Properties

Label 3234.2.e.d
Level 3234
Weight 2
Character orbit 3234.e
Analytic conductor 25.824
Analytic rank 0
Dimension 24
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3234.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.8236200137\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24q - 24q^{4} + 24q^{6} - 24q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 24q - 24q^{4} + 24q^{6} - 24q^{9} + 24q^{16} - 16q^{17} + 32q^{19} - 8q^{22} - 24q^{24} - 8q^{25} + 8q^{33} + 24q^{36} + 16q^{37} + 16q^{41} - 24q^{54} - 16q^{55} + 16q^{62} - 24q^{64} - 64q^{67} + 16q^{68} + 64q^{71} - 32q^{76} + 24q^{81} + 16q^{83} + 8q^{88} - 16q^{93} - 64q^{94} + 24q^{96} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2155.1 1.00000i 1.00000i −1.00000 4.05345i 1.00000 0 1.00000i −1.00000 −4.05345
2155.2 1.00000i 1.00000i −1.00000 3.45711i 1.00000 0 1.00000i −1.00000 −3.45711
2155.3 1.00000i 1.00000i −1.00000 2.66749i 1.00000 0 1.00000i −1.00000 −2.66749
2155.4 1.00000i 1.00000i −1.00000 0.516505i 1.00000 0 1.00000i −1.00000 −0.516505
2155.5 1.00000i 1.00000i −1.00000 0.357203i 1.00000 0 1.00000i −1.00000 −0.357203
2155.6 1.00000i 1.00000i −1.00000 0.313884i 1.00000 0 1.00000i −1.00000 −0.313884
2155.7 1.00000i 1.00000i −1.00000 0.500309i 1.00000 0 1.00000i −1.00000 0.500309
2155.8 1.00000i 1.00000i −1.00000 0.942563i 1.00000 0 1.00000i −1.00000 0.942563
2155.9 1.00000i 1.00000i −1.00000 1.58222i 1.00000 0 1.00000i −1.00000 1.58222
2155.10 1.00000i 1.00000i −1.00000 1.98215i 1.00000 0 1.00000i −1.00000 1.98215
2155.11 1.00000i 1.00000i −1.00000 2.84462i 1.00000 0 1.00000i −1.00000 2.84462
2155.12 1.00000i 1.00000i −1.00000 3.51377i 1.00000 0 1.00000i −1.00000 3.51377
2155.13 1.00000i 1.00000i −1.00000 3.51377i 1.00000 0 1.00000i −1.00000 3.51377
2155.14 1.00000i 1.00000i −1.00000 2.84462i 1.00000 0 1.00000i −1.00000 2.84462
2155.15 1.00000i 1.00000i −1.00000 1.98215i 1.00000 0 1.00000i −1.00000 1.98215
2155.16 1.00000i 1.00000i −1.00000 1.58222i 1.00000 0 1.00000i −1.00000 1.58222
2155.17 1.00000i 1.00000i −1.00000 0.942563i 1.00000 0 1.00000i −1.00000 0.942563
2155.18 1.00000i 1.00000i −1.00000 0.500309i 1.00000 0 1.00000i −1.00000 0.500309
2155.19 1.00000i 1.00000i −1.00000 0.313884i 1.00000 0 1.00000i −1.00000 −0.313884
2155.20 1.00000i 1.00000i −1.00000 0.357203i 1.00000 0 1.00000i −1.00000 −0.357203
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2155.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
77.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3234.2.e.d yes 24
7.b odd 2 1 3234.2.e.c 24
11.b odd 2 1 3234.2.e.c 24
77.b even 2 1 inner 3234.2.e.d yes 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3234.2.e.c 24 7.b odd 2 1
3234.2.e.c 24 11.b odd 2 1
3234.2.e.d yes 24 1.a even 1 1 trivial
3234.2.e.d yes 24 77.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3234, [\chi])\):

\(T_{5}^{24} + \cdots\)
\(T_{13}^{12} - \cdots\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database