Properties

Label 324.4.a.c.1.2
Level $324$
Weight $4$
Character 324.1
Self dual yes
Analytic conductor $19.117$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,4,Mod(1,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.1166188419\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1509.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 36)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.92542\) of defining polynomial
Character \(\chi\) \(=\) 324.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.89803 q^{5} -10.6545 q^{7} +O(q^{10})\) \(q-4.89803 q^{5} -10.6545 q^{7} +35.4537 q^{11} +72.7003 q^{13} -127.417 q^{17} -46.3913 q^{19} -131.148 q^{23} -101.009 q^{25} -137.510 q^{29} -106.128 q^{31} +52.1861 q^{35} +137.401 q^{37} -71.7971 q^{41} +376.919 q^{43} -613.626 q^{47} -229.481 q^{49} -431.757 q^{53} -173.653 q^{55} -285.755 q^{59} -43.9364 q^{61} -356.088 q^{65} -45.2103 q^{67} +357.328 q^{71} +530.718 q^{73} -377.741 q^{77} -195.108 q^{79} +760.704 q^{83} +624.093 q^{85} -1214.67 q^{89} -774.586 q^{91} +227.226 q^{95} -1104.80 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{5} + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 6 q^{5} + 6 q^{7} - 51 q^{11} - 12 q^{13} - 111 q^{17} + 15 q^{19} - 210 q^{23} + 3 q^{25} - 456 q^{29} - 48 q^{31} - 552 q^{35} - 48 q^{37} - 897 q^{41} - 129 q^{43} - 522 q^{47} + 225 q^{49} - 1104 q^{53} - 108 q^{55} - 453 q^{59} + 402 q^{61} - 1110 q^{65} + 213 q^{67} + 60 q^{71} + 375 q^{73} - 1128 q^{77} - 552 q^{79} + 612 q^{83} - 1188 q^{85} - 462 q^{89} - 132 q^{91} + 2184 q^{95} - 93 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.89803 −0.438093 −0.219047 0.975714i \(-0.570295\pi\)
−0.219047 + 0.975714i \(0.570295\pi\)
\(6\) 0 0
\(7\) −10.6545 −0.575289 −0.287645 0.957737i \(-0.592872\pi\)
−0.287645 + 0.957737i \(0.592872\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 35.4537 0.971789 0.485895 0.874017i \(-0.338494\pi\)
0.485895 + 0.874017i \(0.338494\pi\)
\(12\) 0 0
\(13\) 72.7003 1.55103 0.775517 0.631327i \(-0.217489\pi\)
0.775517 + 0.631327i \(0.217489\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −127.417 −1.81784 −0.908918 0.416975i \(-0.863090\pi\)
−0.908918 + 0.416975i \(0.863090\pi\)
\(18\) 0 0
\(19\) −46.3913 −0.560152 −0.280076 0.959978i \(-0.590360\pi\)
−0.280076 + 0.959978i \(0.590360\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −131.148 −1.18897 −0.594483 0.804109i \(-0.702643\pi\)
−0.594483 + 0.804109i \(0.702643\pi\)
\(24\) 0 0
\(25\) −101.009 −0.808074
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −137.510 −0.880515 −0.440258 0.897872i \(-0.645113\pi\)
−0.440258 + 0.897872i \(0.645113\pi\)
\(30\) 0 0
\(31\) −106.128 −0.614876 −0.307438 0.951568i \(-0.599472\pi\)
−0.307438 + 0.951568i \(0.599472\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 52.1861 0.252030
\(36\) 0 0
\(37\) 137.401 0.610500 0.305250 0.952272i \(-0.401260\pi\)
0.305250 + 0.952272i \(0.401260\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −71.7971 −0.273484 −0.136742 0.990607i \(-0.543663\pi\)
−0.136742 + 0.990607i \(0.543663\pi\)
\(42\) 0 0
\(43\) 376.919 1.33673 0.668367 0.743832i \(-0.266994\pi\)
0.668367 + 0.743832i \(0.266994\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −613.626 −1.90440 −0.952198 0.305482i \(-0.901183\pi\)
−0.952198 + 0.305482i \(0.901183\pi\)
\(48\) 0 0
\(49\) −229.481 −0.669042
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −431.757 −1.11899 −0.559494 0.828835i \(-0.689004\pi\)
−0.559494 + 0.828835i \(0.689004\pi\)
\(54\) 0 0
\(55\) −173.653 −0.425734
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −285.755 −0.630545 −0.315272 0.949001i \(-0.602096\pi\)
−0.315272 + 0.949001i \(0.602096\pi\)
\(60\) 0 0
\(61\) −43.9364 −0.0922209 −0.0461104 0.998936i \(-0.514683\pi\)
−0.0461104 + 0.998936i \(0.514683\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −356.088 −0.679497
\(66\) 0 0
\(67\) −45.2103 −0.0824376 −0.0412188 0.999150i \(-0.513124\pi\)
−0.0412188 + 0.999150i \(0.513124\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 357.328 0.597282 0.298641 0.954366i \(-0.403467\pi\)
0.298641 + 0.954366i \(0.403467\pi\)
\(72\) 0 0
\(73\) 530.718 0.850901 0.425451 0.904982i \(-0.360116\pi\)
0.425451 + 0.904982i \(0.360116\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −377.741 −0.559060
\(78\) 0 0
\(79\) −195.108 −0.277865 −0.138933 0.990302i \(-0.544367\pi\)
−0.138933 + 0.990302i \(0.544367\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 760.704 1.00600 0.503001 0.864286i \(-0.332229\pi\)
0.503001 + 0.864286i \(0.332229\pi\)
\(84\) 0 0
\(85\) 624.093 0.796381
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1214.67 −1.44668 −0.723339 0.690493i \(-0.757393\pi\)
−0.723339 + 0.690493i \(0.757393\pi\)
\(90\) 0 0
\(91\) −774.586 −0.892293
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 227.226 0.245399
\(96\) 0 0
\(97\) −1104.80 −1.15645 −0.578226 0.815877i \(-0.696255\pi\)
−0.578226 + 0.815877i \(0.696255\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1017.92 1.00284 0.501421 0.865203i \(-0.332811\pi\)
0.501421 + 0.865203i \(0.332811\pi\)
\(102\) 0 0
\(103\) 832.257 0.796162 0.398081 0.917350i \(-0.369676\pi\)
0.398081 + 0.917350i \(0.369676\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 481.992 0.435476 0.217738 0.976007i \(-0.430132\pi\)
0.217738 + 0.976007i \(0.430132\pi\)
\(108\) 0 0
\(109\) −904.531 −0.794847 −0.397424 0.917635i \(-0.630096\pi\)
−0.397424 + 0.917635i \(0.630096\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 800.987 0.666819 0.333410 0.942782i \(-0.391801\pi\)
0.333410 + 0.942782i \(0.391801\pi\)
\(114\) 0 0
\(115\) 642.366 0.520877
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1357.57 1.04578
\(120\) 0 0
\(121\) −74.0372 −0.0556253
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1107.00 0.792105
\(126\) 0 0
\(127\) 1755.04 1.22626 0.613129 0.789982i \(-0.289910\pi\)
0.613129 + 0.789982i \(0.289910\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1103.74 0.736140 0.368070 0.929798i \(-0.380019\pi\)
0.368070 + 0.929798i \(0.380019\pi\)
\(132\) 0 0
\(133\) 494.276 0.322250
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2126.51 −1.32613 −0.663064 0.748563i \(-0.730744\pi\)
−0.663064 + 0.748563i \(0.730744\pi\)
\(138\) 0 0
\(139\) −2255.47 −1.37630 −0.688151 0.725567i \(-0.741577\pi\)
−0.688151 + 0.725567i \(0.741577\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2577.49 1.50728
\(144\) 0 0
\(145\) 673.527 0.385748
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −685.450 −0.376874 −0.188437 0.982085i \(-0.560342\pi\)
−0.188437 + 0.982085i \(0.560342\pi\)
\(150\) 0 0
\(151\) 540.330 0.291201 0.145601 0.989343i \(-0.453489\pi\)
0.145601 + 0.989343i \(0.453489\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 519.818 0.269373
\(156\) 0 0
\(157\) −473.327 −0.240609 −0.120304 0.992737i \(-0.538387\pi\)
−0.120304 + 0.992737i \(0.538387\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1397.31 0.683999
\(162\) 0 0
\(163\) −198.981 −0.0956160 −0.0478080 0.998857i \(-0.515224\pi\)
−0.0478080 + 0.998857i \(0.515224\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4275.65 1.98120 0.990598 0.136808i \(-0.0436844\pi\)
0.990598 + 0.136808i \(0.0436844\pi\)
\(168\) 0 0
\(169\) 3088.33 1.40570
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.1047 0.00663811 0.00331905 0.999994i \(-0.498944\pi\)
0.00331905 + 0.999994i \(0.498944\pi\)
\(174\) 0 0
\(175\) 1076.20 0.464877
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −309.915 −0.129408 −0.0647042 0.997904i \(-0.520610\pi\)
−0.0647042 + 0.997904i \(0.520610\pi\)
\(180\) 0 0
\(181\) −2253.32 −0.925348 −0.462674 0.886529i \(-0.653110\pi\)
−0.462674 + 0.886529i \(0.653110\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −672.992 −0.267456
\(186\) 0 0
\(187\) −4517.41 −1.76655
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3698.56 1.40114 0.700571 0.713583i \(-0.252929\pi\)
0.700571 + 0.713583i \(0.252929\pi\)
\(192\) 0 0
\(193\) −3563.28 −1.32896 −0.664482 0.747304i \(-0.731348\pi\)
−0.664482 + 0.747304i \(0.731348\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 89.0014 0.0321883 0.0160941 0.999870i \(-0.494877\pi\)
0.0160941 + 0.999870i \(0.494877\pi\)
\(198\) 0 0
\(199\) 287.103 0.102272 0.0511362 0.998692i \(-0.483716\pi\)
0.0511362 + 0.998692i \(0.483716\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1465.10 0.506551
\(204\) 0 0
\(205\) 351.664 0.119811
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1644.74 −0.544350
\(210\) 0 0
\(211\) 5059.86 1.65088 0.825438 0.564492i \(-0.190928\pi\)
0.825438 + 0.564492i \(0.190928\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1846.16 −0.585614
\(216\) 0 0
\(217\) 1130.74 0.353732
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −9263.27 −2.81952
\(222\) 0 0
\(223\) −399.714 −0.120031 −0.0600153 0.998197i \(-0.519115\pi\)
−0.0600153 + 0.998197i \(0.519115\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −375.418 −0.109768 −0.0548840 0.998493i \(-0.517479\pi\)
−0.0548840 + 0.998493i \(0.517479\pi\)
\(228\) 0 0
\(229\) 4826.56 1.39279 0.696394 0.717660i \(-0.254787\pi\)
0.696394 + 0.717660i \(0.254787\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3858.19 −1.08480 −0.542401 0.840120i \(-0.682484\pi\)
−0.542401 + 0.840120i \(0.682484\pi\)
\(234\) 0 0
\(235\) 3005.56 0.834303
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1305.21 0.353250 0.176625 0.984278i \(-0.443482\pi\)
0.176625 + 0.984278i \(0.443482\pi\)
\(240\) 0 0
\(241\) −2216.14 −0.592340 −0.296170 0.955135i \(-0.595710\pi\)
−0.296170 + 0.955135i \(0.595710\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1124.01 0.293103
\(246\) 0 0
\(247\) −3372.66 −0.868815
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2993.80 −0.752856 −0.376428 0.926446i \(-0.622848\pi\)
−0.376428 + 0.926446i \(0.622848\pi\)
\(252\) 0 0
\(253\) −4649.67 −1.15542
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2935.03 0.712382 0.356191 0.934413i \(-0.384075\pi\)
0.356191 + 0.934413i \(0.384075\pi\)
\(258\) 0 0
\(259\) −1463.94 −0.351214
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1553.77 0.364294 0.182147 0.983271i \(-0.441695\pi\)
0.182147 + 0.983271i \(0.441695\pi\)
\(264\) 0 0
\(265\) 2114.76 0.490221
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1762.62 −0.399513 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(270\) 0 0
\(271\) −6924.63 −1.55218 −0.776091 0.630621i \(-0.782800\pi\)
−0.776091 + 0.630621i \(0.782800\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3581.15 −0.785278
\(276\) 0 0
\(277\) 6024.95 1.30687 0.653437 0.756981i \(-0.273326\pi\)
0.653437 + 0.756981i \(0.273326\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6337.48 −1.34542 −0.672709 0.739907i \(-0.734869\pi\)
−0.672709 + 0.739907i \(0.734869\pi\)
\(282\) 0 0
\(283\) −1968.68 −0.413518 −0.206759 0.978392i \(-0.566292\pi\)
−0.206759 + 0.978392i \(0.566292\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 764.963 0.157332
\(288\) 0 0
\(289\) 11322.1 2.30453
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1174.42 −0.234164 −0.117082 0.993122i \(-0.537354\pi\)
−0.117082 + 0.993122i \(0.537354\pi\)
\(294\) 0 0
\(295\) 1399.64 0.276237
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9534.48 −1.84412
\(300\) 0 0
\(301\) −4015.88 −0.769009
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 215.202 0.0404013
\(306\) 0 0
\(307\) 3258.92 0.605851 0.302926 0.953014i \(-0.402037\pi\)
0.302926 + 0.953014i \(0.402037\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7958.02 −1.45099 −0.725495 0.688228i \(-0.758389\pi\)
−0.725495 + 0.688228i \(0.758389\pi\)
\(312\) 0 0
\(313\) −4196.25 −0.757784 −0.378892 0.925441i \(-0.623695\pi\)
−0.378892 + 0.925441i \(0.623695\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4833.56 −0.856404 −0.428202 0.903683i \(-0.640853\pi\)
−0.428202 + 0.903683i \(0.640853\pi\)
\(318\) 0 0
\(319\) −4875.23 −0.855675
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5911.05 1.01826
\(324\) 0 0
\(325\) −7343.41 −1.25335
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6537.89 1.09558
\(330\) 0 0
\(331\) 10540.7 1.75036 0.875179 0.483800i \(-0.160744\pi\)
0.875179 + 0.483800i \(0.160744\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 221.441 0.0361153
\(336\) 0 0
\(337\) −4874.90 −0.787990 −0.393995 0.919112i \(-0.628907\pi\)
−0.393995 + 0.919112i \(0.628907\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3762.63 −0.597530
\(342\) 0 0
\(343\) 6099.51 0.960182
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −270.756 −0.0418875 −0.0209437 0.999781i \(-0.506667\pi\)
−0.0209437 + 0.999781i \(0.506667\pi\)
\(348\) 0 0
\(349\) −10440.0 −1.60126 −0.800630 0.599159i \(-0.795502\pi\)
−0.800630 + 0.599159i \(0.795502\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 65.9254 0.00994010 0.00497005 0.999988i \(-0.498418\pi\)
0.00497005 + 0.999988i \(0.498418\pi\)
\(354\) 0 0
\(355\) −1750.20 −0.261665
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1973.98 0.290203 0.145101 0.989417i \(-0.453649\pi\)
0.145101 + 0.989417i \(0.453649\pi\)
\(360\) 0 0
\(361\) −4706.85 −0.686230
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2599.47 −0.372774
\(366\) 0 0
\(367\) 4375.94 0.622404 0.311202 0.950344i \(-0.399268\pi\)
0.311202 + 0.950344i \(0.399268\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4600.15 0.643742
\(372\) 0 0
\(373\) 10834.2 1.50395 0.751975 0.659192i \(-0.229102\pi\)
0.751975 + 0.659192i \(0.229102\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9997.01 −1.36571
\(378\) 0 0
\(379\) −9390.04 −1.27265 −0.636325 0.771421i \(-0.719546\pi\)
−0.636325 + 0.771421i \(0.719546\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7133.22 0.951673 0.475836 0.879534i \(-0.342145\pi\)
0.475836 + 0.879534i \(0.342145\pi\)
\(384\) 0 0
\(385\) 1850.19 0.244920
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8486.58 1.10614 0.553068 0.833136i \(-0.313457\pi\)
0.553068 + 0.833136i \(0.313457\pi\)
\(390\) 0 0
\(391\) 16710.5 2.16134
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 955.645 0.121731
\(396\) 0 0
\(397\) 13046.4 1.64932 0.824660 0.565628i \(-0.191366\pi\)
0.824660 + 0.565628i \(0.191366\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2604.06 −0.324291 −0.162146 0.986767i \(-0.551841\pi\)
−0.162146 + 0.986767i \(0.551841\pi\)
\(402\) 0 0
\(403\) −7715.54 −0.953693
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4871.36 0.593278
\(408\) 0 0
\(409\) −7993.05 −0.966334 −0.483167 0.875528i \(-0.660514\pi\)
−0.483167 + 0.875528i \(0.660514\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3044.58 0.362746
\(414\) 0 0
\(415\) −3725.95 −0.440722
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −278.400 −0.0324600 −0.0162300 0.999868i \(-0.505166\pi\)
−0.0162300 + 0.999868i \(0.505166\pi\)
\(420\) 0 0
\(421\) −859.241 −0.0994699 −0.0497350 0.998762i \(-0.515838\pi\)
−0.0497350 + 0.998762i \(0.515838\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12870.3 1.46895
\(426\) 0 0
\(427\) 468.120 0.0530537
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9455.34 1.05672 0.528362 0.849019i \(-0.322807\pi\)
0.528362 + 0.849019i \(0.322807\pi\)
\(432\) 0 0
\(433\) 1527.61 0.169544 0.0847718 0.996400i \(-0.472984\pi\)
0.0847718 + 0.996400i \(0.472984\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6084.11 0.666001
\(438\) 0 0
\(439\) −2606.05 −0.283326 −0.141663 0.989915i \(-0.545245\pi\)
−0.141663 + 0.989915i \(0.545245\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1452.44 0.155774 0.0778868 0.996962i \(-0.475183\pi\)
0.0778868 + 0.996962i \(0.475183\pi\)
\(444\) 0 0
\(445\) 5949.47 0.633779
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12241.5 1.28666 0.643331 0.765589i \(-0.277552\pi\)
0.643331 + 0.765589i \(0.277552\pi\)
\(450\) 0 0
\(451\) −2545.47 −0.265769
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3793.94 0.390907
\(456\) 0 0
\(457\) −9756.25 −0.998639 −0.499320 0.866418i \(-0.666417\pi\)
−0.499320 + 0.866418i \(0.666417\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10244.0 1.03495 0.517474 0.855699i \(-0.326873\pi\)
0.517474 + 0.855699i \(0.326873\pi\)
\(462\) 0 0
\(463\) −13887.3 −1.39395 −0.696976 0.717095i \(-0.745471\pi\)
−0.696976 + 0.717095i \(0.745471\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14367.2 −1.42363 −0.711815 0.702367i \(-0.752126\pi\)
−0.711815 + 0.702367i \(0.752126\pi\)
\(468\) 0 0
\(469\) 481.694 0.0474255
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 13363.1 1.29902
\(474\) 0 0
\(475\) 4685.95 0.452645
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10371.2 −0.989293 −0.494647 0.869094i \(-0.664703\pi\)
−0.494647 + 0.869094i \(0.664703\pi\)
\(480\) 0 0
\(481\) 9989.06 0.946907
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5411.36 0.506634
\(486\) 0 0
\(487\) −4805.47 −0.447139 −0.223569 0.974688i \(-0.571771\pi\)
−0.223569 + 0.974688i \(0.571771\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17549.3 −1.61302 −0.806508 0.591223i \(-0.798645\pi\)
−0.806508 + 0.591223i \(0.798645\pi\)
\(492\) 0 0
\(493\) 17521.1 1.60063
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3807.15 −0.343610
\(498\) 0 0
\(499\) −794.160 −0.0712454 −0.0356227 0.999365i \(-0.511341\pi\)
−0.0356227 + 0.999365i \(0.511341\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6389.32 0.566374 0.283187 0.959065i \(-0.408608\pi\)
0.283187 + 0.959065i \(0.408608\pi\)
\(504\) 0 0
\(505\) −4985.82 −0.439338
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13871.1 1.20791 0.603953 0.797020i \(-0.293591\pi\)
0.603953 + 0.797020i \(0.293591\pi\)
\(510\) 0 0
\(511\) −5654.53 −0.489514
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4076.42 −0.348793
\(516\) 0 0
\(517\) −21755.3 −1.85067
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13682.5 1.15056 0.575280 0.817956i \(-0.304893\pi\)
0.575280 + 0.817956i \(0.304893\pi\)
\(522\) 0 0
\(523\) 8390.18 0.701485 0.350743 0.936472i \(-0.385929\pi\)
0.350743 + 0.936472i \(0.385929\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13522.5 1.11774
\(528\) 0 0
\(529\) 5032.73 0.413638
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5219.67 −0.424182
\(534\) 0 0
\(535\) −2360.81 −0.190779
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8135.96 −0.650168
\(540\) 0 0
\(541\) −3447.33 −0.273960 −0.136980 0.990574i \(-0.543740\pi\)
−0.136980 + 0.990574i \(0.543740\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4430.42 0.348217
\(546\) 0 0
\(547\) 14538.5 1.13642 0.568208 0.822885i \(-0.307637\pi\)
0.568208 + 0.822885i \(0.307637\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6379.26 0.493222
\(552\) 0 0
\(553\) 2078.78 0.159853
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14894.7 1.13305 0.566525 0.824044i \(-0.308287\pi\)
0.566525 + 0.824044i \(0.308287\pi\)
\(558\) 0 0
\(559\) 27402.1 2.07332
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12137.3 −0.908574 −0.454287 0.890855i \(-0.650106\pi\)
−0.454287 + 0.890855i \(0.650106\pi\)
\(564\) 0 0
\(565\) −3923.26 −0.292129
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −520.484 −0.0383477 −0.0191738 0.999816i \(-0.506104\pi\)
−0.0191738 + 0.999816i \(0.506104\pi\)
\(570\) 0 0
\(571\) −4591.47 −0.336510 −0.168255 0.985744i \(-0.553813\pi\)
−0.168255 + 0.985744i \(0.553813\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13247.1 0.960772
\(576\) 0 0
\(577\) −5429.84 −0.391763 −0.195881 0.980628i \(-0.562757\pi\)
−0.195881 + 0.980628i \(0.562757\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8104.93 −0.578742
\(582\) 0 0
\(583\) −15307.4 −1.08742
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19786.7 −1.39128 −0.695641 0.718390i \(-0.744880\pi\)
−0.695641 + 0.718390i \(0.744880\pi\)
\(588\) 0 0
\(589\) 4923.42 0.344424
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2181.13 0.151042 0.0755212 0.997144i \(-0.475938\pi\)
0.0755212 + 0.997144i \(0.475938\pi\)
\(594\) 0 0
\(595\) −6649.41 −0.458150
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4087.24 0.278798 0.139399 0.990236i \(-0.455483\pi\)
0.139399 + 0.990236i \(0.455483\pi\)
\(600\) 0 0
\(601\) 11684.9 0.793074 0.396537 0.918019i \(-0.370212\pi\)
0.396537 + 0.918019i \(0.370212\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 362.637 0.0243690
\(606\) 0 0
\(607\) 3730.75 0.249467 0.124733 0.992190i \(-0.460192\pi\)
0.124733 + 0.992190i \(0.460192\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −44610.8 −2.95378
\(612\) 0 0
\(613\) −2259.79 −0.148894 −0.0744470 0.997225i \(-0.523719\pi\)
−0.0744470 + 0.997225i \(0.523719\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23227.6 −1.51557 −0.757787 0.652502i \(-0.773719\pi\)
−0.757787 + 0.652502i \(0.773719\pi\)
\(618\) 0 0
\(619\) −8399.62 −0.545411 −0.272705 0.962098i \(-0.587918\pi\)
−0.272705 + 0.962098i \(0.587918\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12941.7 0.832258
\(624\) 0 0
\(625\) 7204.05 0.461059
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −17507.2 −1.10979
\(630\) 0 0
\(631\) −22475.2 −1.41795 −0.708973 0.705236i \(-0.750841\pi\)
−0.708973 + 0.705236i \(0.750841\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8596.25 −0.537215
\(636\) 0 0
\(637\) −16683.4 −1.03771
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8874.07 0.546809 0.273405 0.961899i \(-0.411850\pi\)
0.273405 + 0.961899i \(0.411850\pi\)
\(642\) 0 0
\(643\) 21353.1 1.30962 0.654810 0.755794i \(-0.272749\pi\)
0.654810 + 0.755794i \(0.272749\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24145.6 −1.46718 −0.733588 0.679595i \(-0.762156\pi\)
−0.733588 + 0.679595i \(0.762156\pi\)
\(648\) 0 0
\(649\) −10131.1 −0.612757
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11695.3 0.700875 0.350438 0.936586i \(-0.386033\pi\)
0.350438 + 0.936586i \(0.386033\pi\)
\(654\) 0 0
\(655\) −5406.16 −0.322498
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5828.89 −0.344554 −0.172277 0.985049i \(-0.555112\pi\)
−0.172277 + 0.985049i \(0.555112\pi\)
\(660\) 0 0
\(661\) −1621.31 −0.0954034 −0.0477017 0.998862i \(-0.515190\pi\)
−0.0477017 + 0.998862i \(0.515190\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2420.98 −0.141175
\(666\) 0 0
\(667\) 18034.1 1.04690
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1557.71 −0.0896193
\(672\) 0 0
\(673\) 20376.4 1.16709 0.583545 0.812081i \(-0.301665\pi\)
0.583545 + 0.812081i \(0.301665\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11350.2 −0.644348 −0.322174 0.946680i \(-0.604414\pi\)
−0.322174 + 0.946680i \(0.604414\pi\)
\(678\) 0 0
\(679\) 11771.1 0.665295
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −3508.08 −0.196534 −0.0982670 0.995160i \(-0.531330\pi\)
−0.0982670 + 0.995160i \(0.531330\pi\)
\(684\) 0 0
\(685\) 10415.7 0.580968
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −31388.8 −1.73559
\(690\) 0 0
\(691\) −17538.8 −0.965565 −0.482783 0.875740i \(-0.660374\pi\)
−0.482783 + 0.875740i \(0.660374\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11047.3 0.602949
\(696\) 0 0
\(697\) 9148.19 0.497148
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15208.5 0.819428 0.409714 0.912214i \(-0.365629\pi\)
0.409714 + 0.912214i \(0.365629\pi\)
\(702\) 0 0
\(703\) −6374.19 −0.341973
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10845.5 −0.576925
\(708\) 0 0
\(709\) 194.480 0.0103016 0.00515081 0.999987i \(-0.498360\pi\)
0.00515081 + 0.999987i \(0.498360\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13918.5 0.731066
\(714\) 0 0
\(715\) −12624.6 −0.660328
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1001.11 0.0519266 0.0259633 0.999663i \(-0.491735\pi\)
0.0259633 + 0.999663i \(0.491735\pi\)
\(720\) 0 0
\(721\) −8867.29 −0.458024
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13889.8 0.711522
\(726\) 0 0
\(727\) −14985.0 −0.764461 −0.382231 0.924067i \(-0.624844\pi\)
−0.382231 + 0.924067i \(0.624844\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −48025.9 −2.42996
\(732\) 0 0
\(733\) −31698.0 −1.59726 −0.798632 0.601820i \(-0.794442\pi\)
−0.798632 + 0.601820i \(0.794442\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1602.87 −0.0801120
\(738\) 0 0
\(739\) −1333.07 −0.0663570 −0.0331785 0.999449i \(-0.510563\pi\)
−0.0331785 + 0.999449i \(0.510563\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2206.65 0.108956 0.0544780 0.998515i \(-0.482651\pi\)
0.0544780 + 0.998515i \(0.482651\pi\)
\(744\) 0 0
\(745\) 3357.36 0.165106
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5135.39 −0.250525
\(750\) 0 0
\(751\) −16688.0 −0.810859 −0.405430 0.914126i \(-0.632878\pi\)
−0.405430 + 0.914126i \(0.632878\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2646.55 −0.127573
\(756\) 0 0
\(757\) 17183.8 0.825039 0.412519 0.910949i \(-0.364649\pi\)
0.412519 + 0.910949i \(0.364649\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18953.9 −0.902862 −0.451431 0.892306i \(-0.649086\pi\)
−0.451431 + 0.892306i \(0.649086\pi\)
\(762\) 0 0
\(763\) 9637.33 0.457267
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −20774.5 −0.977996
\(768\) 0 0
\(769\) 6248.76 0.293025 0.146512 0.989209i \(-0.453195\pi\)
0.146512 + 0.989209i \(0.453195\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4856.58 0.225975 0.112988 0.993596i \(-0.463958\pi\)
0.112988 + 0.993596i \(0.463958\pi\)
\(774\) 0 0
\(775\) 10719.9 0.496866
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3330.76 0.153192
\(780\) 0 0
\(781\) 12668.6 0.580432
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2318.37 0.105409
\(786\) 0 0
\(787\) 16478.0 0.746351 0.373175 0.927761i \(-0.378269\pi\)
0.373175 + 0.927761i \(0.378269\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8534.13 −0.383614
\(792\) 0 0
\(793\) −3194.19 −0.143038
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32746.3 1.45537 0.727687 0.685910i \(-0.240596\pi\)
0.727687 + 0.685910i \(0.240596\pi\)
\(798\) 0 0
\(799\) 78186.6 3.46188
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 18815.9 0.826897
\(804\) 0 0
\(805\) −6844.09 −0.299655
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3011.82 0.130890 0.0654451 0.997856i \(-0.479153\pi\)
0.0654451 + 0.997856i \(0.479153\pi\)
\(810\) 0 0
\(811\) 3560.24 0.154151 0.0770757 0.997025i \(-0.475442\pi\)
0.0770757 + 0.997025i \(0.475442\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 974.616 0.0418887
\(816\) 0 0
\(817\) −17485.7 −0.748774
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −38081.7 −1.61883 −0.809415 0.587237i \(-0.800216\pi\)
−0.809415 + 0.587237i \(0.800216\pi\)
\(822\) 0 0
\(823\) 5121.76 0.216930 0.108465 0.994100i \(-0.465406\pi\)
0.108465 + 0.994100i \(0.465406\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 43712.2 1.83800 0.918998 0.394261i \(-0.129000\pi\)
0.918998 + 0.394261i \(0.129000\pi\)
\(828\) 0 0
\(829\) −14707.1 −0.616161 −0.308080 0.951360i \(-0.599687\pi\)
−0.308080 + 0.951360i \(0.599687\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 29239.9 1.21621
\(834\) 0 0
\(835\) −20942.2 −0.867948
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 34649.5 1.42579 0.712893 0.701273i \(-0.247384\pi\)
0.712893 + 0.701273i \(0.247384\pi\)
\(840\) 0 0
\(841\) −5480.04 −0.224693
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −15126.7 −0.615829
\(846\) 0 0
\(847\) 788.830 0.0320006
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −18019.8 −0.725864
\(852\) 0 0
\(853\) −29740.1 −1.19377 −0.596883 0.802328i \(-0.703594\pi\)
−0.596883 + 0.802328i \(0.703594\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1854.26 −0.0739093 −0.0369547 0.999317i \(-0.511766\pi\)
−0.0369547 + 0.999317i \(0.511766\pi\)
\(858\) 0 0
\(859\) −46002.5 −1.82722 −0.913611 0.406589i \(-0.866718\pi\)
−0.913611 + 0.406589i \(0.866718\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38032.8 1.50018 0.750088 0.661338i \(-0.230011\pi\)
0.750088 + 0.661338i \(0.230011\pi\)
\(864\) 0 0
\(865\) −73.9835 −0.00290811
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −6917.30 −0.270027
\(870\) 0 0
\(871\) −3286.80 −0.127863
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −11794.5 −0.455690
\(876\) 0 0
\(877\) 11507.2 0.443069 0.221534 0.975153i \(-0.428893\pi\)
0.221534 + 0.975153i \(0.428893\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −30567.4 −1.16895 −0.584473 0.811413i \(-0.698699\pi\)
−0.584473 + 0.811413i \(0.698699\pi\)
\(882\) 0 0
\(883\) −17998.2 −0.685944 −0.342972 0.939346i \(-0.611434\pi\)
−0.342972 + 0.939346i \(0.611434\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11792.5 −0.446396 −0.223198 0.974773i \(-0.571650\pi\)
−0.223198 + 0.974773i \(0.571650\pi\)
\(888\) 0 0
\(889\) −18699.1 −0.705454
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 28466.9 1.06675
\(894\) 0 0
\(895\) 1517.97 0.0566929
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 14593.7 0.541408
\(900\) 0 0
\(901\) 55013.2 2.03414
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11036.8 0.405388
\(906\) 0 0
\(907\) 18620.0 0.681661 0.340830 0.940125i \(-0.389292\pi\)
0.340830 + 0.940125i \(0.389292\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13597.7 0.494526 0.247263 0.968948i \(-0.420469\pi\)
0.247263 + 0.968948i \(0.420469\pi\)
\(912\) 0 0
\(913\) 26969.8 0.977622
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −11759.8 −0.423493
\(918\) 0 0
\(919\) −18959.3 −0.680532 −0.340266 0.940329i \(-0.610517\pi\)
−0.340266 + 0.940329i \(0.610517\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 25977.8 0.926404
\(924\) 0 0
\(925\) −13878.7 −0.493330
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 51163.3 1.80690 0.903452 0.428689i \(-0.141024\pi\)
0.903452 + 0.428689i \(0.141024\pi\)
\(930\) 0 0
\(931\) 10645.9 0.374765
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 22126.4 0.773915
\(936\) 0 0
\(937\) −33124.9 −1.15490 −0.577452 0.816425i \(-0.695953\pi\)
−0.577452 + 0.816425i \(0.695953\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 16745.9 0.580128 0.290064 0.957007i \(-0.406323\pi\)
0.290064 + 0.957007i \(0.406323\pi\)
\(942\) 0 0
\(943\) 9416.03 0.325163
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31645.0 1.08587 0.542937 0.839773i \(-0.317312\pi\)
0.542937 + 0.839773i \(0.317312\pi\)
\(948\) 0 0
\(949\) 38583.3 1.31978
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 44345.0 1.50732 0.753660 0.657264i \(-0.228286\pi\)
0.753660 + 0.657264i \(0.228286\pi\)
\(954\) 0 0
\(955\) −18115.6 −0.613830
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22656.9 0.762908
\(960\) 0 0
\(961\) −18527.8 −0.621927
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 17453.0 0.582210
\(966\) 0 0
\(967\) 11352.3 0.377522 0.188761 0.982023i \(-0.439553\pi\)
0.188761 + 0.982023i \(0.439553\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −38458.3 −1.27105 −0.635523 0.772082i \(-0.719215\pi\)
−0.635523 + 0.772082i \(0.719215\pi\)
\(972\) 0 0
\(973\) 24030.9 0.791772
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7365.24 −0.241182 −0.120591 0.992702i \(-0.538479\pi\)
−0.120591 + 0.992702i \(0.538479\pi\)
\(978\) 0 0
\(979\) −43064.4 −1.40587
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 51741.4 1.67884 0.839418 0.543487i \(-0.182896\pi\)
0.839418 + 0.543487i \(0.182896\pi\)
\(984\) 0 0
\(985\) −435.931 −0.0141015
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −49432.0 −1.58933
\(990\) 0 0
\(991\) 7427.40 0.238082 0.119041 0.992889i \(-0.462018\pi\)
0.119041 + 0.992889i \(0.462018\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1406.24 −0.0448048
\(996\) 0 0
\(997\) 42586.2 1.35278 0.676389 0.736545i \(-0.263544\pi\)
0.676389 + 0.736545i \(0.263544\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.a.c.1.2 3
3.2 odd 2 324.4.a.d.1.2 3
4.3 odd 2 1296.4.a.v.1.2 3
9.2 odd 6 108.4.e.a.37.2 6
9.4 even 3 36.4.e.a.25.3 yes 6
9.5 odd 6 108.4.e.a.73.2 6
9.7 even 3 36.4.e.a.13.3 6
12.11 even 2 1296.4.a.w.1.2 3
36.7 odd 6 144.4.i.d.49.1 6
36.11 even 6 432.4.i.d.145.2 6
36.23 even 6 432.4.i.d.289.2 6
36.31 odd 6 144.4.i.d.97.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.4.e.a.13.3 6 9.7 even 3
36.4.e.a.25.3 yes 6 9.4 even 3
108.4.e.a.37.2 6 9.2 odd 6
108.4.e.a.73.2 6 9.5 odd 6
144.4.i.d.49.1 6 36.7 odd 6
144.4.i.d.97.1 6 36.31 odd 6
324.4.a.c.1.2 3 1.1 even 1 trivial
324.4.a.d.1.2 3 3.2 odd 2
432.4.i.d.145.2 6 36.11 even 6
432.4.i.d.289.2 6 36.23 even 6
1296.4.a.v.1.2 3 4.3 odd 2
1296.4.a.w.1.2 3 12.11 even 2