Properties

Label 324.3.g.b
Level $324$
Weight $3$
Character orbit 324.g
Analytic conductor $8.828$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -2 + 2 \zeta_{6} ) q^{7} +O(q^{10})\) \( q + ( -2 + 2 \zeta_{6} ) q^{7} + 22 \zeta_{6} q^{13} + 26 q^{19} + ( -25 + 25 \zeta_{6} ) q^{25} + 46 \zeta_{6} q^{31} + 26 q^{37} + ( 22 - 22 \zeta_{6} ) q^{43} + 45 \zeta_{6} q^{49} + ( -74 + 74 \zeta_{6} ) q^{61} -122 \zeta_{6} q^{67} -46 q^{73} + ( 142 - 142 \zeta_{6} ) q^{79} -44 q^{91} + ( -2 + 2 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{7} + O(q^{10}) \) \( 2q - 2q^{7} + 22q^{13} + 52q^{19} - 25q^{25} + 46q^{31} + 52q^{37} + 22q^{43} + 45q^{49} - 74q^{61} - 122q^{67} - 92q^{73} + 142q^{79} - 88q^{91} - 2q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0 0 −1.00000 1.73205i 0 0 0
269.1 0 0 0 0 0 −1.00000 + 1.73205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 324.3.g.b 2
3.b odd 2 1 CM 324.3.g.b 2
4.b odd 2 1 1296.3.q.b 2
9.c even 3 1 12.3.c.a 1
9.c even 3 1 inner 324.3.g.b 2
9.d odd 6 1 12.3.c.a 1
9.d odd 6 1 inner 324.3.g.b 2
12.b even 2 1 1296.3.q.b 2
36.f odd 6 1 48.3.e.a 1
36.f odd 6 1 1296.3.q.b 2
36.h even 6 1 48.3.e.a 1
36.h even 6 1 1296.3.q.b 2
45.h odd 6 1 300.3.g.b 1
45.j even 6 1 300.3.g.b 1
45.k odd 12 2 300.3.b.a 2
45.l even 12 2 300.3.b.a 2
63.g even 3 1 588.3.p.c 2
63.h even 3 1 588.3.p.c 2
63.i even 6 1 588.3.p.b 2
63.j odd 6 1 588.3.p.c 2
63.k odd 6 1 588.3.p.b 2
63.l odd 6 1 588.3.c.c 1
63.n odd 6 1 588.3.p.c 2
63.o even 6 1 588.3.c.c 1
63.s even 6 1 588.3.p.b 2
63.t odd 6 1 588.3.p.b 2
72.j odd 6 1 192.3.e.b 1
72.l even 6 1 192.3.e.a 1
72.n even 6 1 192.3.e.b 1
72.p odd 6 1 192.3.e.a 1
99.g even 6 1 1452.3.e.b 1
99.h odd 6 1 1452.3.e.b 1
144.u even 12 2 768.3.h.b 2
144.v odd 12 2 768.3.h.b 2
144.w odd 12 2 768.3.h.a 2
144.x even 12 2 768.3.h.a 2
180.n even 6 1 1200.3.l.b 1
180.p odd 6 1 1200.3.l.b 1
180.v odd 12 2 1200.3.c.c 2
180.x even 12 2 1200.3.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.3.c.a 1 9.c even 3 1
12.3.c.a 1 9.d odd 6 1
48.3.e.a 1 36.f odd 6 1
48.3.e.a 1 36.h even 6 1
192.3.e.a 1 72.l even 6 1
192.3.e.a 1 72.p odd 6 1
192.3.e.b 1 72.j odd 6 1
192.3.e.b 1 72.n even 6 1
300.3.b.a 2 45.k odd 12 2
300.3.b.a 2 45.l even 12 2
300.3.g.b 1 45.h odd 6 1
300.3.g.b 1 45.j even 6 1
324.3.g.b 2 1.a even 1 1 trivial
324.3.g.b 2 3.b odd 2 1 CM
324.3.g.b 2 9.c even 3 1 inner
324.3.g.b 2 9.d odd 6 1 inner
588.3.c.c 1 63.l odd 6 1
588.3.c.c 1 63.o even 6 1
588.3.p.b 2 63.i even 6 1
588.3.p.b 2 63.k odd 6 1
588.3.p.b 2 63.s even 6 1
588.3.p.b 2 63.t odd 6 1
588.3.p.c 2 63.g even 3 1
588.3.p.c 2 63.h even 3 1
588.3.p.c 2 63.j odd 6 1
588.3.p.c 2 63.n odd 6 1
768.3.h.a 2 144.w odd 12 2
768.3.h.a 2 144.x even 12 2
768.3.h.b 2 144.u even 12 2
768.3.h.b 2 144.v odd 12 2
1200.3.c.c 2 180.v odd 12 2
1200.3.c.c 2 180.x even 12 2
1200.3.l.b 1 180.n even 6 1
1200.3.l.b 1 180.p odd 6 1
1296.3.q.b 2 4.b odd 2 1
1296.3.q.b 2 12.b even 2 1
1296.3.q.b 2 36.f odd 6 1
1296.3.q.b 2 36.h even 6 1
1452.3.e.b 1 99.g even 6 1
1452.3.e.b 1 99.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(324, [\chi])\):

\( T_{5} \)
\( T_{7}^{2} + 2 T_{7} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( 4 + 2 T + T^{2} \)
$11$ \( T^{2} \)
$13$ \( 484 - 22 T + T^{2} \)
$17$ \( T^{2} \)
$19$ \( ( -26 + T )^{2} \)
$23$ \( T^{2} \)
$29$ \( T^{2} \)
$31$ \( 2116 - 46 T + T^{2} \)
$37$ \( ( -26 + T )^{2} \)
$41$ \( T^{2} \)
$43$ \( 484 - 22 T + T^{2} \)
$47$ \( T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( 5476 + 74 T + T^{2} \)
$67$ \( 14884 + 122 T + T^{2} \)
$71$ \( T^{2} \)
$73$ \( ( 46 + T )^{2} \)
$79$ \( 20164 - 142 T + T^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( 4 + 2 T + T^{2} \)
show more
show less