Properties

Label 324.2.p
Level $324$
Weight $2$
Character orbit 324.p
Rep. character $\chi_{324}(11,\cdot)$
Character field $\Q(\zeta_{54})$
Dimension $936$
Newform subspaces $1$
Sturm bound $108$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 324.p (of order \(54\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 324 \)
Character field: \(\Q(\zeta_{54})\)
Newform subspaces: \( 1 \)
Sturm bound: \(108\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(324, [\chi])\).

Total New Old
Modular forms 1008 1008 0
Cusp forms 936 936 0
Eisenstein series 72 72 0

Trace form

\( 936 q - 18 q^{2} - 18 q^{4} - 36 q^{5} - 18 q^{6} - 18 q^{8} - 36 q^{9} - 18 q^{10} - 18 q^{12} - 36 q^{13} - 18 q^{14} - 18 q^{16} - 36 q^{17} - 18 q^{18} - 18 q^{20} - 36 q^{21} - 18 q^{22} - 18 q^{24}+ \cdots + 153 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(324, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
324.2.p.a 324.p 324.p $936$ $2.587$ None 324.2.p.a \(-18\) \(0\) \(-36\) \(0\) $\mathrm{SU}(2)[C_{54}]$