Properties

Label 324.2.l.a.179.12
Level $324$
Weight $2$
Character 324.179
Analytic conductor $2.587$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,2,Mod(35,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 324.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.58715302549\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 179.12
Character \(\chi\) \(=\) 324.179
Dual form 324.2.l.a.143.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.818446 + 1.15332i) q^{2} +(-0.660291 + 1.88786i) q^{4} +(-0.532084 - 0.0938207i) q^{5} +(1.18790 + 1.41568i) q^{7} +(-2.71772 + 0.783586i) q^{8} +(-0.327277 - 0.690450i) q^{10} +(0.867520 + 4.91995i) q^{11} +(-1.52553 + 0.555249i) q^{13} +(-0.660503 + 2.52869i) q^{14} +(-3.12803 - 2.49307i) q^{16} +(0.683630 + 0.394694i) q^{17} +(2.86200 - 1.65238i) q^{19} +(0.528451 - 0.942551i) q^{20} +(-4.96425 + 5.02724i) q^{22} +(3.15234 + 2.64512i) q^{23} +(-4.42415 - 1.61026i) q^{25} +(-1.88895 - 1.30499i) q^{26} +(-3.45697 + 1.30783i) q^{28} +(3.24174 - 8.90660i) q^{29} +(-3.70462 + 4.41499i) q^{31} +(0.315184 - 5.64807i) q^{32} +(0.104306 + 1.11148i) q^{34} +(-0.499242 - 0.864712i) q^{35} +(5.53013 - 9.57846i) q^{37} +(4.24812 + 1.94842i) q^{38} +(1.51957 - 0.161955i) q^{40} +(2.62821 + 7.22095i) q^{41} +(7.88044 - 1.38953i) q^{43} +(-9.86099 - 1.61084i) q^{44} +(-0.470654 + 5.80054i) q^{46} +(2.39693 - 2.01126i) q^{47} +(0.622483 - 3.53027i) q^{49} +(-1.76379 - 6.42037i) q^{50} +(-0.0409360 - 3.24662i) q^{52} +0.933485i q^{53} -2.69922i q^{55} +(-4.33769 - 2.91661i) q^{56} +(12.9253 - 3.55082i) q^{58} +(-0.461077 + 2.61490i) q^{59} +(-4.29949 + 3.60770i) q^{61} +(-8.12393 - 0.659173i) q^{62} +(6.77199 - 4.25913i) q^{64} +(0.863806 - 0.152312i) q^{65} +(-2.15593 - 5.92336i) q^{67} +(-1.19652 + 1.02998i) q^{68} +(0.588687 - 1.28351i) q^{70} +(4.53203 - 7.84970i) q^{71} +(5.77108 + 9.99580i) q^{73} +(15.5731 - 1.46145i) q^{74} +(1.22970 + 6.49411i) q^{76} +(-5.93457 + 7.07254i) q^{77} +(0.275423 - 0.756719i) q^{79} +(1.43047 + 1.62000i) q^{80} +(-6.17702 + 8.94113i) q^{82} +(-15.0247 - 5.46855i) q^{83} +(-0.326718 - 0.274149i) q^{85} +(8.05230 + 7.95141i) q^{86} +(-6.21288 - 12.6913i) q^{88} +(5.41508 - 3.12640i) q^{89} +(-2.59824 - 1.50009i) q^{91} +(-7.07508 + 4.20462i) q^{92} +(4.28138 + 1.11831i) q^{94} +(-1.67785 + 0.610689i) q^{95} +(1.63933 + 9.29708i) q^{97} +(4.58100 - 2.17142i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 6 q^{2} - 6 q^{4} + 12 q^{5} + 9 q^{8} - 3 q^{10} - 12 q^{13} + 21 q^{14} - 6 q^{16} + 18 q^{17} + 27 q^{20} - 6 q^{22} - 12 q^{25} - 12 q^{28} + 24 q^{29} - 24 q^{32} - 12 q^{34} - 6 q^{37} - 18 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.818446 + 1.15332i 0.578729 + 0.815520i
\(3\) 0 0
\(4\) −0.660291 + 1.88786i −0.330145 + 0.943930i
\(5\) −0.532084 0.0938207i −0.237955 0.0419579i 0.0533987 0.998573i \(-0.482995\pi\)
−0.291354 + 0.956615i \(0.594106\pi\)
\(6\) 0 0
\(7\) 1.18790 + 1.41568i 0.448984 + 0.535078i 0.942299 0.334773i \(-0.108659\pi\)
−0.493315 + 0.869851i \(0.664215\pi\)
\(8\) −2.71772 + 0.783586i −0.960859 + 0.277039i
\(9\) 0 0
\(10\) −0.327277 0.690450i −0.103494 0.218339i
\(11\) 0.867520 + 4.91995i 0.261567 + 1.48342i 0.778635 + 0.627477i \(0.215912\pi\)
−0.517068 + 0.855944i \(0.672977\pi\)
\(12\) 0 0
\(13\) −1.52553 + 0.555249i −0.423107 + 0.153998i −0.544793 0.838570i \(-0.683392\pi\)
0.121687 + 0.992569i \(0.461170\pi\)
\(14\) −0.660503 + 2.52869i −0.176527 + 0.675821i
\(15\) 0 0
\(16\) −3.12803 2.49307i −0.782008 0.623268i
\(17\) 0.683630 + 0.394694i 0.165805 + 0.0957273i 0.580606 0.814185i \(-0.302816\pi\)
−0.414802 + 0.909912i \(0.636149\pi\)
\(18\) 0 0
\(19\) 2.86200 1.65238i 0.656589 0.379082i −0.134387 0.990929i \(-0.542907\pi\)
0.790976 + 0.611847i \(0.209573\pi\)
\(20\) 0.528451 0.942551i 0.118165 0.210761i
\(21\) 0 0
\(22\) −4.96425 + 5.02724i −1.05838 + 1.07181i
\(23\) 3.15234 + 2.64512i 0.657307 + 0.551546i 0.909278 0.416188i \(-0.136634\pi\)
−0.251971 + 0.967735i \(0.581079\pi\)
\(24\) 0 0
\(25\) −4.42415 1.61026i −0.884830 0.322052i
\(26\) −1.88895 1.30499i −0.370453 0.255929i
\(27\) 0 0
\(28\) −3.45697 + 1.30783i −0.653306 + 0.247156i
\(29\) 3.24174 8.90660i 0.601976 1.65391i −0.145290 0.989389i \(-0.546412\pi\)
0.747266 0.664525i \(-0.231366\pi\)
\(30\) 0 0
\(31\) −3.70462 + 4.41499i −0.665369 + 0.792956i −0.988146 0.153519i \(-0.950939\pi\)
0.322777 + 0.946475i \(0.395384\pi\)
\(32\) 0.315184 5.64807i 0.0557172 0.998447i
\(33\) 0 0
\(34\) 0.104306 + 1.11148i 0.0178884 + 0.190617i
\(35\) −0.499242 0.864712i −0.0843873 0.146163i
\(36\) 0 0
\(37\) 5.53013 9.57846i 0.909147 1.57469i 0.0938963 0.995582i \(-0.470068\pi\)
0.815251 0.579108i \(-0.196599\pi\)
\(38\) 4.24812 + 1.94842i 0.689136 + 0.316076i
\(39\) 0 0
\(40\) 1.51957 0.161955i 0.240265 0.0256074i
\(41\) 2.62821 + 7.22095i 0.410458 + 1.12772i 0.956948 + 0.290258i \(0.0937412\pi\)
−0.546491 + 0.837465i \(0.684037\pi\)
\(42\) 0 0
\(43\) 7.88044 1.38953i 1.20176 0.211902i 0.463299 0.886202i \(-0.346666\pi\)
0.738458 + 0.674300i \(0.235555\pi\)
\(44\) −9.86099 1.61084i −1.48660 0.242844i
\(45\) 0 0
\(46\) −0.470654 + 5.80054i −0.0693942 + 0.855243i
\(47\) 2.39693 2.01126i 0.349628 0.293372i −0.451013 0.892517i \(-0.648937\pi\)
0.800640 + 0.599145i \(0.204493\pi\)
\(48\) 0 0
\(49\) 0.622483 3.53027i 0.0889261 0.504325i
\(50\) −1.76379 6.42037i −0.249437 0.907978i
\(51\) 0 0
\(52\) −0.0409360 3.24662i −0.00567681 0.450225i
\(53\) 0.933485i 0.128224i 0.997943 + 0.0641120i \(0.0204215\pi\)
−0.997943 + 0.0641120i \(0.979579\pi\)
\(54\) 0 0
\(55\) 2.69922i 0.363962i
\(56\) −4.33769 2.91661i −0.579648 0.389748i
\(57\) 0 0
\(58\) 12.9253 3.55082i 1.69718 0.466245i
\(59\) −0.461077 + 2.61490i −0.0600271 + 0.340431i −1.00000 0.000819421i \(-0.999739\pi\)
0.939973 + 0.341250i \(0.110850\pi\)
\(60\) 0 0
\(61\) −4.29949 + 3.60770i −0.550493 + 0.461919i −0.875108 0.483928i \(-0.839210\pi\)
0.324615 + 0.945846i \(0.394765\pi\)
\(62\) −8.12393 0.659173i −1.03174 0.0837151i
\(63\) 0 0
\(64\) 6.77199 4.25913i 0.846498 0.532392i
\(65\) 0.863806 0.152312i 0.107142 0.0188920i
\(66\) 0 0
\(67\) −2.15593 5.92336i −0.263388 0.723653i −0.998933 0.0461775i \(-0.985296\pi\)
0.735545 0.677476i \(-0.236926\pi\)
\(68\) −1.19652 + 1.02998i −0.145100 + 0.124904i
\(69\) 0 0
\(70\) 0.588687 1.28351i 0.0703615 0.153408i
\(71\) 4.53203 7.84970i 0.537853 0.931588i −0.461167 0.887313i \(-0.652569\pi\)
0.999019 0.0442746i \(-0.0140977\pi\)
\(72\) 0 0
\(73\) 5.77108 + 9.99580i 0.675454 + 1.16992i 0.976336 + 0.216259i \(0.0693855\pi\)
−0.300882 + 0.953661i \(0.597281\pi\)
\(74\) 15.5731 1.46145i 1.81034 0.169891i
\(75\) 0 0
\(76\) 1.22970 + 6.49411i 0.141057 + 0.744926i
\(77\) −5.93457 + 7.07254i −0.676307 + 0.805991i
\(78\) 0 0
\(79\) 0.275423 0.756719i 0.0309875 0.0851375i −0.923234 0.384238i \(-0.874464\pi\)
0.954222 + 0.299100i \(0.0966865\pi\)
\(80\) 1.43047 + 1.62000i 0.159932 + 0.181121i
\(81\) 0 0
\(82\) −6.17702 + 8.94113i −0.682137 + 0.987383i
\(83\) −15.0247 5.46855i −1.64918 0.600252i −0.660570 0.750765i \(-0.729685\pi\)
−0.988608 + 0.150513i \(0.951907\pi\)
\(84\) 0 0
\(85\) −0.326718 0.274149i −0.0354375 0.0297356i
\(86\) 8.05230 + 7.95141i 0.868302 + 0.857422i
\(87\) 0 0
\(88\) −6.21288 12.6913i −0.662295 1.35289i
\(89\) 5.41508 3.12640i 0.573997 0.331398i −0.184747 0.982786i \(-0.559147\pi\)
0.758744 + 0.651389i \(0.225813\pi\)
\(90\) 0 0
\(91\) −2.59824 1.50009i −0.272369 0.157252i
\(92\) −7.07508 + 4.20462i −0.737628 + 0.438362i
\(93\) 0 0
\(94\) 4.28138 + 1.11831i 0.441591 + 0.115345i
\(95\) −1.67785 + 0.610689i −0.172144 + 0.0626553i
\(96\) 0 0
\(97\) 1.63933 + 9.29708i 0.166448 + 0.943975i 0.947559 + 0.319582i \(0.103543\pi\)
−0.781110 + 0.624393i \(0.785346\pi\)
\(98\) 4.58100 2.17142i 0.462751 0.219346i
\(99\) 0 0
\(100\) 5.96117 7.28894i 0.596117 0.728894i
\(101\) −6.31653 7.52775i −0.628518 0.749039i 0.353992 0.935249i \(-0.384824\pi\)
−0.982510 + 0.186210i \(0.940380\pi\)
\(102\) 0 0
\(103\) 6.85056 + 1.20794i 0.675005 + 0.119022i 0.500635 0.865658i \(-0.333100\pi\)
0.174370 + 0.984680i \(0.444211\pi\)
\(104\) 3.71089 2.70440i 0.363882 0.265188i
\(105\) 0 0
\(106\) −1.07661 + 0.764008i −0.104569 + 0.0742070i
\(107\) 2.51779 0.243404 0.121702 0.992567i \(-0.461165\pi\)
0.121702 + 0.992567i \(0.461165\pi\)
\(108\) 0 0
\(109\) 5.76924 0.552593 0.276296 0.961072i \(-0.410893\pi\)
0.276296 + 0.961072i \(0.410893\pi\)
\(110\) 3.11306 2.20916i 0.296819 0.210636i
\(111\) 0 0
\(112\) −0.186384 7.38983i −0.0176116 0.698273i
\(113\) −4.36693 0.770007i −0.410806 0.0724362i −0.0355738 0.999367i \(-0.511326\pi\)
−0.375232 + 0.926931i \(0.622437\pi\)
\(114\) 0 0
\(115\) −1.42914 1.70318i −0.133268 0.158823i
\(116\) 14.6739 + 12.0009i 1.36244 + 1.11426i
\(117\) 0 0
\(118\) −3.39318 + 1.60838i −0.312367 + 0.148064i
\(119\) 0.253322 + 1.43666i 0.0232220 + 0.131698i
\(120\) 0 0
\(121\) −13.1167 + 4.77409i −1.19243 + 0.434008i
\(122\) −7.67973 2.00598i −0.695290 0.181612i
\(123\) 0 0
\(124\) −5.88876 9.90898i −0.528826 0.889853i
\(125\) 4.54248 + 2.62260i 0.406292 + 0.234573i
\(126\) 0 0
\(127\) −3.47118 + 2.00409i −0.308018 + 0.177834i −0.646039 0.763304i \(-0.723576\pi\)
0.338021 + 0.941138i \(0.390242\pi\)
\(128\) 10.4546 + 4.32439i 0.924069 + 0.382226i
\(129\) 0 0
\(130\) 0.882643 + 0.871584i 0.0774129 + 0.0764430i
\(131\) −1.84218 1.54577i −0.160952 0.135055i 0.558755 0.829333i \(-0.311279\pi\)
−0.719707 + 0.694278i \(0.755724\pi\)
\(132\) 0 0
\(133\) 5.73902 + 2.08883i 0.497636 + 0.181125i
\(134\) 5.06701 7.33442i 0.437723 0.633598i
\(135\) 0 0
\(136\) −2.16719 0.536984i −0.185835 0.0460460i
\(137\) −1.46523 + 4.02570i −0.125183 + 0.343939i −0.986415 0.164275i \(-0.947472\pi\)
0.861231 + 0.508213i \(0.169694\pi\)
\(138\) 0 0
\(139\) −11.4619 + 13.6598i −0.972187 + 1.15861i 0.0151364 + 0.999885i \(0.495182\pi\)
−0.987323 + 0.158722i \(0.949263\pi\)
\(140\) 1.96210 0.371537i 0.165828 0.0314006i
\(141\) 0 0
\(142\) 12.7624 1.19769i 1.07100 0.100508i
\(143\) −4.05523 7.02386i −0.339115 0.587365i
\(144\) 0 0
\(145\) −2.56050 + 4.43492i −0.212638 + 0.368300i
\(146\) −6.80503 + 14.8369i −0.563188 + 1.22791i
\(147\) 0 0
\(148\) 14.4313 + 16.7647i 1.18625 + 1.37805i
\(149\) −4.08657 11.2278i −0.334785 0.919814i −0.986848 0.161650i \(-0.948319\pi\)
0.652063 0.758165i \(-0.273904\pi\)
\(150\) 0 0
\(151\) −18.0852 + 3.18891i −1.47175 + 0.259510i −0.851277 0.524716i \(-0.824171\pi\)
−0.620475 + 0.784226i \(0.713060\pi\)
\(152\) −6.48334 + 6.73333i −0.525868 + 0.546145i
\(153\) 0 0
\(154\) −13.0140 1.05595i −1.04870 0.0850912i
\(155\) 2.38539 2.00158i 0.191599 0.160770i
\(156\) 0 0
\(157\) 3.60079 20.4211i 0.287374 1.62978i −0.409306 0.912397i \(-0.634229\pi\)
0.696680 0.717382i \(-0.254660\pi\)
\(158\) 1.09816 0.301683i 0.0873647 0.0240006i
\(159\) 0 0
\(160\) −0.697610 + 2.97567i −0.0551509 + 0.235248i
\(161\) 7.60485i 0.599346i
\(162\) 0 0
\(163\) 2.03697i 0.159548i 0.996813 + 0.0797739i \(0.0254198\pi\)
−0.996813 + 0.0797739i \(0.974580\pi\)
\(164\) −15.3675 + 0.193767i −1.20000 + 0.0151306i
\(165\) 0 0
\(166\) −5.98994 21.8040i −0.464910 1.69232i
\(167\) −1.07213 + 6.08034i −0.0829637 + 0.470511i 0.914814 + 0.403876i \(0.132337\pi\)
−0.997777 + 0.0666346i \(0.978774\pi\)
\(168\) 0 0
\(169\) −7.93963 + 6.66214i −0.610741 + 0.512472i
\(170\) 0.0487801 0.601186i 0.00374126 0.0461089i
\(171\) 0 0
\(172\) −2.58014 + 15.7947i −0.196734 + 1.20433i
\(173\) −14.6443 + 2.58218i −1.11338 + 0.196320i −0.699934 0.714207i \(-0.746787\pi\)
−0.413450 + 0.910527i \(0.635676\pi\)
\(174\) 0 0
\(175\) −2.97583 8.17603i −0.224952 0.618050i
\(176\) 9.55217 17.5526i 0.720022 1.32307i
\(177\) 0 0
\(178\) 8.03769 + 3.68653i 0.602450 + 0.276317i
\(179\) −2.80761 + 4.86292i −0.209850 + 0.363472i −0.951667 0.307131i \(-0.900631\pi\)
0.741817 + 0.670603i \(0.233964\pi\)
\(180\) 0 0
\(181\) −3.04279 5.27027i −0.226169 0.391736i 0.730500 0.682912i \(-0.239287\pi\)
−0.956670 + 0.291176i \(0.905954\pi\)
\(182\) −0.396432 4.22434i −0.0293855 0.313129i
\(183\) 0 0
\(184\) −10.6398 4.71857i −0.784379 0.347858i
\(185\) −3.84115 + 4.57770i −0.282407 + 0.336560i
\(186\) 0 0
\(187\) −1.34881 + 3.70583i −0.0986349 + 0.270997i
\(188\) 2.21431 + 5.85308i 0.161495 + 0.426880i
\(189\) 0 0
\(190\) −2.07755 1.43528i −0.150721 0.104126i
\(191\) −4.55974 1.65961i −0.329931 0.120085i 0.171743 0.985142i \(-0.445060\pi\)
−0.501674 + 0.865057i \(0.667282\pi\)
\(192\) 0 0
\(193\) 4.04332 + 3.39275i 0.291044 + 0.244215i 0.776605 0.629988i \(-0.216940\pi\)
−0.485561 + 0.874203i \(0.661385\pi\)
\(194\) −9.38080 + 9.49982i −0.673502 + 0.682048i
\(195\) 0 0
\(196\) 6.25364 + 3.50617i 0.446689 + 0.250441i
\(197\) −2.31117 + 1.33435i −0.164664 + 0.0950687i −0.580067 0.814569i \(-0.696974\pi\)
0.415403 + 0.909637i \(0.363640\pi\)
\(198\) 0 0
\(199\) −9.82614 5.67313i −0.696557 0.402157i 0.109507 0.993986i \(-0.465073\pi\)
−0.806064 + 0.591829i \(0.798406\pi\)
\(200\) 13.2854 + 0.909529i 0.939418 + 0.0643134i
\(201\) 0 0
\(202\) 3.51216 13.4460i 0.247114 0.946060i
\(203\) 16.4598 5.99087i 1.15525 0.420477i
\(204\) 0 0
\(205\) −0.720954 4.08873i −0.0503536 0.285570i
\(206\) 4.21368 + 8.88951i 0.293581 + 0.619362i
\(207\) 0 0
\(208\) 6.15619 + 2.06643i 0.426855 + 0.143281i
\(209\) 10.6125 + 12.6474i 0.734080 + 0.874842i
\(210\) 0 0
\(211\) 4.51015 + 0.795260i 0.310491 + 0.0547480i 0.326723 0.945120i \(-0.394056\pi\)
−0.0162314 + 0.999868i \(0.505167\pi\)
\(212\) −1.76229 0.616372i −0.121035 0.0423326i
\(213\) 0 0
\(214\) 2.06067 + 2.90381i 0.140865 + 0.198501i
\(215\) −4.32342 −0.294855
\(216\) 0 0
\(217\) −10.6509 −0.723033
\(218\) 4.72181 + 6.65378i 0.319802 + 0.450651i
\(219\) 0 0
\(220\) 5.09574 + 1.78227i 0.343555 + 0.120161i
\(221\) −1.26205 0.222534i −0.0848949 0.0149693i
\(222\) 0 0
\(223\) 11.8712 + 14.1475i 0.794953 + 0.947388i 0.999505 0.0314676i \(-0.0100181\pi\)
−0.204552 + 0.978856i \(0.565574\pi\)
\(224\) 8.37028 6.26314i 0.559263 0.418473i
\(225\) 0 0
\(226\) −2.68603 5.66667i −0.178672 0.376941i
\(227\) 2.30342 + 13.0633i 0.152883 + 0.867043i 0.960696 + 0.277604i \(0.0895402\pi\)
−0.807813 + 0.589439i \(0.799349\pi\)
\(228\) 0 0
\(229\) 3.24361 1.18058i 0.214344 0.0780147i −0.232617 0.972569i \(-0.574729\pi\)
0.446960 + 0.894554i \(0.352507\pi\)
\(230\) 0.794639 3.04222i 0.0523969 0.200598i
\(231\) 0 0
\(232\) −1.83104 + 26.7458i −0.120214 + 1.75595i
\(233\) 14.1574 + 8.17379i 0.927483 + 0.535483i 0.886015 0.463657i \(-0.153463\pi\)
0.0414686 + 0.999140i \(0.486796\pi\)
\(234\) 0 0
\(235\) −1.46406 + 0.845277i −0.0955050 + 0.0551398i
\(236\) −4.63212 2.59704i −0.301525 0.169053i
\(237\) 0 0
\(238\) −1.44960 + 1.46799i −0.0939634 + 0.0951557i
\(239\) −0.797855 0.669480i −0.0516089 0.0433050i 0.616618 0.787262i \(-0.288502\pi\)
−0.668227 + 0.743957i \(0.732947\pi\)
\(240\) 0 0
\(241\) 15.4743 + 5.63219i 0.996788 + 0.362801i 0.788345 0.615233i \(-0.210938\pi\)
0.208443 + 0.978035i \(0.433160\pi\)
\(242\) −16.2414 11.2204i −1.04403 0.721275i
\(243\) 0 0
\(244\) −3.97192 10.4990i −0.254276 0.672128i
\(245\) −0.662426 + 1.82000i −0.0423208 + 0.116276i
\(246\) 0 0
\(247\) −3.44860 + 4.10988i −0.219429 + 0.261506i
\(248\) 6.60858 14.9016i 0.419645 0.946252i
\(249\) 0 0
\(250\) 0.693078 + 7.38539i 0.0438341 + 0.467093i
\(251\) 6.70961 + 11.6214i 0.423507 + 0.733535i 0.996280 0.0861790i \(-0.0274657\pi\)
−0.572773 + 0.819714i \(0.694132\pi\)
\(252\) 0 0
\(253\) −10.2792 + 17.8040i −0.646245 + 1.11933i
\(254\) −5.15233 2.36314i −0.323286 0.148277i
\(255\) 0 0
\(256\) 3.56916 + 15.5968i 0.223073 + 0.974802i
\(257\) −0.987706 2.71370i −0.0616114 0.169276i 0.905068 0.425268i \(-0.139820\pi\)
−0.966679 + 0.255992i \(0.917598\pi\)
\(258\) 0 0
\(259\) 20.1293 3.54934i 1.25077 0.220545i
\(260\) −0.282819 + 1.73131i −0.0175397 + 0.107372i
\(261\) 0 0
\(262\) 0.275044 3.38975i 0.0169922 0.209420i
\(263\) 10.7439 9.01519i 0.662496 0.555900i −0.248338 0.968674i \(-0.579884\pi\)
0.910834 + 0.412773i \(0.135440\pi\)
\(264\) 0 0
\(265\) 0.0875803 0.496692i 0.00538001 0.0305116i
\(266\) 2.28799 + 8.32852i 0.140286 + 0.510654i
\(267\) 0 0
\(268\) 12.6060 0.158947i 0.770035 0.00970923i
\(269\) 20.1185i 1.22665i −0.789831 0.613325i \(-0.789832\pi\)
0.789831 0.613325i \(-0.210168\pi\)
\(270\) 0 0
\(271\) 19.1968i 1.16612i −0.812428 0.583062i \(-0.801855\pi\)
0.812428 0.583062i \(-0.198145\pi\)
\(272\) −1.15441 2.93895i −0.0699967 0.178200i
\(273\) 0 0
\(274\) −5.84213 + 1.60493i −0.352936 + 0.0969577i
\(275\) 4.08436 23.1635i 0.246296 1.39681i
\(276\) 0 0
\(277\) 20.3674 17.0903i 1.22376 1.02686i 0.225141 0.974326i \(-0.427716\pi\)
0.998619 0.0525311i \(-0.0167289\pi\)
\(278\) −25.1350 2.03945i −1.50750 0.122318i
\(279\) 0 0
\(280\) 2.03437 + 1.95885i 0.121577 + 0.117063i
\(281\) −2.17919 + 0.384249i −0.129999 + 0.0229224i −0.238269 0.971199i \(-0.576580\pi\)
0.108270 + 0.994122i \(0.465469\pi\)
\(282\) 0 0
\(283\) −8.19432 22.5137i −0.487102 1.33830i −0.903293 0.429024i \(-0.858858\pi\)
0.416192 0.909277i \(-0.363365\pi\)
\(284\) 11.8267 + 13.7389i 0.701784 + 0.815255i
\(285\) 0 0
\(286\) 4.78177 10.4256i 0.282752 0.616480i
\(287\) −7.10053 + 12.2985i −0.419131 + 0.725957i
\(288\) 0 0
\(289\) −8.18843 14.1828i −0.481673 0.834281i
\(290\) −7.21051 + 0.676667i −0.423416 + 0.0397353i
\(291\) 0 0
\(292\) −22.6813 + 4.29485i −1.32732 + 0.251337i
\(293\) 17.5281 20.8891i 1.02400 1.22036i 0.0488514 0.998806i \(-0.484444\pi\)
0.975149 0.221550i \(-0.0711116\pi\)
\(294\) 0 0
\(295\) 0.490663 1.34809i 0.0285675 0.0784886i
\(296\) −7.52378 + 30.3649i −0.437311 + 1.76492i
\(297\) 0 0
\(298\) 9.60456 13.9024i 0.556377 0.805347i
\(299\) −6.27769 2.28489i −0.363048 0.132139i
\(300\) 0 0
\(301\) 11.3283 + 9.50559i 0.652953 + 0.547893i
\(302\) −18.4796 18.2481i −1.06338 1.05006i
\(303\) 0 0
\(304\) −13.0719 1.96649i −0.749727 0.112786i
\(305\) 2.62617 1.51622i 0.150374 0.0868184i
\(306\) 0 0
\(307\) 21.0055 + 12.1276i 1.19885 + 0.692156i 0.960299 0.278974i \(-0.0899944\pi\)
0.238551 + 0.971130i \(0.423328\pi\)
\(308\) −9.43343 15.8736i −0.537519 0.904480i
\(309\) 0 0
\(310\) 4.26077 + 1.11293i 0.241995 + 0.0632101i
\(311\) −18.0900 + 6.58424i −1.02579 + 0.373358i −0.799477 0.600696i \(-0.794890\pi\)
−0.226315 + 0.974054i \(0.572668\pi\)
\(312\) 0 0
\(313\) −1.18433 6.71666i −0.0669422 0.379648i −0.999811 0.0194321i \(-0.993814\pi\)
0.932869 0.360216i \(-0.117297\pi\)
\(314\) 26.4991 12.5607i 1.49543 0.708841i
\(315\) 0 0
\(316\) 1.24672 + 1.01961i 0.0701335 + 0.0573578i
\(317\) 7.41728 + 8.83957i 0.416596 + 0.496480i 0.933006 0.359862i \(-0.117176\pi\)
−0.516409 + 0.856342i \(0.672732\pi\)
\(318\) 0 0
\(319\) 46.6323 + 8.22253i 2.61091 + 0.460373i
\(320\) −4.00286 + 1.63086i −0.223767 + 0.0911680i
\(321\) 0 0
\(322\) −8.77082 + 6.22416i −0.488779 + 0.346859i
\(323\) 2.60873 0.145154
\(324\) 0 0
\(325\) 7.64329 0.423973
\(326\) −2.34928 + 1.66715i −0.130114 + 0.0923349i
\(327\) 0 0
\(328\) −12.8010 17.5651i −0.706816 0.969870i
\(329\) 5.69461 + 1.00411i 0.313954 + 0.0553586i
\(330\) 0 0
\(331\) −13.2173 15.7517i −0.726487 0.865793i 0.268757 0.963208i \(-0.413387\pi\)
−0.995244 + 0.0974147i \(0.968943\pi\)
\(332\) 20.2446 24.7537i 1.11106 1.35854i
\(333\) 0 0
\(334\) −7.89005 + 3.73993i −0.431724 + 0.204640i
\(335\) 0.591400 + 3.35399i 0.0323116 + 0.183248i
\(336\) 0 0
\(337\) −10.0326 + 3.65156i −0.546509 + 0.198913i −0.600495 0.799629i \(-0.705030\pi\)
0.0539858 + 0.998542i \(0.482807\pi\)
\(338\) −14.1817 3.70432i −0.771384 0.201489i
\(339\) 0 0
\(340\) 0.733284 0.435780i 0.0397679 0.0236335i
\(341\) −24.9354 14.3964i −1.35033 0.779611i
\(342\) 0 0
\(343\) 16.9404 9.78053i 0.914694 0.528099i
\(344\) −20.3280 + 9.95137i −1.09601 + 0.536542i
\(345\) 0 0
\(346\) −14.9636 14.7762i −0.804451 0.794371i
\(347\) 0.957389 + 0.803344i 0.0513953 + 0.0431258i 0.668123 0.744050i \(-0.267098\pi\)
−0.616728 + 0.787176i \(0.711542\pi\)
\(348\) 0 0
\(349\) −18.0738 6.57834i −0.967470 0.352130i −0.190514 0.981685i \(-0.561015\pi\)
−0.776957 + 0.629554i \(0.783238\pi\)
\(350\) 6.99401 10.1237i 0.373846 0.541136i
\(351\) 0 0
\(352\) 28.0616 3.34912i 1.49569 0.178509i
\(353\) 2.12947 5.85067i 0.113340 0.311400i −0.870034 0.492992i \(-0.835903\pi\)
0.983374 + 0.181593i \(0.0581253\pi\)
\(354\) 0 0
\(355\) −3.14788 + 3.75150i −0.167072 + 0.199109i
\(356\) 2.32667 + 12.2872i 0.123313 + 0.651223i
\(357\) 0 0
\(358\) −7.90637 + 0.741970i −0.417865 + 0.0392143i
\(359\) −4.51666 7.82308i −0.238380 0.412886i 0.721870 0.692029i \(-0.243283\pi\)
−0.960250 + 0.279143i \(0.909950\pi\)
\(360\) 0 0
\(361\) −4.03929 + 6.99626i −0.212594 + 0.368224i
\(362\) 3.58794 7.82275i 0.188578 0.411155i
\(363\) 0 0
\(364\) 4.54756 3.91461i 0.238357 0.205181i
\(365\) −2.13288 5.86005i −0.111640 0.306729i
\(366\) 0 0
\(367\) −7.28951 + 1.28534i −0.380509 + 0.0670941i −0.360632 0.932708i \(-0.617439\pi\)
−0.0198778 + 0.999802i \(0.506328\pi\)
\(368\) −3.26612 16.1330i −0.170258 0.840993i
\(369\) 0 0
\(370\) −8.42333 0.683467i −0.437908 0.0355318i
\(371\) −1.32152 + 1.10889i −0.0686099 + 0.0575705i
\(372\) 0 0
\(373\) 0.532880 3.02211i 0.0275915 0.156479i −0.967899 0.251339i \(-0.919129\pi\)
0.995491 + 0.0948598i \(0.0302403\pi\)
\(374\) −5.37793 + 1.47741i −0.278086 + 0.0763952i
\(375\) 0 0
\(376\) −4.93817 + 7.34423i −0.254667 + 0.378750i
\(377\) 15.3873i 0.792486i
\(378\) 0 0
\(379\) 30.1832i 1.55041i 0.631712 + 0.775203i \(0.282353\pi\)
−0.631712 + 0.775203i \(0.717647\pi\)
\(380\) −0.0450234 3.57078i −0.00230965 0.183177i
\(381\) 0 0
\(382\) −1.81784 6.61714i −0.0930090 0.338562i
\(383\) −3.37652 + 19.1492i −0.172532 + 0.978479i 0.768422 + 0.639944i \(0.221042\pi\)
−0.940954 + 0.338535i \(0.890069\pi\)
\(384\) 0 0
\(385\) 3.82124 3.20640i 0.194748 0.163413i
\(386\) −0.603681 + 7.44002i −0.0307266 + 0.378687i
\(387\) 0 0
\(388\) −18.6340 3.04396i −0.945999 0.154534i
\(389\) 20.0904 3.54247i 1.01862 0.179610i 0.360688 0.932687i \(-0.382542\pi\)
0.657933 + 0.753076i \(0.271431\pi\)
\(390\) 0 0
\(391\) 1.11102 + 3.05249i 0.0561865 + 0.154371i
\(392\) 1.07454 + 10.0821i 0.0542725 + 0.509221i
\(393\) 0 0
\(394\) −3.43050 1.57342i −0.172826 0.0792676i
\(395\) −0.217544 + 0.376797i −0.0109458 + 0.0189587i
\(396\) 0 0
\(397\) −8.78858 15.2223i −0.441086 0.763984i 0.556684 0.830724i \(-0.312073\pi\)
−0.997770 + 0.0667406i \(0.978740\pi\)
\(398\) −1.49924 15.9758i −0.0751504 0.800796i
\(399\) 0 0
\(400\) 9.82439 + 16.0667i 0.491220 + 0.803334i
\(401\) 15.5813 18.5691i 0.778094 0.927297i −0.220751 0.975330i \(-0.570851\pi\)
0.998846 + 0.0480334i \(0.0152954\pi\)
\(402\) 0 0
\(403\) 3.20010 8.79220i 0.159408 0.437971i
\(404\) 18.3821 6.95422i 0.914543 0.345986i
\(405\) 0 0
\(406\) 20.3808 + 14.0802i 1.01148 + 0.698788i
\(407\) 51.9231 + 18.8984i 2.57373 + 0.936761i
\(408\) 0 0
\(409\) 15.8369 + 13.2887i 0.783085 + 0.657086i 0.944024 0.329878i \(-0.107008\pi\)
−0.160939 + 0.986964i \(0.551452\pi\)
\(410\) 4.12555 4.17790i 0.203747 0.206332i
\(411\) 0 0
\(412\) −6.80378 + 12.1353i −0.335198 + 0.597863i
\(413\) −4.24958 + 2.45350i −0.209108 + 0.120729i
\(414\) 0 0
\(415\) 7.48135 + 4.31936i 0.367245 + 0.212029i
\(416\) 2.65526 + 8.79132i 0.130185 + 0.431030i
\(417\) 0 0
\(418\) −5.90081 + 22.5908i −0.288618 + 1.10495i
\(419\) −8.00463 + 2.91345i −0.391052 + 0.142331i −0.530060 0.847960i \(-0.677831\pi\)
0.139009 + 0.990291i \(0.455608\pi\)
\(420\) 0 0
\(421\) −2.47727 14.0493i −0.120735 0.684721i −0.983750 0.179543i \(-0.942538\pi\)
0.863015 0.505178i \(-0.168573\pi\)
\(422\) 2.77412 + 5.85252i 0.135042 + 0.284896i
\(423\) 0 0
\(424\) −0.731466 2.53695i −0.0355231 0.123205i
\(425\) −2.38892 2.84701i −0.115880 0.138100i
\(426\) 0 0
\(427\) −10.2147 1.80113i −0.494325 0.0871629i
\(428\) −1.66247 + 4.75323i −0.0803586 + 0.229756i
\(429\) 0 0
\(430\) −3.53849 4.98629i −0.170641 0.240460i
\(431\) −1.49028 −0.0717841 −0.0358920 0.999356i \(-0.511427\pi\)
−0.0358920 + 0.999356i \(0.511427\pi\)
\(432\) 0 0
\(433\) 2.83288 0.136139 0.0680697 0.997681i \(-0.478316\pi\)
0.0680697 + 0.997681i \(0.478316\pi\)
\(434\) −8.71723 12.2839i −0.418440 0.589648i
\(435\) 0 0
\(436\) −3.80938 + 10.8915i −0.182436 + 0.521609i
\(437\) 13.3927 + 2.36150i 0.640662 + 0.112966i
\(438\) 0 0
\(439\) −17.2666 20.5775i −0.824089 0.982112i 0.175908 0.984407i \(-0.443714\pi\)
−0.999997 + 0.00229504i \(0.999269\pi\)
\(440\) 2.11507 + 7.33571i 0.100832 + 0.349716i
\(441\) 0 0
\(442\) −0.776270 1.63768i −0.0369234 0.0778966i
\(443\) −4.52430 25.6586i −0.214956 1.21908i −0.880983 0.473148i \(-0.843118\pi\)
0.666027 0.745928i \(-0.267994\pi\)
\(444\) 0 0
\(445\) −3.17460 + 1.15546i −0.150490 + 0.0547740i
\(446\) −6.60069 + 25.2703i −0.312552 + 1.19658i
\(447\) 0 0
\(448\) 14.0740 + 4.52757i 0.664935 + 0.213908i
\(449\) −19.5356 11.2789i −0.921940 0.532282i −0.0376867 0.999290i \(-0.511999\pi\)
−0.884254 + 0.467007i \(0.845332\pi\)
\(450\) 0 0
\(451\) −33.2467 + 19.1950i −1.56553 + 0.903857i
\(452\) 4.33711 7.73572i 0.204000 0.363858i
\(453\) 0 0
\(454\) −13.1810 + 13.3482i −0.618613 + 0.626462i
\(455\) 1.24174 + 1.04194i 0.0582137 + 0.0488471i
\(456\) 0 0
\(457\) −13.9247 5.06817i −0.651370 0.237079i −0.00486385 0.999988i \(-0.501548\pi\)
−0.646506 + 0.762909i \(0.723770\pi\)
\(458\) 4.01630 + 2.77468i 0.187669 + 0.129652i
\(459\) 0 0
\(460\) 4.15902 1.57342i 0.193915 0.0733611i
\(461\) −10.5924 + 29.1025i −0.493339 + 1.35544i 0.404267 + 0.914641i \(0.367527\pi\)
−0.897606 + 0.440798i \(0.854696\pi\)
\(462\) 0 0
\(463\) 14.7162 17.5380i 0.683918 0.815062i −0.306687 0.951810i \(-0.599221\pi\)
0.990606 + 0.136748i \(0.0436651\pi\)
\(464\) −32.3451 + 19.7782i −1.50158 + 0.918182i
\(465\) 0 0
\(466\) 2.16010 + 23.0178i 0.100065 + 1.06628i
\(467\) 17.9763 + 31.1359i 0.831844 + 1.44080i 0.896575 + 0.442893i \(0.146048\pi\)
−0.0647308 + 0.997903i \(0.520619\pi\)
\(468\) 0 0
\(469\) 5.82458 10.0885i 0.268954 0.465842i
\(470\) −2.17313 0.996718i −0.100239 0.0459752i
\(471\) 0 0
\(472\) −0.795920 7.46785i −0.0366352 0.343736i
\(473\) 13.6729 + 37.5659i 0.628680 + 1.72728i
\(474\) 0 0
\(475\) −15.3227 + 2.70181i −0.703054 + 0.123967i
\(476\) −2.87948 0.470377i −0.131981 0.0215597i
\(477\) 0 0
\(478\) 0.119122 1.46811i 0.00544853 0.0671500i
\(479\) −15.6682 + 13.1472i −0.715899 + 0.600711i −0.926248 0.376916i \(-0.876985\pi\)
0.210348 + 0.977627i \(0.432540\pi\)
\(480\) 0 0
\(481\) −3.11797 + 17.6829i −0.142167 + 0.806269i
\(482\) 6.16918 + 22.4565i 0.280998 + 1.02286i
\(483\) 0 0
\(484\) −0.351972 27.9148i −0.0159987 1.26885i
\(485\) 5.10063i 0.231608i
\(486\) 0 0
\(487\) 17.0248i 0.771469i 0.922610 + 0.385734i \(0.126052\pi\)
−0.922610 + 0.385734i \(0.873948\pi\)
\(488\) 8.85786 13.1737i 0.400976 0.596347i
\(489\) 0 0
\(490\) −2.64120 + 0.725584i −0.119317 + 0.0327785i
\(491\) 2.46802 13.9968i 0.111380 0.631668i −0.877099 0.480310i \(-0.840524\pi\)
0.988479 0.151358i \(-0.0483647\pi\)
\(492\) 0 0
\(493\) 5.73153 4.80932i 0.258135 0.216601i
\(494\) −7.56250 0.613620i −0.340253 0.0276080i
\(495\) 0 0
\(496\) 22.5951 4.57435i 1.01455 0.205394i
\(497\) 16.4963 2.90874i 0.739960 0.130475i
\(498\) 0 0
\(499\) −2.45044 6.73253i −0.109697 0.301390i 0.872682 0.488288i \(-0.162379\pi\)
−0.982379 + 0.186899i \(0.940156\pi\)
\(500\) −7.95046 + 6.84388i −0.355555 + 0.306068i
\(501\) 0 0
\(502\) −7.91171 + 17.2498i −0.353117 + 0.769896i
\(503\) 2.15953 3.74041i 0.0962886 0.166777i −0.813857 0.581065i \(-0.802636\pi\)
0.910146 + 0.414288i \(0.135969\pi\)
\(504\) 0 0
\(505\) 2.65467 + 4.59802i 0.118131 + 0.204609i
\(506\) −28.9467 + 2.71649i −1.28684 + 0.120763i
\(507\) 0 0
\(508\) −1.49145 7.87639i −0.0661723 0.349458i
\(509\) −25.4341 + 30.3112i −1.12735 + 1.34352i −0.195488 + 0.980706i \(0.562629\pi\)
−0.931861 + 0.362816i \(0.881815\pi\)
\(510\) 0 0
\(511\) −7.29543 + 20.0440i −0.322731 + 0.886696i
\(512\) −15.0670 + 16.8816i −0.665872 + 0.746066i
\(513\) 0 0
\(514\) 2.32138 3.36016i 0.102392 0.148210i
\(515\) −3.53174 1.28545i −0.155627 0.0566436i
\(516\) 0 0
\(517\) 11.9747 + 10.0479i 0.526646 + 0.441908i
\(518\) 20.5683 + 20.3106i 0.903719 + 0.892396i
\(519\) 0 0
\(520\) −2.22823 + 1.09081i −0.0977144 + 0.0478351i
\(521\) −39.1169 + 22.5841i −1.71374 + 0.989429i −0.784360 + 0.620305i \(0.787009\pi\)
−0.929380 + 0.369123i \(0.879658\pi\)
\(522\) 0 0
\(523\) 2.99933 + 1.73166i 0.131152 + 0.0757204i 0.564140 0.825679i \(-0.309208\pi\)
−0.432989 + 0.901399i \(0.642541\pi\)
\(524\) 4.13457 2.45712i 0.180620 0.107340i
\(525\) 0 0
\(526\) 19.1907 + 5.01268i 0.836754 + 0.218563i
\(527\) −4.27516 + 1.55603i −0.186229 + 0.0677817i
\(528\) 0 0
\(529\) −1.05337 5.97395i −0.0457986 0.259737i
\(530\) 0.644525 0.305508i 0.0279964 0.0132704i
\(531\) 0 0
\(532\) −7.73284 + 9.45523i −0.335261 + 0.409936i
\(533\) −8.01885 9.55650i −0.347335 0.413938i
\(534\) 0 0
\(535\) −1.33967 0.236221i −0.0579192 0.0102127i
\(536\) 10.5007 + 14.4087i 0.453559 + 0.622360i
\(537\) 0 0
\(538\) 23.2031 16.4660i 1.00036 0.709898i
\(539\) 17.9088 0.771386
\(540\) 0 0
\(541\) −14.6206 −0.628588 −0.314294 0.949326i \(-0.601768\pi\)
−0.314294 + 0.949326i \(0.601768\pi\)
\(542\) 22.1401 15.7116i 0.950997 0.674869i
\(543\) 0 0
\(544\) 2.44473 3.73679i 0.104817 0.160213i
\(545\) −3.06972 0.541274i −0.131492 0.0231856i
\(546\) 0 0
\(547\) 8.74169 + 10.4179i 0.373768 + 0.445439i 0.919837 0.392301i \(-0.128321\pi\)
−0.546069 + 0.837740i \(0.683876\pi\)
\(548\) −6.63247 5.42429i −0.283325 0.231714i
\(549\) 0 0
\(550\) 30.0578 14.2475i 1.28167 0.607517i
\(551\) −5.43921 30.8473i −0.231718 1.31414i
\(552\) 0 0
\(553\) 1.39845 0.508994i 0.0594681 0.0216446i
\(554\) 36.3802 + 9.50266i 1.54565 + 0.403729i
\(555\) 0 0
\(556\) −18.2196 30.6579i −0.772681 1.30019i
\(557\) −5.66207 3.26900i −0.239909 0.138512i 0.375226 0.926933i \(-0.377565\pi\)
−0.615135 + 0.788422i \(0.710899\pi\)
\(558\) 0 0
\(559\) −11.2503 + 6.49539i −0.475839 + 0.274726i
\(560\) −0.594147 + 3.94949i −0.0251073 + 0.166897i
\(561\) 0 0
\(562\) −2.22671 2.19881i −0.0939280 0.0927512i
\(563\) −18.1068 15.1934i −0.763110 0.640325i 0.175824 0.984422i \(-0.443741\pi\)
−0.938934 + 0.344096i \(0.888185\pi\)
\(564\) 0 0
\(565\) 2.25133 + 0.819417i 0.0947141 + 0.0344731i
\(566\) 19.2589 27.8769i 0.809511 1.17175i
\(567\) 0 0
\(568\) −6.16586 + 24.8845i −0.258714 + 1.04413i
\(569\) −3.88872 + 10.6842i −0.163024 + 0.447904i −0.994128 0.108213i \(-0.965487\pi\)
0.831104 + 0.556117i \(0.187709\pi\)
\(570\) 0 0
\(571\) −14.2613 + 16.9960i −0.596818 + 0.711260i −0.976901 0.213692i \(-0.931451\pi\)
0.380083 + 0.924952i \(0.375895\pi\)
\(572\) 15.9377 3.01791i 0.666388 0.126185i
\(573\) 0 0
\(574\) −19.9955 + 1.87647i −0.834596 + 0.0783223i
\(575\) −9.68708 16.7785i −0.403979 0.699712i
\(576\) 0 0
\(577\) 5.30268 9.18452i 0.220754 0.382357i −0.734283 0.678843i \(-0.762482\pi\)
0.955037 + 0.296487i \(0.0958150\pi\)
\(578\) 9.65548 21.0517i 0.401615 0.875636i
\(579\) 0 0
\(580\) −6.68183 7.76220i −0.277448 0.322308i
\(581\) −10.1061 27.7664i −0.419273 1.15194i
\(582\) 0 0
\(583\) −4.59270 + 0.809817i −0.190210 + 0.0335392i
\(584\) −23.5167 22.6436i −0.973129 0.937000i
\(585\) 0 0
\(586\) 38.4376 + 3.11882i 1.58784 + 0.128837i
\(587\) −8.09141 + 6.78950i −0.333968 + 0.280233i −0.794314 0.607507i \(-0.792170\pi\)
0.460346 + 0.887740i \(0.347725\pi\)
\(588\) 0 0
\(589\) −3.30739 + 18.7572i −0.136279 + 0.772875i
\(590\) 1.95636 0.537445i 0.0805419 0.0221263i
\(591\) 0 0
\(592\) −41.1782 + 16.1747i −1.69241 + 0.664777i
\(593\) 27.5676i 1.13207i −0.824383 0.566033i \(-0.808478\pi\)
0.824383 0.566033i \(-0.191522\pi\)
\(594\) 0 0
\(595\) 0.788191i 0.0323127i
\(596\) 23.8948 0.301285i 0.978768 0.0123411i
\(597\) 0 0
\(598\) −2.50274 9.11025i −0.102345 0.372546i
\(599\) −2.13432 + 12.1044i −0.0872061 + 0.494571i 0.909653 + 0.415370i \(0.136348\pi\)
−0.996859 + 0.0792006i \(0.974763\pi\)
\(600\) 0 0
\(601\) −9.68745 + 8.12873i −0.395159 + 0.331578i −0.818619 0.574337i \(-0.805260\pi\)
0.423460 + 0.905915i \(0.360815\pi\)
\(602\) −1.69136 + 20.8450i −0.0689346 + 0.849578i
\(603\) 0 0
\(604\) 5.92128 36.2479i 0.240933 1.47491i
\(605\) 7.42709 1.30960i 0.301954 0.0532427i
\(606\) 0 0
\(607\) −2.12432 5.83652i −0.0862235 0.236897i 0.889086 0.457741i \(-0.151341\pi\)
−0.975309 + 0.220844i \(0.929119\pi\)
\(608\) −8.43069 16.6856i −0.341909 0.676690i
\(609\) 0 0
\(610\) 3.89806 + 1.78787i 0.157828 + 0.0723886i
\(611\) −2.53984 + 4.39913i −0.102751 + 0.177970i
\(612\) 0 0
\(613\) 12.5009 + 21.6522i 0.504907 + 0.874524i 0.999984 + 0.00567529i \(0.00180651\pi\)
−0.495077 + 0.868849i \(0.664860\pi\)
\(614\) 3.20497 + 34.1518i 0.129342 + 1.37826i
\(615\) 0 0
\(616\) 10.5865 23.8714i 0.426544 0.961807i
\(617\) 20.9893 25.0141i 0.844997 1.00703i −0.154821 0.987943i \(-0.549480\pi\)
0.999818 0.0190859i \(-0.00607561\pi\)
\(618\) 0 0
\(619\) 13.2843 36.4984i 0.533942 1.46699i −0.320401 0.947282i \(-0.603818\pi\)
0.854342 0.519711i \(-0.173960\pi\)
\(620\) 2.20365 + 5.82490i 0.0885006 + 0.233933i
\(621\) 0 0
\(622\) −22.3995 15.4748i −0.898136 0.620481i
\(623\) 10.8586 + 3.95219i 0.435039 + 0.158341i
\(624\) 0 0
\(625\) 15.8621 + 13.3099i 0.634483 + 0.532395i
\(626\) 6.77714 6.86313i 0.270869 0.274306i
\(627\) 0 0
\(628\) 36.1746 + 20.2816i 1.44352 + 0.809325i
\(629\) 7.56112 4.36541i 0.301482 0.174060i
\(630\) 0 0
\(631\) −27.2601 15.7386i −1.08521 0.626544i −0.152911 0.988240i \(-0.548865\pi\)
−0.932296 + 0.361696i \(0.882198\pi\)
\(632\) −0.155568 + 2.27237i −0.00618817 + 0.0903899i
\(633\) 0 0
\(634\) −4.12420 + 15.7892i −0.163793 + 0.627070i
\(635\) 2.03499 0.740675i 0.0807560 0.0293928i
\(636\) 0 0
\(637\) 1.01056 + 5.73118i 0.0400399 + 0.227078i
\(638\) 28.6828 + 60.5116i 1.13556 + 2.39568i
\(639\) 0 0
\(640\) −5.15703 3.28180i −0.203850 0.129725i
\(641\) −6.98262 8.32156i −0.275797 0.328682i 0.610310 0.792163i \(-0.291045\pi\)
−0.886107 + 0.463481i \(0.846600\pi\)
\(642\) 0 0
\(643\) −10.8032 1.90489i −0.426036 0.0751217i −0.0434808 0.999054i \(-0.513845\pi\)
−0.382555 + 0.923933i \(0.624956\pi\)
\(644\) −14.3569 5.02141i −0.565741 0.197871i
\(645\) 0 0
\(646\) 2.13511 + 3.00870i 0.0840047 + 0.118376i
\(647\) −47.2138 −1.85616 −0.928082 0.372375i \(-0.878544\pi\)
−0.928082 + 0.372375i \(0.878544\pi\)
\(648\) 0 0
\(649\) −13.2652 −0.520703
\(650\) 6.25562 + 8.81515i 0.245366 + 0.345759i
\(651\) 0 0
\(652\) −3.84551 1.34499i −0.150602 0.0526740i
\(653\) 28.9484 + 5.10438i 1.13284 + 0.199750i 0.708471 0.705740i \(-0.249385\pi\)
0.424367 + 0.905490i \(0.360497\pi\)
\(654\) 0 0
\(655\) 0.835168 + 0.995314i 0.0326327 + 0.0388902i
\(656\) 9.78124 29.1397i 0.381893 1.13771i
\(657\) 0 0
\(658\) 3.50267 + 7.38952i 0.136548 + 0.288074i
\(659\) −0.0149056 0.0845336i −0.000580638 0.00329296i 0.984516 0.175294i \(-0.0560877\pi\)
−0.985097 + 0.172001i \(0.944977\pi\)
\(660\) 0 0
\(661\) −12.6865 + 4.61752i −0.493449 + 0.179601i −0.576745 0.816924i \(-0.695677\pi\)
0.0832963 + 0.996525i \(0.473455\pi\)
\(662\) 7.34915 28.1357i 0.285633 1.09352i
\(663\) 0 0
\(664\) 45.1181 + 3.08882i 1.75092 + 0.119870i
\(665\) −2.85766 1.64987i −0.110815 0.0639793i
\(666\) 0 0
\(667\) 33.7781 19.5018i 1.30789 0.755113i
\(668\) −10.7709 6.03882i −0.416739 0.233649i
\(669\) 0 0
\(670\) −3.38420 + 3.42714i −0.130743 + 0.132402i
\(671\) −21.4796 18.0235i −0.829211 0.695790i
\(672\) 0 0
\(673\) −5.01426 1.82504i −0.193285 0.0703501i 0.243564 0.969885i \(-0.421683\pi\)
−0.436849 + 0.899535i \(0.643906\pi\)
\(674\) −12.4225 8.58215i −0.478498 0.330572i
\(675\) 0 0
\(676\) −7.33472 19.3879i −0.282105 0.745687i
\(677\) 8.95953 24.6161i 0.344343 0.946074i −0.639776 0.768562i \(-0.720973\pi\)
0.984119 0.177512i \(-0.0568050\pi\)
\(678\) 0 0
\(679\) −11.2144 + 13.3648i −0.430368 + 0.512892i
\(680\) 1.10275 + 0.489048i 0.0422884 + 0.0187541i
\(681\) 0 0
\(682\) −3.80457 40.5412i −0.145684 1.55240i
\(683\) −16.4032 28.4113i −0.627653 1.08713i −0.988021 0.154317i \(-0.950682\pi\)
0.360369 0.932810i \(-0.382651\pi\)
\(684\) 0 0
\(685\) 1.15732 2.00454i 0.0442190 0.0765895i
\(686\) 25.1449 + 11.5328i 0.960035 + 0.440325i
\(687\) 0 0
\(688\) −28.1145 15.3000i −1.07185 0.583308i
\(689\) −0.518316 1.42406i −0.0197463 0.0542525i
\(690\) 0 0
\(691\) 5.03144 0.887178i 0.191405 0.0337498i −0.0771239 0.997022i \(-0.524574\pi\)
0.268529 + 0.963272i \(0.413463\pi\)
\(692\) 4.79469 29.3514i 0.182267 1.11577i
\(693\) 0 0
\(694\) −0.142941 + 1.76167i −0.00542598 + 0.0668721i
\(695\) 7.38027 6.19278i 0.279950 0.234906i
\(696\) 0 0
\(697\) −1.05334 + 5.97380i −0.0398982 + 0.226274i
\(698\) −7.20554 26.2289i −0.272734 0.992779i
\(699\) 0 0
\(700\) 17.4001 0.219395i 0.657662 0.00829235i
\(701\) 40.9095i 1.54513i 0.634936 + 0.772565i \(0.281026\pi\)
−0.634936 + 0.772565i \(0.718974\pi\)
\(702\) 0 0
\(703\) 36.5515i 1.37856i
\(704\) 26.8295 + 29.6230i 1.01118 + 1.11646i
\(705\) 0 0
\(706\) 8.49054 2.33250i 0.319546 0.0877848i
\(707\) 3.15351 17.8844i 0.118600 0.672613i
\(708\) 0 0
\(709\) −12.2104 + 10.2458i −0.458572 + 0.384787i −0.842605 0.538532i \(-0.818979\pi\)
0.384033 + 0.923319i \(0.374535\pi\)
\(710\) −6.90305 0.560112i −0.259067 0.0210206i
\(711\) 0 0
\(712\) −12.2669 + 12.7399i −0.459720 + 0.477446i
\(713\) −23.3564 + 4.11836i −0.874704 + 0.154234i
\(714\) 0 0
\(715\) 1.49874 + 4.11775i 0.0560496 + 0.153995i
\(716\) −7.32667 8.51131i −0.273811 0.318083i
\(717\) 0 0
\(718\) 5.32587 11.6119i 0.198760 0.433353i
\(719\) 15.8103 27.3843i 0.589626 1.02126i −0.404655 0.914469i \(-0.632608\pi\)
0.994281 0.106793i \(-0.0340582\pi\)
\(720\) 0 0
\(721\) 6.42772 + 11.1331i 0.239381 + 0.414619i
\(722\) −11.3749 + 1.06747i −0.423328 + 0.0397271i
\(723\) 0 0
\(724\) 11.9587 2.26446i 0.444440 0.0841578i
\(725\) −28.6839 + 34.1841i −1.06529 + 1.26957i
\(726\) 0 0
\(727\) −9.85979 + 27.0896i −0.365680 + 1.00470i 0.611307 + 0.791394i \(0.290644\pi\)
−0.976986 + 0.213302i \(0.931578\pi\)
\(728\) 8.23673 + 2.04089i 0.305273 + 0.0756403i
\(729\) 0 0
\(730\) 5.01286 7.25603i 0.185534 0.268558i
\(731\) 5.93575 + 2.16044i 0.219542 + 0.0799066i
\(732\) 0 0
\(733\) −25.8057 21.6536i −0.953157 0.799793i 0.0266696 0.999644i \(-0.491510\pi\)
−0.979826 + 0.199851i \(0.935954\pi\)
\(734\) −7.44848 7.35515i −0.274928 0.271484i
\(735\) 0 0
\(736\) 15.9334 16.9709i 0.587313 0.625556i
\(737\) 27.2723 15.7457i 1.00459 0.580000i
\(738\) 0 0
\(739\) 10.3214 + 5.95905i 0.379678 + 0.219207i 0.677678 0.735359i \(-0.262986\pi\)
−0.298000 + 0.954566i \(0.596320\pi\)
\(740\) −6.10579 10.2742i −0.224453 0.377686i
\(741\) 0 0
\(742\) −2.36049 0.616570i −0.0866564 0.0226350i
\(743\) 9.08444 3.30647i 0.333276 0.121302i −0.169962 0.985451i \(-0.554364\pi\)
0.503237 + 0.864148i \(0.332142\pi\)
\(744\) 0 0
\(745\) 1.12100 + 6.35752i 0.0410703 + 0.232921i
\(746\) 3.92160 1.85886i 0.143580 0.0680576i
\(747\) 0 0
\(748\) −6.10548 4.99329i −0.223238 0.182573i
\(749\) 2.99088 + 3.56439i 0.109284 + 0.130240i
\(750\) 0 0
\(751\) −22.0213 3.88295i −0.803570 0.141691i −0.243246 0.969965i \(-0.578212\pi\)
−0.560324 + 0.828274i \(0.689323\pi\)
\(752\) −12.5119 + 0.315570i −0.456261 + 0.0115077i
\(753\) 0 0
\(754\) −17.7465 + 12.5937i −0.646288 + 0.458634i
\(755\) 9.92203 0.361100
\(756\) 0 0
\(757\) 3.40365 0.123708 0.0618540 0.998085i \(-0.480299\pi\)
0.0618540 + 0.998085i \(0.480299\pi\)
\(758\) −34.8109 + 24.7033i −1.26439 + 0.897265i
\(759\) 0 0
\(760\) 4.08141 2.97442i 0.148048 0.107894i
\(761\) −43.2514 7.62639i −1.56786 0.276457i −0.678829 0.734297i \(-0.737512\pi\)
−0.889034 + 0.457840i \(0.848623\pi\)
\(762\) 0 0
\(763\) 6.85328 + 8.16742i 0.248105 + 0.295680i
\(764\) 6.14387 7.51233i 0.222277 0.271787i
\(765\) 0 0
\(766\) −24.8486 + 11.7784i −0.897818 + 0.425571i
\(767\) −0.748530 4.24513i −0.0270279 0.153283i
\(768\) 0 0
\(769\) 43.4127 15.8009i 1.56550 0.569797i 0.593514 0.804823i \(-0.297740\pi\)
0.971989 + 0.235027i \(0.0755178\pi\)
\(770\) 6.82548 + 1.78284i 0.245973 + 0.0642492i
\(771\) 0 0
\(772\) −9.07480 + 5.39302i −0.326609 + 0.194099i
\(773\) 35.3857 + 20.4299i 1.27273 + 0.734813i 0.975502 0.219992i \(-0.0706031\pi\)
0.297232 + 0.954805i \(0.403936\pi\)
\(774\) 0 0
\(775\) 23.4991 13.5672i 0.844112 0.487348i
\(776\) −11.7403 23.9823i −0.421452 0.860914i
\(777\) 0 0
\(778\) 20.5285 + 20.2713i 0.735982 + 0.726760i
\(779\) 19.4537 + 16.3236i 0.697001 + 0.584853i
\(780\) 0 0
\(781\) 42.5518 + 15.4876i 1.52262 + 0.554189i
\(782\) −2.61119 + 3.77966i −0.0933760 + 0.135160i
\(783\) 0 0
\(784\) −10.7484 + 9.49091i −0.383871 + 0.338961i
\(785\) −3.83184 + 10.5279i −0.136764 + 0.375757i
\(786\) 0 0
\(787\) 26.6313 31.7379i 0.949302 1.13133i −0.0419189 0.999121i \(-0.513347\pi\)
0.991221 0.132214i \(-0.0422085\pi\)
\(788\) −0.993029 5.24422i −0.0353752 0.186818i
\(789\) 0 0
\(790\) −0.612616 + 0.0574907i −0.0217959 + 0.00204543i
\(791\) −4.09738 7.09688i −0.145686 0.252336i
\(792\) 0 0
\(793\) 4.55584 7.89095i 0.161783 0.280216i
\(794\) 10.3632 22.5946i 0.367774 0.801854i
\(795\) 0 0
\(796\) 17.1982 14.8045i 0.609573 0.524730i
\(797\) −4.25196 11.6822i −0.150612 0.413803i 0.841326 0.540528i \(-0.181776\pi\)
−0.991938 + 0.126725i \(0.959553\pi\)
\(798\) 0 0
\(799\) 2.43244 0.428905i 0.0860536 0.0151736i
\(800\) −10.4893 + 24.4804i −0.370852 + 0.865512i
\(801\) 0 0
\(802\) 34.1686 + 2.77243i 1.20653 + 0.0978979i
\(803\) −44.1723 + 37.0650i −1.55881 + 1.30799i
\(804\) 0 0
\(805\) 0.713493 4.04642i 0.0251473 0.142618i
\(806\) 12.7593 3.50521i 0.449428 0.123466i
\(807\) 0 0
\(808\) 23.0652 + 15.5088i 0.811431 + 0.545596i
\(809\) 4.57993i 0.161022i 0.996754 + 0.0805109i \(0.0256552\pi\)
−0.996754 + 0.0805109i \(0.974345\pi\)
\(810\) 0 0
\(811\) 23.9708i 0.841727i 0.907124 + 0.420864i \(0.138273\pi\)
−0.907124 + 0.420864i \(0.861727\pi\)
\(812\) 0.441681 + 35.0295i 0.0155000 + 1.22929i
\(813\) 0 0
\(814\) 20.7003 + 75.3512i 0.725545 + 2.64106i
\(815\) 0.191110 1.08384i 0.00669429 0.0379652i
\(816\) 0 0
\(817\) 20.2578 16.9983i 0.708731 0.594696i
\(818\) −2.36451 + 29.1411i −0.0826730 + 1.01890i
\(819\) 0 0
\(820\) 8.19500 + 1.33869i 0.286182 + 0.0467492i
\(821\) −7.46457 + 1.31620i −0.260515 + 0.0459359i −0.302380 0.953187i \(-0.597781\pi\)
0.0418649 + 0.999123i \(0.486670\pi\)
\(822\) 0 0
\(823\) 15.9886 + 43.9282i 0.557326 + 1.53124i 0.823500 + 0.567316i \(0.192018\pi\)
−0.266174 + 0.963925i \(0.585760\pi\)
\(824\) −19.5644 + 2.08516i −0.681558 + 0.0726402i
\(825\) 0 0
\(826\) −6.30772 2.89307i −0.219474 0.100663i
\(827\) −15.4331 + 26.7308i −0.536660 + 0.929522i 0.462421 + 0.886661i \(0.346981\pi\)
−0.999081 + 0.0428620i \(0.986352\pi\)
\(828\) 0 0
\(829\) 5.56407 + 9.63724i 0.193248 + 0.334715i 0.946325 0.323217i \(-0.104764\pi\)
−0.753077 + 0.657933i \(0.771431\pi\)
\(830\) 1.14148 + 12.1636i 0.0396215 + 0.422203i
\(831\) 0 0
\(832\) −7.96601 + 10.2576i −0.276172 + 0.355618i
\(833\) 1.81892 2.16771i 0.0630220 0.0751067i
\(834\) 0 0
\(835\) 1.14092 3.13466i 0.0394833 0.108479i
\(836\) −30.8839 + 11.6839i −1.06814 + 0.404095i
\(837\) 0 0
\(838\) −9.91149 6.84739i −0.342387 0.236539i
\(839\) 8.74658 + 3.18349i 0.301965 + 0.109906i 0.488559 0.872531i \(-0.337523\pi\)
−0.186594 + 0.982437i \(0.559745\pi\)
\(840\) 0 0
\(841\) −46.6034 39.1049i −1.60701 1.34844i
\(842\) 14.1758 14.3557i 0.488531 0.494730i
\(843\) 0 0
\(844\) −4.47935 + 7.98942i −0.154186 + 0.275007i
\(845\) 4.84959 2.79991i 0.166831 0.0963200i
\(846\) 0 0
\(847\) −22.3399 12.8980i −0.767609 0.443179i
\(848\) 2.32725 2.91997i 0.0799180 0.100272i
\(849\) 0 0
\(850\) 1.32830 5.08531i 0.0455604 0.174425i
\(851\) 42.7690 15.5667i 1.46610 0.533618i
\(852\) 0 0
\(853\) 2.28870 + 12.9798i 0.0783634 + 0.444421i 0.998592 + 0.0530406i \(0.0168913\pi\)
−0.920229 + 0.391381i \(0.871998\pi\)
\(854\) −6.28293 13.2550i −0.214997 0.453576i
\(855\) 0 0
\(856\) −6.84264 + 1.97290i −0.233877 + 0.0674324i
\(857\) 9.69516 + 11.5542i 0.331180 + 0.394685i 0.905779 0.423750i \(-0.139286\pi\)
−0.574599 + 0.818435i \(0.694842\pi\)
\(858\) 0 0
\(859\) −24.5457 4.32808i −0.837490 0.147672i −0.261577 0.965183i \(-0.584242\pi\)
−0.575914 + 0.817511i \(0.695354\pi\)
\(860\) 2.85472 8.16202i 0.0973451 0.278323i
\(861\) 0 0
\(862\) −1.21971 1.71876i −0.0415435 0.0585413i
\(863\) 22.0216 0.749626 0.374813 0.927101i \(-0.377707\pi\)
0.374813 + 0.927101i \(0.377707\pi\)
\(864\) 0 0
\(865\) 8.03425 0.273173
\(866\) 2.31856 + 3.26721i 0.0787879 + 0.111024i
\(867\) 0 0
\(868\) 7.03272 20.1075i 0.238706 0.682493i
\(869\) 3.96195 + 0.698599i 0.134400 + 0.0236984i
\(870\) 0 0
\(871\) 6.57787 + 7.83921i 0.222883 + 0.265621i
\(872\) −15.6792 + 4.52070i −0.530964 + 0.153090i
\(873\) 0 0
\(874\) 8.23767 + 17.3789i 0.278643 + 0.587849i
\(875\) 1.68323 + 9.54610i 0.0569037 + 0.322717i
\(876\) 0 0
\(877\) −20.5090 + 7.46466i −0.692539 + 0.252064i −0.664222 0.747535i \(-0.731237\pi\)
−0.0283170 + 0.999599i \(0.509015\pi\)
\(878\) 9.60067 36.7555i 0.324007 1.24044i
\(879\) 0 0
\(880\) −6.72935 + 8.44324i −0.226846 + 0.284621i
\(881\) 7.29454 + 4.21150i 0.245759 + 0.141889i 0.617821 0.786319i \(-0.288016\pi\)
−0.372062 + 0.928208i \(0.621349\pi\)
\(882\) 0 0
\(883\) −21.6426 + 12.4953i −0.728330 + 0.420502i −0.817811 0.575487i \(-0.804813\pi\)
0.0894807 + 0.995989i \(0.471479\pi\)
\(884\) 1.25344 2.23564i 0.0421576 0.0751928i
\(885\) 0 0
\(886\) 25.8896 26.2181i 0.869779 0.880815i
\(887\) 34.3044 + 28.7848i 1.15183 + 0.966499i 0.999761 0.0218707i \(-0.00696222\pi\)
0.152068 + 0.988370i \(0.451407\pi\)
\(888\) 0 0
\(889\) −6.96058 2.53344i −0.233450 0.0849689i
\(890\) −3.93085 2.71564i −0.131762 0.0910286i
\(891\) 0 0
\(892\) −34.5470 + 13.0696i −1.15672 + 0.437604i
\(893\) 3.53665 9.71686i 0.118349 0.325162i
\(894\) 0 0
\(895\) 1.95013 2.32407i 0.0651855 0.0776850i
\(896\) 6.29710 + 19.9374i 0.210371 + 0.666062i
\(897\) 0 0
\(898\) −2.98068 31.7619i −0.0994666 1.05991i
\(899\) 27.3132 + 47.3078i 0.910945 + 1.57780i
\(900\) 0 0
\(901\) −0.368441 + 0.638158i −0.0122745 + 0.0212601i
\(902\) −49.3486 22.6340i −1.64313 0.753630i
\(903\) 0 0
\(904\) 12.4714 1.32920i 0.414794 0.0442085i
\(905\) 1.12456 + 3.08970i 0.0373817 + 0.102705i
\(906\) 0 0
\(907\) 31.5142 5.55680i 1.04641 0.184511i 0.376091 0.926583i \(-0.377268\pi\)
0.670320 + 0.742072i \(0.266157\pi\)
\(908\) −26.1826 4.27707i −0.868902 0.141939i
\(909\) 0 0
\(910\) −0.185396 + 2.28490i −0.00614582 + 0.0757436i
\(911\) 21.9054 18.3808i 0.725757 0.608983i −0.203214 0.979134i \(-0.565139\pi\)
0.928971 + 0.370152i \(0.120694\pi\)
\(912\) 0 0
\(913\) 13.8708 78.6650i 0.459055 2.60343i
\(914\) −5.55139 20.2076i −0.183624 0.668410i
\(915\) 0 0
\(916\) 0.0870387 + 6.90300i 0.00287584 + 0.228082i
\(917\) 4.44416i 0.146759i
\(918\) 0 0
\(919\) 27.7726i 0.916132i −0.888918 0.458066i \(-0.848542\pi\)
0.888918 0.458066i \(-0.151458\pi\)
\(920\) 5.21859 + 3.50892i 0.172052 + 0.115686i
\(921\) 0 0
\(922\) −42.2338 + 11.6024i −1.39090 + 0.382104i
\(923\) −2.55522 + 14.4914i −0.0841062 + 0.476990i
\(924\) 0 0
\(925\) −39.8899 + 33.4716i −1.31157 + 1.10054i
\(926\) 32.2714 + 2.61849i 1.06050 + 0.0860489i
\(927\) 0 0
\(928\) −49.2833 21.1168i −1.61780 0.693192i
\(929\) 9.40060 1.65758i 0.308424 0.0543834i −0.0172941 0.999850i \(-0.505505\pi\)
0.325718 + 0.945467i \(0.394394\pi\)
\(930\) 0 0
\(931\) −4.05180 11.1322i −0.132792 0.364844i
\(932\) −24.7790 + 21.3301i −0.811663 + 0.698692i
\(933\) 0 0
\(934\) −21.1970 + 46.2154i −0.693585 + 1.51222i
\(935\) 1.06536 1.84527i 0.0348411 0.0603466i
\(936\) 0 0
\(937\) −1.13866 1.97222i −0.0371986 0.0644298i 0.846827 0.531869i \(-0.178510\pi\)
−0.884025 + 0.467439i \(0.845177\pi\)
\(938\) 16.4023 1.53927i 0.535555 0.0502589i
\(939\) 0 0
\(940\) −0.629058 3.32208i −0.0205176 0.108354i
\(941\) 4.48164 5.34101i 0.146097 0.174112i −0.688033 0.725679i \(-0.741526\pi\)
0.834130 + 0.551567i \(0.185970\pi\)
\(942\) 0 0
\(943\) −10.8153 + 29.7148i −0.352195 + 0.967647i
\(944\) 7.96140 7.02998i 0.259121 0.228806i
\(945\) 0 0
\(946\) −32.1350 + 46.5149i −1.04480 + 1.51233i
\(947\) −42.9198 15.6215i −1.39471 0.507631i −0.468103 0.883674i \(-0.655063\pi\)
−0.926603 + 0.376042i \(0.877285\pi\)
\(948\) 0 0
\(949\) −14.3541 12.0445i −0.465955 0.390982i
\(950\) −15.6569 15.4607i −0.507975 0.501611i
\(951\) 0 0
\(952\) −1.81420 3.70594i −0.0587987 0.120110i
\(953\) 26.2534 15.1574i 0.850431 0.490997i −0.0103652 0.999946i \(-0.503299\pi\)
0.860796 + 0.508950i \(0.169966\pi\)
\(954\) 0 0
\(955\) 2.27046 + 1.31085i 0.0734704 + 0.0424181i
\(956\) 1.79070 1.06419i 0.0579154 0.0344183i
\(957\) 0 0
\(958\) −27.9865 7.31019i −0.904204 0.236181i
\(959\) −7.43966 + 2.70782i −0.240239 + 0.0874400i
\(960\) 0 0
\(961\) −0.384864 2.18267i −0.0124150 0.0704089i
\(962\) −22.9459 + 10.8765i −0.739805 + 0.350671i
\(963\) 0 0
\(964\) −20.8503 + 25.4944i −0.671544 + 0.821121i
\(965\) −1.83307 2.18457i −0.0590088 0.0703239i
\(966\) 0 0
\(967\) 30.8569 + 5.44090i 0.992290 + 0.174967i 0.646146 0.763214i \(-0.276380\pi\)
0.346144 + 0.938181i \(0.387491\pi\)
\(968\) 31.9066 23.2527i 1.02552 0.747370i
\(969\) 0 0
\(970\) 5.88265 4.17459i 0.188881 0.134038i
\(971\) −1.61116 −0.0517047 −0.0258523 0.999666i \(-0.508230\pi\)
−0.0258523 + 0.999666i \(0.508230\pi\)
\(972\) 0 0
\(973\) −32.9535 −1.05644
\(974\) −19.6351 + 13.9339i −0.629148 + 0.446471i
\(975\) 0 0
\(976\) 22.4432 0.566055i 0.718389 0.0181190i
\(977\) −26.4012 4.65524i −0.844648 0.148934i −0.265453 0.964124i \(-0.585522\pi\)
−0.579194 + 0.815190i \(0.696633\pi\)
\(978\) 0 0
\(979\) 20.0794 + 23.9297i 0.641741 + 0.764797i
\(980\) −2.99851 2.45230i −0.0957839 0.0783358i
\(981\) 0 0
\(982\) 18.1628 8.60924i 0.579597 0.274732i
\(983\) 4.56612 + 25.8958i 0.145637 + 0.825947i 0.966854 + 0.255331i \(0.0821844\pi\)
−0.821217 + 0.570616i \(0.806704\pi\)
\(984\) 0 0
\(985\) 1.35492 0.493152i 0.0431715 0.0157131i
\(986\) 10.2376 + 2.67411i 0.326033 + 0.0851610i
\(987\) 0 0
\(988\) −5.48180 9.22419i −0.174399 0.293461i
\(989\) 28.5173 + 16.4645i 0.906797 + 0.523540i
\(990\) 0 0
\(991\) −20.2827 + 11.7102i −0.644302 + 0.371988i −0.786270 0.617883i \(-0.787990\pi\)
0.141968 + 0.989871i \(0.454657\pi\)
\(992\) 23.7685 + 22.3155i 0.754652 + 0.708517i
\(993\) 0 0
\(994\) 16.8560 + 16.6448i 0.534641 + 0.527942i
\(995\) 4.69607 + 3.94047i 0.148876 + 0.124921i
\(996\) 0 0
\(997\) 5.48788 + 1.99742i 0.173803 + 0.0632590i 0.427456 0.904036i \(-0.359410\pi\)
−0.253653 + 0.967295i \(0.581632\pi\)
\(998\) 5.75921 8.33636i 0.182304 0.263883i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.2.l.a.179.12 96
3.2 odd 2 108.2.l.a.23.5 96
4.3 odd 2 inner 324.2.l.a.179.1 96
9.2 odd 6 972.2.l.c.215.6 96
9.4 even 3 972.2.l.a.863.1 96
9.5 odd 6 972.2.l.d.863.16 96
9.7 even 3 972.2.l.b.215.11 96
12.11 even 2 108.2.l.a.23.16 yes 96
27.2 odd 18 972.2.l.a.107.10 96
27.7 even 9 108.2.l.a.47.16 yes 96
27.11 odd 18 972.2.l.b.755.12 96
27.16 even 9 972.2.l.c.755.5 96
27.20 odd 18 inner 324.2.l.a.143.1 96
27.25 even 9 972.2.l.d.107.7 96
36.7 odd 6 972.2.l.b.215.12 96
36.11 even 6 972.2.l.c.215.5 96
36.23 even 6 972.2.l.d.863.7 96
36.31 odd 6 972.2.l.a.863.10 96
108.7 odd 18 108.2.l.a.47.5 yes 96
108.11 even 18 972.2.l.b.755.11 96
108.43 odd 18 972.2.l.c.755.6 96
108.47 even 18 inner 324.2.l.a.143.12 96
108.79 odd 18 972.2.l.d.107.16 96
108.83 even 18 972.2.l.a.107.1 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.5 96 3.2 odd 2
108.2.l.a.23.16 yes 96 12.11 even 2
108.2.l.a.47.5 yes 96 108.7 odd 18
108.2.l.a.47.16 yes 96 27.7 even 9
324.2.l.a.143.1 96 27.20 odd 18 inner
324.2.l.a.143.12 96 108.47 even 18 inner
324.2.l.a.179.1 96 4.3 odd 2 inner
324.2.l.a.179.12 96 1.1 even 1 trivial
972.2.l.a.107.1 96 108.83 even 18
972.2.l.a.107.10 96 27.2 odd 18
972.2.l.a.863.1 96 9.4 even 3
972.2.l.a.863.10 96 36.31 odd 6
972.2.l.b.215.11 96 9.7 even 3
972.2.l.b.215.12 96 36.7 odd 6
972.2.l.b.755.11 96 108.11 even 18
972.2.l.b.755.12 96 27.11 odd 18
972.2.l.c.215.5 96 36.11 even 6
972.2.l.c.215.6 96 9.2 odd 6
972.2.l.c.755.5 96 27.16 even 9
972.2.l.c.755.6 96 108.43 odd 18
972.2.l.d.107.7 96 27.25 even 9
972.2.l.d.107.16 96 108.79 odd 18
972.2.l.d.863.7 96 36.23 even 6
972.2.l.d.863.16 96 9.5 odd 6