 0
\(412\) −4982.84 + 13043.5i −0.595842 + 1.55973i
\(413\) 376.608i 0.0448709i
\(414\) 0 0
\(415\) 840.635i 0.0994341i
\(416\) −5828.92 + 4510.09i −0.686986 + 0.531552i
\(417\) 0 0
\(418\) −16811.5 3101.82i −1.96717 0.362955i
\(419\) 14105.2 1.64460 0.822298 0.569058i \(-0.192692\pi\)
0.822298 + 0.569058i \(0.192692\pi\)
\(420\) 0 0
\(421\) 6420.86 0.743310 0.371655 0.928371i \(-0.378790\pi\)
0.371655 + 0.928371i \(0.378790\pi\)
\(422\) −14680.3 2708.60i −1.69343 0.312447i
\(423\) 0 0
\(424\) 6804.57 + 4147.26i 0.779384 + 0.475021i
\(425\) 4335.45i 0.494824i
\(426\) 0 0
\(427\) 41.0447i 0.00465174i
\(428\) −5857.57 2237.69i −0.661534 0.252717i
\(429\) 0 0
\(430\) 360.604 1954.43i 0.0404415 0.219188i
\(431\) 1119.73 0.125140 0.0625700 0.998041i \(-0.480070\pi\)
0.0625700 + 0.998041i \(0.480070\pi\)
\(432\) 0 0
\(433\) −299.833 −0.0332773 −0.0166387 0.999862i \(-0.505296\pi\)
−0.0166387 + 0.999862i \(0.505296\pi\)
\(434\) 239.688 1299.08i 0.0265102 0.143682i
\(435\) 0 0
\(436\) −11821.9 4516.16i −1.29854 0.496066i
\(437\) 24297.6i 2.65976i
\(438\) 0 0
\(439\) 2413.35i 0.262375i 0.991358 + 0.131188i \(0.0418791\pi\)
−0.991358 + 0.131188i \(0.958121\pi\)
\(440\) 2247.93 + 1370.07i 0.243559 + 0.148445i
\(441\) 0 0
\(442\) −4119.06 759.992i −0.443266 0.0817853i
\(443\) −4818.73 −0.516805 −0.258402 0.966037i \(-0.583196\pi\)
−0.258402 + 0.966037i \(0.583196\pi\)
\(444\) 0 0
\(445\) −1004.42 −0.106998
\(446\) −13239.0 2442.68i −1.40557 0.259337i
\(447\) 0 0
\(448\) 1210.48 624.154i 0.127655 0.0658226i
\(449\) 8677.13i 0.912024i −0.889974 0.456012i \(-0.849277\pi\)
0.889974 0.456012i \(-0.150723\pi\)
\(450\) 0 0
\(451\) 11252.3i 1.17484i
\(452\) 1267.09 3316.85i 0.131856 0.345158i
\(453\) 0 0
\(454\) 1144.67 6203.96i 0.118330 0.641336i
\(455\) 260.944 0.0268862
\(456\) 0 0
\(457\) −6920.09 −0.708333 −0.354166 0.935182i \(-0.615235\pi\)
−0.354166 + 0.935182i \(0.615235\pi\)
\(458\) 2994.30 16228.8i 0.305491 1.65572i
\(459\) 0 0
\(460\) −1335.26 + 3495.29i −0.135341 + 0.354280i
\(461\) 15554.8i 1.57149i −0.618548 0.785747i \(-0.712279\pi\)
0.618548 0.785747i \(-0.287721\pi\)
\(462\) 0 0
\(463\) 11540.5i 1.15839i 0.815189 + 0.579194i \(0.196633\pi\)
−0.815189 + 0.579194i \(0.803367\pi\)
\(464\) −7567.88 + 8459.63i −0.757177 + 0.846397i
\(465\) 0 0
\(466\) −8567.20 1580.70i −0.851648 0.157134i
\(467\) 7.01271 0.000694881 0.000347441 1.00000i \(-0.499889\pi\)
0.000347441 1.00000i \(0.499889\pi\)
\(468\) 0 0
\(469\) 404.383 0.0398138
\(470\) 414.816 + 76.5361i 0.0407107 + 0.00751137i
\(471\) 0 0
\(472\) −1667.29 + 2735.59i −0.162592 + 0.266770i
\(473\) 14081.2i 1.36883i
\(474\) 0 0
\(475\) 14920.0i 1.44121i
\(476\) 723.051 + 276.218i 0.0696239 + 0.0265975i
\(477\) 0 0
\(478\) −2715.57 + 14718.1i −0.259848 + 1.40834i
\(479\) −5661.41 −0.540034 −0.270017 0.962856i \(-0.587029\pi\)
−0.270017 + 0.962856i \(0.587029\pi\)
\(480\) 0 0
\(481\) 8116.92 0.769438
\(482\) 2567.65 13916.3i 0.242641 1.31509i
\(483\) 0 0
\(484\) −7477.05 2856.36i −0.702203 0.268253i
\(485\) 3626.57i 0.339534i
\(486\) 0 0
\(487\) 9082.26i 0.845085i 0.906343 + 0.422542i \(0.138862\pi\)
−0.906343 + 0.422542i \(0.861138\pi\)
\(488\) 181.710 298.139i 0.0168558 0.0276559i
\(489\) 0 0
\(490\) 2251.33 + 415.384i 0.207561 + 0.0382962i
\(491\) −10197.6 −0.937291 −0.468646 0.883386i \(-0.655258\pi\)
−0.468646 + 0.883386i \(0.655258\pi\)
\(492\) 0 0
\(493\) −6450.90 −0.589319
\(494\) 14175.3 + 2615.42i 1.29104 + 0.238205i
\(495\) 0 0
\(496\) −7492.24 + 8375.07i −0.678249 + 0.758169i
\(497\) 74.5680i 0.00673004i
\(498\) 0 0
\(499\) 2717.18i 0.243763i 0.992545 + 0.121881i \(0.0388928\pi\)
−0.992545 + 0.121881i \(0.961107\pi\)
\(500\) −1679.77 + 4397.11i −0.150243 + 0.393289i
\(501\) 0 0
\(502\) −1322.87 + 7169.77i −0.117614 + 0.637455i
\(503\) −8294.45 −0.735251 −0.367626 0.929974i \(-0.619829\pi\)
−0.367626 + 0.929974i \(0.619829\pi\)
\(504\) 0 0
\(505\) 1049.14 0.0924479
\(506\) 4810.14 26070.3i 0.422602 2.29045i
\(507\) 0 0
\(508\) 1215.70 3182.33i 0.106177 0.277939i
\(509\) 3310.11i 0.288247i −0.989560 0.144124i \(-0.953964\pi\)
0.989560 0.144124i \(-0.0460363\pi\)
\(510\) 0 0
\(511\) 331.166i 0.0286692i
\(512\) −11555.8 825.228i −0.997460 0.0712310i
\(513\) 0 0
\(514\) −2421.46 446.775i −0.207794 0.0383393i
\(515\) −4205.39 −0.359829
\(516\) 0 0
\(517\) −2988.66 −0.254238
\(518\) −1475.04 272.154i −0.125115 0.0230845i
\(519\) 0 0
\(520\) −1895.43 1155.23i −0.159846 0.0974235i
\(521\) 5030.71i 0.423031i 0.977375 + 0.211516i \(0.0678400\pi\)
−0.977375 + 0.211516i \(0.932160\pi\)
\(522\) 0 0
\(523\) 9680.16i 0.809338i 0.914463 + 0.404669i \(0.132613\pi\)
−0.914463 + 0.404669i \(0.867387\pi\)
\(524\) 13030.9 + 4978.02i 1.08637 + 0.415012i
\(525\) 0 0
\(526\) −2212.09 + 11989.2i −0.183368 + 0.993833i
\(527\) −6386.42 −0.527888
\(528\) 0 0
\(529\) 25512.4 2.09686
\(530\) −435.479 + 2360.24i −0.0356905 + 0.193438i
\(531\) 0 0
\(532\) −2488.30 950.571i −0.202784 0.0774671i
\(533\) 9487.87i 0.771041i
\(534\) 0 0
\(535\) 1888.56i 0.152616i
\(536\) −2937.34 1790.26i −0.236705 0.144267i
\(537\) 0 0
\(538\) −15586.1 2875.73i −1.24900 0.230449i
\(539\) −16220.3 −1.29621
\(540\) 0 0
\(541\) 18659.8 1.48290 0.741449 0.671009i \(-0.234139\pi\)
0.741449 + 0.671009i \(0.234139\pi\)
\(542\) −5978.01 1102.98i −0.473759 0.0874115i
\(543\) 0 0
\(544\) −4029.21 5207.42i −0.317557 0.410416i
\(545\) 3811.52i 0.299574i
\(546\) 0 0
\(547\) 4536.56i 0.354606i 0.984156 + 0.177303i \(0.0567372\pi\)
−0.984156 + 0.177303i \(0.943263\pi\)
\(548\) −4200.89 + 10996.6i −0.327469 + 0.857212i
\(549\) 0 0
\(550\) 2953.66 16008.5i 0.228990 1.24110i
\(551\) 22200.0 1.71643
\(552\) 0 0
\(553\) −1991.59 −0.153149
\(554\) 1647.36 8928.51i 0.126335 0.684722i
\(555\) 0 0
\(556\) 3649.44 9553.07i 0.278364 0.728670i
\(557\) 17657.1i 1.34319i −0.740918 0.671596i \(-0.765609\pi\)
0.740918 0.671596i \(-0.234391\pi\)
\(558\) 0 0
\(559\) 11873.1i 0.898355i
\(560\) 305.712 + 273.486i 0.0230691 + 0.0206373i
\(561\) 0 0
\(562\) 2615.63 + 482.601i 0.196324 + 0.0362229i
\(563\) 9944.94 0.744457 0.372229 0.928141i \(-0.378594\pi\)
0.372229 + 0.928141i \(0.378594\pi\)
\(564\) 0 0
\(565\) 1069.39 0.0796278
\(566\) −5702.30 1052.11i −0.423473 0.0781334i
\(567\) 0 0
\(568\) 330.122 541.643i 0.0243866 0.0400121i
\(569\) 4715.82i 0.347447i −0.984794 0.173724i \(-0.944420\pi\)
0.984794 0.173724i \(-0.0555799\pi\)
\(570\) 0 0
\(571\) 9229.75i 0.676450i −0.941065 0.338225i \(-0.890173\pi\)
0.941065 0.338225i \(-0.109827\pi\)
\(572\) 14691.7 + 5612.48i 1.07393 + 0.410261i
\(573\) 0 0
\(574\) 318.121 1724.17i 0.0231326 0.125376i
\(575\) 23137.1 1.67806
\(576\) 0 0
\(577\) 4076.34 0.294108 0.147054 0.989128i \(-0.453021\pi\)
0.147054 + 0.989128i \(0.453021\pi\)
\(578\) −1842.39 + 9985.54i −0.132584 + 0.718587i
\(579\) 0 0
\(580\) −3193.55 1219.99i −0.228629 0.0873403i
\(581\) 928.039i 0.0662677i
\(582\) 0 0
\(583\) 17005.0i 1.20802i
\(584\) 1466.12 2405.51i 0.103884 0.170447i
\(585\) 0 0
\(586\) −12340.6 2276.92i −0.869941 0.160509i
\(587\) 8635.49 0.607197 0.303599 0.952800i \(-0.401812\pi\)
0.303599 + 0.952800i \(0.401812\pi\)
\(588\) 0 0
\(589\) 21978.1 1.53751
\(590\) −948.869 175.072i −0.0662107 0.0122163i
\(591\) 0 0
\(592\) 9509.47 + 8507.05i 0.660197 + 0.590604i
\(593\) 24260.9i 1.68006i 0.542537 + 0.840032i \(0.317464\pi\)
−0.542537 + 0.840032i \(0.682536\pi\)
\(594\) 0 0
\(595\) 233.121i 0.0160622i
\(596\) −6135.39 + 16060.5i −0.421670 + 1.10380i
\(597\) 0 0
\(598\) −4055.86 + 21982.2i −0.277352 + 1.50321i
\(599\) −15098.0 −1.02986 −0.514932 0.857231i \(-0.672183\pi\)
−0.514932 + 0.857231i \(0.672183\pi\)
\(600\) 0 0
\(601\) 5928.26 0.402361 0.201180 0.979554i \(-0.435522\pi\)
0.201180 + 0.979554i \(0.435522\pi\)
\(602\) −398.097 + 2157.64i −0.0269522 + 0.146078i
\(603\) 0 0
\(604\) −2731.62 + 7150.52i −0.184020 + 0.481706i
\(605\) 2410.70i 0.161998i
\(606\) 0 0
\(607\) 18608.4i 1.24430i −0.782897 0.622151i \(-0.786259\pi\)
0.782897 0.622151i \(-0.213741\pi\)
\(608\) 13866.1 + 17920.7i 0.924907 + 1.19536i
\(609\) 0 0
\(610\) 103.413 + 19.0803i 0.00686403 + 0.00126645i
\(611\) 2520.01 0.166855
\(612\) 0 0
\(613\) 7939.25 0.523105 0.261552 0.965189i \(-0.415766\pi\)
0.261552 + 0.965189i \(0.415766\pi\)
\(614\) −20562.9 3793.98i −1.35155 0.249369i
\(615\) 0 0
\(616\) −2481.65 1512.52i −0.162319 0.0989308i
\(617\) 29179.0i 1.90389i 0.306265 + 0.951946i \(0.400921\pi\)
−0.306265 + 0.951946i \(0.599079\pi\)
\(618\) 0 0
\(619\) 16301.7i 1.05851i 0.848462 + 0.529256i \(0.177529\pi\)
−0.848462 + 0.529256i \(0.822471\pi\)
\(620\) −3161.63 1207.80i −0.204797 0.0782359i
\(621\) 0 0
\(622\) 2512.88 13619.5i 0.161990 0.877963i
\(623\) 1108.85 0.0713087
\(624\) 0 0
\(625\) 13481.6 0.862824
\(626\) −349.860 + 1896.19i −0.0223374 + 0.121066i
\(627\) 0 0
\(628\) −15643.0 5975.90i −0.993988 0.379720i
\(629\) 7251.46i 0.459674i
\(630\) 0 0
\(631\) 2517.83i 0.158848i −0.996841 0.0794242i \(-0.974692\pi\)
0.996841 0.0794242i \(-0.0253082\pi\)
\(632\) 14466.4 + 8817.04i 0.910513 + 0.554942i
\(633\) 0 0
\(634\) −4317.05 796.521i −0.270429 0.0498958i
\(635\) 1026.02 0.0641205
\(636\) 0 0
\(637\) 13676.8 0.850700
\(638\) 23819.7 + 4394.88i 1.47811 + 0.272720i
\(639\) 0 0
\(640\) −1009.86 3339.96i −0.0623720 0.206287i
\(641\) 16826.3i 1.03681i 0.855134 + 0.518407i \(0.173475\pi\)
−0.855134 + 0.518407i \(0.826525\pi\)
\(642\) 0 0
\(643\) 20423.8i 1.25263i −0.779572 0.626313i \(-0.784563\pi\)
0.779572 0.626313i \(-0.215437\pi\)
\(644\) 1474.09 3858.71i 0.0901979 0.236110i
\(645\) 0 0
\(646\) −2336.56 + 12663.8i −0.142307 + 0.771289i
\(647\) 21477.2 1.30503 0.652515 0.757776i \(-0.273714\pi\)
0.652515 + 0.757776i \(0.273714\pi\)
\(648\) 0 0
\(649\) 6836.40 0.413485
\(650\) −2490.50 + 13498.2i −0.150285 + 0.814527i
\(651\) 0 0
\(652\) −4192.72 + 10975.2i −0.251840 + 0.659237i
\(653\) 25214.7i 1.51107i −0.655111 0.755533i \(-0.727378\pi\)
0.655111 0.755533i \(-0.272622\pi\)
\(654\) 0 0
\(655\) 4201.33i 0.250625i
\(656\) −9943.90 + 11115.6i −0.591835 + 0.661573i
\(657\) 0 0
\(658\) −457.946 84.4938i −0.0271316 0.00500595i
\(659\) −13730.1 −0.811605 −0.405802 0.913961i \(-0.633008\pi\)
−0.405802 + 0.913961i \(0.633008\pi\)
\(660\) 0 0
\(661\) 1544.08 0.0908588 0.0454294 0.998968i \(-0.485534\pi\)
0.0454294 + 0.998968i \(0.485534\pi\)
\(662\) 20588.2 + 3798.65i 1.20874 + 0.223019i
\(663\) 0 0
\(664\) 4108.55 6741.05i 0.240125 0.393981i
\(665\) 802.258i 0.0467823i
\(666\) 0 0
\(667\) 34426.6i 1.99851i
\(668\) −22781.3 8702.86i −1.31952 0.504078i
\(669\) 0 0
\(670\) 187.984 1018.85i 0.0108395 0.0587486i
\(671\) −745.066 −0.0428658
\(672\) 0 0
\(673\) −5368.23 −0.307474 −0.153737 0.988112i \(-0.549131\pi\)
−0.153737 + 0.988112i \(0.549131\pi\)
\(674\) 5000.19 27100.4i 0.285757 1.54877i
\(675\) 0 0
\(676\) 4030.84 + 1539.85i 0.229338 + 0.0876110i
\(677\) 19299.4i 1.09562i −0.836602 0.547812i \(-0.815461\pi\)
0.836602 0.547812i \(-0.184539\pi\)
\(678\) 0 0
\(679\) 4003.64i 0.226282i
\(680\) 1032.06 1693.33i 0.0582023 0.0954946i
\(681\) 0 0
\(682\) 23581.6 + 4350.95i 1.32403 + 0.244291i
\(683\) −7466.11 −0.418276 −0.209138 0.977886i \(-0.567066\pi\)
−0.209138 + 0.977886i \(0.567066\pi\)
\(684\) 0 0
\(685\) −3545.45 −0.197759
\(686\) −5023.17 926.806i −0.279571 0.0515825i
\(687\) 0 0
\(688\) 12443.8 13910.1i 0.689559 0.770812i
\(689\) 14338.5i 0.792818i
\(690\) 0 0
\(691\) 23772.0i 1.30873i 0.756180 + 0.654364i \(0.227063\pi\)
−0.756180 + 0.654364i \(0.772937\pi\)
\(692\) −7924.00 + 20742.5i −0.435297 + 1.13947i
\(693\) 0 0
\(694\) 3616.77 19602.5i 0.197825 1.07219i
\(695\) 3080.03 0.168104
\(696\) 0 0
\(697\) −8476.24 −0.460632
\(698\) 619.713 3358.76i 0.0336052 0.182136i
\(699\) 0 0
\(700\) 905.168 2369.44i 0.0488745 0.127938i
\(701\) 3501.89i 0.188680i −0.995540 0.0943399i \(-0.969926\pi\)
0.995540 0.0943399i \(-0.0300740\pi\)
\(702\) 0 0
\(703\) 24955.1i 1.33883i
\(704\) 11330.0 + 21973.2i 0.606556 + 1.17634i
\(705\) 0 0
\(706\) −4228.20 780.128i −0.225397 0.0415871i
\(707\) −1158.23 −0.0616118
\(708\) 0 0
\(709\) 4158.76 0.220290 0.110145 0.993916i \(-0.464869\pi\)
0.110145 + 0.993916i \(0.464869\pi\)
\(710\) 187.875 + 34.6641i 0.00993074 + 0.00183228i
\(711\) 0 0
\(712\) −8054.45 4909.04i −0.423951 0.258391i
\(713\) 34082.5i 1.79018i
\(714\) 0 0
\(715\) 4736.79i 0.247757i
\(716\) −3569.36 1363.56i −0.186303 0.0711711i
\(717\) 0 0
\(718\) 3343.60 18121.9i 0.173791 0.941926i
\(719\) −20077.1 −1.04137 −0.520687 0.853748i \(-0.674324\pi\)
−0.520687 + 0.853748i \(0.674324\pi\)
\(720\) 0 0
\(721\) 4642.64 0.239807
\(722\) 4520.96 24503.0i 0.233037 1.26303i
\(723\) 0 0
\(724\) 5473.04 + 2090.79i 0.280945 + 0.107326i
\(725\) 21139.7i 1.08291i
\(726\) 0 0
\(727\) 36050.8i 1.83913i −0.392935 0.919566i \(-0.628540\pi\)
0.392935 0.919566i \(-0.371460\pi\)
\(728\) 2092.51 + 1275.35i 0.106529 + 0.0649278i
\(729\) 0 0
\(730\) 834.378 + 153.948i 0.0423037 + 0.00780530i
\(731\) 10607.2 0.536691
\(732\) 0 0
\(733\) −21701.9 −1.09356 −0.546779 0.837277i \(-0.684146\pi\)
−0.546779 + 0.837277i \(0.684146\pi\)
\(734\) −11216.7 2069.54i −0.564052 0.104071i
\(735\) 0 0
\(736\) −27790.5 + 21502.8i −1.39181 + 1.07690i
\(737\) 7340.58i 0.366884i
\(738\) 0 0
\(739\) 26112.0i 1.29979i −0.760024 0.649895i \(-0.774813\pi\)
0.760024 0.649895i \(-0.225187\pi\)
\(740\) −1371.39 + 3589.87i −0.0681262 + 0.178333i
\(741\) 0 0
\(742\) 480.757 2605.64i 0.0237859 0.128917i
\(743\) −5612.86 −0.277141 −0.138570 0.990353i \(-0.544251\pi\)
−0.138570 + 0.990353i \(0.544251\pi\)
\(744\) 0 0
\(745\) −5178.11 −0.254646
\(746\) −1260.09 + 6829.51i −0.0618432 + 0.335182i
\(747\) 0 0
\(748\) −5014.06 + 13125.2i −0.245096 + 0.641585i
\(749\) 2084.92i 0.101711i
\(750\) 0 0
\(751\) 27745.1i 1.34811i 0.738681 + 0.674056i \(0.235449\pi\)
−0.738681 + 0.674056i \(0.764551\pi\)
\(752\) 2952.34 + 2641.13i 0.143166 + 0.128075i
\(753\) 0 0
\(754\) −20084.5 3705.72i −0.970074 0.178985i
\(755\) −2305.42 −0.111129
\(756\) 0 0
\(757\) −22792.6 −1.09433 −0.547167 0.837023i \(-0.684294\pi\)
−0.547167 + 0.837023i \(0.684294\pi\)
\(758\) 26474.9 + 4884.78i 1.26862 + 0.234067i
\(759\) 0 0
\(760\) −3551.70 + 5827.41i −0.169518 + 0.278135i
\(761\) 32307.4i 1.53895i −0.638675 0.769477i \(-0.720517\pi\)
0.638675 0.769477i \(-0.279483\pi\)
\(762\) 0 0
\(763\) 4207.82i 0.199651i
\(764\) 23062.4 + 8810.24i 1.09211 + 0.417203i
\(765\) 0 0
\(766\) −4852.53 + 26300.1i −0.228889 + 1.24055i
\(767\) −5764.38 −0.271369
\(768\) 0 0
\(769\) −2401.94 −0.112635 −0.0563174 0.998413i \(-0.517936\pi\)
−0.0563174 + 0.998413i \(0.517936\pi\)
\(770\) 158.821 860.790i 0.00743313 0.0402866i
\(771\) 0 0
\(772\) 12213.7 + 4665.84i 0.569404 + 0.217522i
\(773\) 21135.4i 0.983424i −0.870758 0.491712i \(-0.836371\pi\)
0.870758 0.491712i \(-0.163629\pi\)
\(774\) 0 0
\(775\) 20928.4i 0.970025i
\(776\) 17724.6 29081.5i 0.819945 1.34531i
\(777\) 0 0
\(778\) 8250.07 + 1522.19i 0.380179 + 0.0701454i
\(779\) 29170.0 1.34162
\(780\) 0 0
\(781\) −1353.60 −0.0620174
\(782\) −19638.4 3623.41i −0.898041 0.165694i
\(783\) 0 0
\(784\) 16023.3 + 14334.2i 0.729922 + 0.652979i
\(785\) 5043.51i 0.229313i
\(786\) 0 0
\(787\) 4360.74i 0.197514i −0.995112 0.0987570i \(-0.968513\pi\)
0.995112 0.0987570i \(-0.0314867\pi\)
\(788\) −9565.87 + 25040.4i −0.432449 + 1.13202i
\(789\) 0 0
\(790\) −925.824 + 5017.85i −0.0416954 + 0.225984i
\(791\) −1180.58 −0.0530679
\(792\) 0 0
\(793\) 628.232 0.0281326
\(794\) −665.541 + 3607.15i −0.0297471 + 0.161225i
\(795\) 0 0
\(796\) −2987.99 + 7821.60i −0.133048 + 0.348278i
\(797\) 20501.8i 0.911181i 0.890190 + 0.455590i \(0.150572\pi\)
−0.890190 + 0.455590i \(0.849428\pi\)
\(798\) 0 0
\(799\) 2251.31i 0.0996818i
\(800\) −17064.8 + 13203.8i −0.754163 + 0.583530i
\(801\) 0 0
\(802\) −5723.88 1056.09i −0.252016 0.0464985i
\(803\) −6011.51 −0.264186
\(804\) 0 0
\(805\) 1244.10 0.0544705
\(806\) −19883.8 3668.68i −0.868954 0.160327i
\(807\) 0 0
\(808\) 8413.07 + 5127.61i 0.366300 + 0.223253i
\(809\) 34550.7i 1.50153i 0.660568 + 0.750766i \(0.270315\pi\)
−0.660568 + 0.750766i \(0.729685\pi\)
\(810\) 0 0
\(811\) 19709.5i 0.853384i 0.904397 + 0.426692i \(0.140321\pi\)
−0.904397 + 0.426692i \(0.859679\pi\)
\(812\) 3525.60 + 1346.84i 0.152370 + 0.0582078i
\(813\) 0 0
\(814\) 4940.29 26775.7i 0.212724 1.15294i
\(815\) −3538.55 −0.152086
\(816\) 0 0
\(817\) −36503.4 −1.56315
\(818\) −2974.03 + 16118.9i −0.127121 + 0.688978i
\(819\) 0 0
\(820\) −4196.20 1603.02i −0.178704 0.0682682i
\(821\) 33361.4i 1.41817i −0.705122 0.709086i \(-0.749108\pi\)
0.705122 0.709086i \(-0.250892\pi\)
\(822\) 0 0
\(823\) 42193.2i 1.78707i 0.448990 + 0.893537i \(0.351784\pi\)
−0.448990 + 0.893537i \(0.648216\pi\)
\(824\) −33723.0 20553.6i −1.42572 0.868954i
\(825\) 0 0
\(826\) 1047.53 + 193.275i 0.0441261 + 0.00814153i
\(827\) 13992.0 0.588329 0.294165 0.955755i \(-0.404959\pi\)
0.294165 + 0.955755i \(0.404959\pi\)
\(828\) 0 0
\(829\) −23454.8 −0.982653 −0.491327 0.870975i \(-0.663488\pi\)
−0.491327 + 0.870975i \(0.663488\pi\)
\(830\) 2338.21 + 431.414i 0.0977836 + 0.0180417i
\(831\) 0 0
\(832\) −9553.33 18527.6i −0.398080 0.772030i
\(833\) 12218.6i 0.508221i
\(834\) 0 0
\(835\) 7345.00i 0.304412i
\(836\) 17255.3 45168.9i 0.713860 1.86866i
\(837\) 0 0
\(838\) −7238.80 + 39233.4i −0.298401 + 1.61730i
\(839\) 9159.10 0.376886 0.188443 0.982084i \(-0.439656\pi\)
0.188443 + 0.982084i \(0.439656\pi\)
\(840\) 0 0
\(841\) −7065.62 −0.289705
\(842\) −3295.19 + 17859.5i −0.134869 + 0.730973i
\(843\) 0 0
\(844\) 15067.8 39442.9i 0.614522 1.60863i
\(845\) 1299.60i 0.0529082i
\(846\) 0 0
\(847\) 2661.35i 0.107963i
\(848\) −15027.6 + 16798.4i −0.608550 + 0.680258i
\(849\) 0 0
\(850\) −12059.0 2224.95i −0.486611 0.0897827i
\(851\) 38699.0 1.55885
\(852\) 0 0
\(853\) −33480.6 −1.34391 −0.671955 0.740592i \(-0.734545\pi\)
−0.671955 + 0.740592i \(0.734545\pi\)
\(854\) −114.165 21.0641i −0.00457452 0.000844028i
\(855\) 0 0
\(856\) 9230.20 15144.3i 0.368553 0.604699i
\(857\) 30949.5i 1.23362i 0.787111 + 0.616811i \(0.211576\pi\)
−0.787111 + 0.616811i \(0.788424\pi\)
\(858\) 0 0
\(859\) 6145.24i 0.244089i 0.992525 + 0.122045i \(0.0389451\pi\)
−0.992525 + 0.122045i \(0.961055\pi\)
\(860\) 5251.14 + 2006.02i 0.208212 + 0.0795405i
\(861\) 0 0
\(862\) −574.644 + 3114.50i −0.0227059 + 0.123063i
\(863\) 13685.9 0.539830 0.269915 0.962884i \(-0.413004\pi\)
0.269915 + 0.962884i \(0.413004\pi\)
\(864\) 0 0
\(865\) −6687.66 −0.262875
\(866\) 153.874 833.980i 0.00603795 0.0327249i
\(867\) 0 0
\(868\) 3490.36 + 1333.38i 0.136487 + 0.0521402i
\(869\) 36152.5i 1.41127i
\(870\) 0 0
\(871\) 6189.50i 0.240785i
\(872\) 18628.6 30564.6i 0.723444 1.18698i
\(873\) 0 0
\(874\) 67583.3 + 12469.5i 2.61561 + 0.482595i
\(875\) 1565.09 0.0604681
\(876\) 0 0
\(877\) −5149.46 −0.198272 −0.0991361 0.995074i \(-0.531608\pi\)
−0.0991361 + 0.995074i \(0.531608\pi\)
\(878\) −6712.68 1238.53i −0.258020 0.0476063i
\(879\) 0 0
\(880\) −4964.46 + 5549.44i −0.190173 + 0.212582i
\(881\) 26936.4i 1.03009i −0.857162 0.515046i \(-0.827775\pi\)
0.857162 0.515046i \(-0.172225\pi\)
\(882\) 0 0
\(883\) 37301.8i 1.42164i −0.703376 0.710818i \(-0.748325\pi\)
0.703376 0.710818i \(-0.251675\pi\)
\(884\) 4227.80 11067.0i 0.160856 0.421069i
\(885\) 0 0
\(886\) 2472.97 13403.2i 0.0937709 0.508227i
\(887\) −34843.5 −1.31898 −0.659488 0.751715i \(-0.729227\pi\)
−0.659488 + 0.751715i \(0.729227\pi\)
\(888\) 0 0
\(889\) −1132.70 −0.0427330
\(890\) 515.469 2793.78i 0.0194141 0.105222i
\(891\) 0 0
\(892\) 13588.5 35570.4i 0.510064 1.33519i
\(893\) 7747.64i 0.290330i
\(894\) 0 0
\(895\) 1150.81i 0.0429802i
\(896\) 1114.86 + 3687.23i 0.0415678 + 0.137480i
\(897\) 0 0
\(898\) 24135.2 + 4453.10i 0.896886 + 0.165481i
\(899\) −31140.2 −1.15527
\(900\) 0 0
\(901\) −12809.6 −0.473641
\(902\) 31298.2 + 5774.70i 1.15534 + 0.213167i
\(903\) 0 0
\(904\) 8575.46 + 5226.59i 0.315504 + 0.192294i
\(905\) 1764.58i 0.0648139i
\(906\) 0 0
\(907\) 8883.19i 0.325206i −0.986692 0.162603i \(-0.948011\pi\)
0.986692 0.162603i \(-0.0519889\pi\)
\(908\) 16668.8 + 6367.75i 0.609220 + 0.232732i
\(909\) 0 0
\(910\) −133.916 + 725.809i −0.00487833 + 0.0264399i
\(911\) −44512.1 −1.61883 −0.809413 0.587240i \(-0.800215\pi\)
−0.809413 + 0.587240i \(0.800215\pi\)
\(912\) 0 0
\(913\) −16846.3 −0.610658
\(914\) 3551.39 19248.1i 0.128522 0.696575i
\(915\) 0 0
\(916\) 43603.3 + 16657.2i 1.57281 + 0.600840i
\(917\) 4638.16i 0.167029i
\(918\) 0 0
\(919\) 7223.63i 0.259288i −0.991561 0.129644i \(-0.958617\pi\)
0.991561 0.129644i \(-0.0413834\pi\)
\(920\) −9036.83 5507.79i −0.323843 0.197377i
\(921\) 0 0
\(922\) 43265.3 + 7982.72i 1.54541 + 0.285137i
\(923\) 1141.34 0.0407017
\(924\) 0 0
\(925\) 23763.1 0.844677
\(926\) −32099.7 5922.60i −1.13916 0.210182i
\(927\) 0 0
\(928\) −19646.4 25391.4i −0.694964 0.898182i
\(929\) 35694.3i 1.26060i −0.776353 0.630298i \(-0.782933\pi\)
0.776353 0.630298i \(-0.217067\pi\)
\(930\) 0 0
\(931\) 42048.8i 1.48023i
\(932\) 8793.37 23018.3i 0.309052 0.809000i
\(933\) 0 0
\(934\) −3.59892 + 19.5057i −0.000126082 + 0.000683347i
\(935\) −4231.74 −0.148014
\(936\) 0 0
\(937\) −4657.90 −0.162398 −0.0811991 0.996698i \(-0.525875\pi\)
−0.0811991 + 0.996698i \(0.525875\pi\)
\(938\) −207.529 + 1124.78i −0.00722396 + 0.0391529i
\(939\) 0 0
\(940\) −425.767 + 1114.52i −0.0147734 + 0.0386721i
\(941\) 25553.4i 0.885245i −0.896708 0.442623i \(-0.854048\pi\)
0.896708 0.442623i \(-0.145952\pi\)
\(942\) 0 0
\(943\) 45235.2i 1.56210i
\(944\) −6753.33 6041.44i −0.232841 0.208297i
\(945\) 0 0
\(946\) −39166.6 7226.48i −1.34611 0.248365i
\(947\) −52939.1 −1.81657 −0.908285 0.418353i \(-0.862608\pi\)
−0.908285 + 0.418353i \(0.862608\pi\)
\(948\) 0 0
\(949\) 5068.85 0.173384
\(950\) 41499.5 + 7656.92i 1.41729 + 0.261498i
\(951\) 0 0
\(952\) −1139.36 + 1869.40i −0.0387888 + 0.0636423i
\(953\) 744.138i 0.0252938i −0.999920 0.0126469i \(-0.995974\pi\)
0.999920 0.0126469i \(-0.00402574\pi\)
\(954\) 0 0
\(955\) 7435.63i 0.251949i
\(956\) −39544.4 15106.6i −1.33782 0.511070i
\(957\) 0 0
\(958\) 2905.43 15747.1i 0.0979857 0.531070i
\(959\) 3914.08 0.131796
\(960\) 0 0
\(961\) −1037.96 −0.0348414
\(962\) −4165.60 + 22577.0i −0.139610 + 0.756666i
\(963\) 0 0
\(964\) 37390.3 + 14283.7i 1.24923 + 0.477228i
\(965\) 3937.85i 0.131361i
\(966\) 0 0
\(967\) 16217.2i 0.539308i 0.962957 + 0.269654i \(0.0869093\pi\)
−0.962957 + 0.269654i \(0.913091\pi\)
\(968\) 11782.1 19331.4i 0.391211 0.641874i
\(969\) 0 0
\(970\) 10087.2 + 1861.16i 0.333898 + 0.0616063i
\(971\) −33620.7 −1.11116 −0.555582 0.831462i \(-0.687504\pi\)
−0.555582 + 0.831462i \(0.687504\pi\)
\(972\) 0 0
\(973\) −3400.28 −0.112033
\(974\) −25262.1 4661.01i −0.831058 0.153335i
\(975\) 0 0
\(976\) 736.012 + 658.428i 0.0241385 + 0.0215940i
\(977\) 21219.2i 0.694843i −0.937709 0.347421i \(-0.887057\pi\)
0.937709 0.347421i \(-0.112943\pi\)
\(978\) 0 0
\(979\) 20128.5i 0.657110i
\(980\) −2310.77 + 6048.85i −0.0753211 + 0.197167i
\(981\) 0 0
\(982\) 5233.39 28364.3i 0.170065 0.921733i
\(983\) 38298.6 1.24266 0.621331 0.783548i \(-0.286592\pi\)
0.621331 + 0.783548i \(0.286592\pi\)
\(984\) 0 0
\(985\) −8073.35 −0.261156
\(986\) 3310.60 17943.1i 0.106928 0.579537i
\(987\) 0 0
\(988\) −14549.5 + 38086.0i −0.468503 + 1.22639i
\(989\) 56607.5i 1.82004i
\(990\) 0 0
\(991\) 17803.2i 0.570674i −0.958427 0.285337i \(-0.907894\pi\)
0.958427 0.285337i \(-0.0921055\pi\)
\(992\) −19450.1 25137.6i −0.622521 0.804555i
\(993\) 0 0
\(994\) −207.409 38.2683i −0.00661833 0.00122112i
\(995\) −2521.78 −0.0803477
\(996\) 0 0
\(997\) 9035.77 0.287027 0.143513 0.989648i \(-0.454160\pi\)
0.143513 + 0.989648i \(0.454160\pi\)
\(998\) −7557.78 1394.46i −0.239717 0.0442292i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.b.c.323.12 24
3.2 odd 2 inner 324.4.b.c.323.13 24
4.3 odd 2 inner 324.4.b.c.323.14 24
9.2 odd 6 108.4.h.b.71.2 24
9.4 even 3 108.4.h.b.35.3 24
9.5 odd 6 36.4.h.b.11.10 24
9.7 even 3 36.4.h.b.23.11 yes 24
12.11 even 2 inner 324.4.b.c.323.11 24
36.7 odd 6 36.4.h.b.23.10 yes 24
36.11 even 6 108.4.h.b.71.3 24
36.23 even 6 36.4.h.b.11.11 yes 24
36.31 odd 6 108.4.h.b.35.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.4.h.b.11.10 24 9.5 odd 6
36.4.h.b.11.11 yes 24 36.23 even 6
36.4.h.b.23.10 yes 24 36.7 odd 6
36.4.h.b.23.11 yes 24 9.7 even 3
108.4.h.b.35.2 24 36.31 odd 6
108.4.h.b.35.3 24 9.4 even 3
108.4.h.b.71.2 24 9.2 odd 6
108.4.h.b.71.3 24 36.11 even 6
324.4.b.c.323.11 24 12.11 even 2 inner
324.4.b.c.323.12 24 1.1 even 1 trivial
324.4.b.c.323.13 24 3.2 odd 2 inner
324.4.b.c.323.14 24 4.3 odd 2 inner