Properties

Label 3234.2.e.a
Level $3234$
Weight $2$
Character orbit 3234.e
Analytic conductor $25.824$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3234.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.8236200137\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 8 x^{15} + 74 x^{14} - 378 x^{13} + 1878 x^{12} - 6718 x^{11} + 22086 x^{10} - 56904 x^{9} + 130215 x^{8} - 239606 x^{7} + 378750 x^{6} - 477124 x^{5} + 493030 x^{4} - 386266 x^{3} + 223844 x^{2} - 82874 x + 13417\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 462)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{12} q^{2} -\beta_{12} q^{3} - q^{4} + ( -\beta_{11} + \beta_{13} ) q^{5} - q^{6} + \beta_{12} q^{8} - q^{9} +O(q^{10})\) \( q -\beta_{12} q^{2} -\beta_{12} q^{3} - q^{4} + ( -\beta_{11} + \beta_{13} ) q^{5} - q^{6} + \beta_{12} q^{8} - q^{9} -\beta_{3} q^{10} + ( \beta_{2} - \beta_{14} ) q^{11} + \beta_{12} q^{12} + ( -\beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} ) q^{13} -\beta_{3} q^{15} + q^{16} + ( \beta_{2} + \beta_{3} - \beta_{5} ) q^{17} + \beta_{12} q^{18} + ( 1 - \beta_{4} - \beta_{9} + \beta_{10} ) q^{19} + ( \beta_{11} - \beta_{13} ) q^{20} + ( \beta_{6} + \beta_{8} ) q^{22} + ( \beta_{1} - 2 \beta_{2} - \beta_{3} + \beta_{5} - \beta_{9} + \beta_{10} ) q^{23} + q^{24} + ( -1 + \beta_{1} - \beta_{2} - \beta_{3} - 3 \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} - 2 \beta_{9} + 2 \beta_{10} ) q^{25} + ( -\beta_{4} - \beta_{7} - \beta_{8} - \beta_{9} + \beta_{11} - \beta_{14} ) q^{26} + \beta_{12} q^{27} + ( -\beta_{4} - \beta_{6} - 2 \beta_{8} - \beta_{9} + 2 \beta_{11} - \beta_{12} - 2 \beta_{13} - \beta_{14} ) q^{29} + ( \beta_{11} - \beta_{13} ) q^{30} + ( \beta_{6} - \beta_{7} ) q^{31} -\beta_{12} q^{32} + ( \beta_{6} + \beta_{8} ) q^{33} + ( \beta_{4} + \beta_{7} - \beta_{10} - \beta_{15} ) q^{34} + q^{36} + ( -3 + 2 \beta_{1} + \beta_{4} - \beta_{9} + \beta_{10} ) q^{37} + ( \beta_{4} + \beta_{7} - \beta_{10} - \beta_{12} + \beta_{14} ) q^{38} + ( -\beta_{4} - \beta_{7} - \beta_{8} - \beta_{9} + \beta_{11} - \beta_{14} ) q^{39} + \beta_{3} q^{40} + ( 2 + \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + \beta_{5} ) q^{41} + ( -2 \beta_{4} - \beta_{6} - \beta_{7} - \beta_{9} + \beta_{10} - 2 \beta_{11} + 2 \beta_{12} + 2 \beta_{13} - \beta_{14} + \beta_{15} ) q^{43} + ( -\beta_{2} + \beta_{14} ) q^{44} + ( \beta_{11} - \beta_{13} ) q^{45} + ( -\beta_{4} - \beta_{7} - \beta_{8} - \beta_{9} - \beta_{13} + \beta_{15} ) q^{46} + ( 2 \beta_{4} - \beta_{6} + 3 \beta_{7} - 3 \beta_{8} - 2 \beta_{10} - 3 \beta_{12} - \beta_{13} - 2 \beta_{15} ) q^{47} -\beta_{12} q^{48} + ( -\beta_{6} + \beta_{7} + \beta_{12} - \beta_{13} + \beta_{14} + \beta_{15} ) q^{50} + ( \beta_{4} + \beta_{7} - \beta_{10} - \beta_{15} ) q^{51} + ( \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} ) q^{52} + ( \beta_{1} - \beta_{2} - 3 \beta_{3} - \beta_{4} + 2 \beta_{5} - \beta_{6} - \beta_{7} - \beta_{9} + \beta_{10} ) q^{53} + q^{54} + ( -2 + 2 \beta_{1} - \beta_{3} + 2 \beta_{4} + \beta_{5} + \beta_{6} + 2 \beta_{7} - \beta_{8} + \beta_{9} + \beta_{10} - 2 \beta_{11} + 2 \beta_{13} + \beta_{14} - \beta_{15} ) q^{55} + ( \beta_{4} + \beta_{7} - \beta_{10} - \beta_{12} + \beta_{14} ) q^{57} + ( -1 + 2 \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{6} + \beta_{7} + \beta_{9} - \beta_{10} ) q^{58} + ( 3 \beta_{4} + \beta_{6} + 2 \beta_{7} + 3 \beta_{9} - 2 \beta_{11} + 3 \beta_{12} + 2 \beta_{13} + 3 \beta_{14} ) q^{59} + \beta_{3} q^{60} + ( -4 + \beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{6} + \beta_{7} ) q^{61} + ( -2 \beta_{4} - \beta_{6} - \beta_{7} - \beta_{9} + \beta_{10} ) q^{62} - q^{64} + ( \beta_{4} - \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - \beta_{10} + 3 \beta_{13} - \beta_{15} ) q^{65} + ( -\beta_{2} + \beta_{14} ) q^{66} + ( 2 - 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - \beta_{4} + 2 \beta_{5} - \beta_{6} - \beta_{7} - \beta_{9} + \beta_{10} ) q^{67} + ( -\beta_{2} - \beta_{3} + \beta_{5} ) q^{68} + ( -\beta_{4} - \beta_{7} - \beta_{8} - \beta_{9} - \beta_{13} + \beta_{15} ) q^{69} + ( -4 - \beta_{1} + 2 \beta_{3} + \beta_{5} + \beta_{6} + \beta_{7} + \beta_{9} - \beta_{10} ) q^{71} -\beta_{12} q^{72} + ( 4 - 2 \beta_{1} + 2 \beta_{2} + 4 \beta_{4} + 2 \beta_{6} + 2 \beta_{7} + 2 \beta_{9} - 2 \beta_{10} ) q^{73} + ( -\beta_{4} - \beta_{7} - 2 \beta_{9} - \beta_{10} + 3 \beta_{12} - 2 \beta_{13} - \beta_{14} ) q^{74} + ( -\beta_{6} + \beta_{7} + \beta_{12} - \beta_{13} + \beta_{14} + \beta_{15} ) q^{75} + ( -1 + \beta_{4} + \beta_{9} - \beta_{10} ) q^{76} + ( \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} ) q^{78} + ( \beta_{4} + 2 \beta_{6} - \beta_{7} + \beta_{8} - \beta_{10} - \beta_{13} - \beta_{14} - 2 \beta_{15} ) q^{79} + ( -\beta_{11} + \beta_{13} ) q^{80} + q^{81} + ( \beta_{9} + \beta_{10} - 2 \beta_{11} - 2 \beta_{12} + \beta_{13} + \beta_{14} + \beta_{15} ) q^{82} + ( \beta_{1} + 3 \beta_{2} + \beta_{3} + \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} + \beta_{9} - \beta_{10} ) q^{83} + ( -2 \beta_{4} + \beta_{6} - 3 \beta_{7} - \beta_{9} + \beta_{10} - \beta_{11} - 2 \beta_{12} - \beta_{13} - 2 \beta_{14} ) q^{85} + ( 2 + \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} + \beta_{9} - \beta_{10} ) q^{86} + ( -1 + 2 \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{6} + \beta_{7} + \beta_{9} - \beta_{10} ) q^{87} + ( -\beta_{6} - \beta_{8} ) q^{88} + ( 2 \beta_{4} + 2 \beta_{6} - 2 \beta_{8} + 2 \beta_{9} + 2 \beta_{14} ) q^{89} + \beta_{3} q^{90} + ( -\beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{5} + \beta_{9} - \beta_{10} ) q^{92} + ( -2 \beta_{4} - \beta_{6} - \beta_{7} - \beta_{9} + \beta_{10} ) q^{93} + ( -3 - \beta_{1} + \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} + \beta_{6} + \beta_{7} + \beta_{9} - \beta_{10} ) q^{94} + ( -2 \beta_{4} - 2 \beta_{7} - 2 \beta_{9} - 4 \beta_{13} + 2 \beta_{15} ) q^{95} - q^{96} + ( -\beta_{4} - \beta_{6} - 4 \beta_{8} + \beta_{10} + 2 \beta_{11} - 4 \beta_{12} + 4 \beta_{13} - 2 \beta_{14} - \beta_{15} ) q^{97} + ( -\beta_{2} + \beta_{14} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 16q^{4} - 16q^{6} - 16q^{9} + O(q^{10}) \) \( 16q - 16q^{4} - 16q^{6} - 16q^{9} - 4q^{10} + 8q^{11} - 4q^{15} + 16q^{16} + 20q^{19} + 2q^{22} + 8q^{23} + 16q^{24} - 20q^{25} + 2q^{33} + 16q^{36} - 28q^{37} + 4q^{40} + 32q^{41} - 8q^{44} + 16q^{54} - 14q^{55} + 4q^{60} - 56q^{61} - 8q^{62} - 16q^{64} - 8q^{66} + 32q^{67} - 56q^{71} + 88q^{73} - 20q^{76} + 16q^{81} + 8q^{83} + 24q^{86} - 2q^{88} + 4q^{90} - 8q^{92} - 8q^{93} - 28q^{94} - 16q^{96} - 8q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{16} - 8 x^{15} + 74 x^{14} - 378 x^{13} + 1878 x^{12} - 6718 x^{11} + 22086 x^{10} - 56904 x^{9} + 130215 x^{8} - 239606 x^{7} + 378750 x^{6} - 477124 x^{5} + 493030 x^{4} - 386266 x^{3} + 223844 x^{2} - 82874 x + 13417\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\(6983 \nu^{14} - 48881 \nu^{13} + 474100 \nu^{12} - 2209147 \nu^{11} + 11140707 \nu^{10} - 36618018 \nu^{9} + 118372755 \nu^{8} - 276086391 \nu^{7} + 593880549 \nu^{6} - 946931332 \nu^{5} + 1294712939 \nu^{4} - 1271162965 \nu^{3} + 915620088 \nu^{2} - 401151387 \nu + 32362633\)\()/22807968\)
\(\beta_{2}\)\(=\)\((\)\(-3325577 \nu^{14} + 23279039 \nu^{13} - 218220364 \nu^{12} + 1006694677 \nu^{11} - 4890679917 \nu^{10} + 15780182142 \nu^{9} - 48699356733 \nu^{8} + 110238860505 \nu^{7} - 222125567883 \nu^{6} + 336742486204 \nu^{5} - 415275809861 \nu^{4} + 371398223899 \nu^{3} - 230411582664 \nu^{2} + 86434816533 \nu - 13304183911\)\()/ 3261539424 \)
\(\beta_{3}\)\(=\)\((\)\(-189803 \nu^{14} + 1328621 \nu^{13} - 12040024 \nu^{12} + 54968071 \nu^{11} - 260705691 \nu^{10} + 831319938 \nu^{9} - 2534621871 \nu^{8} + 5700932979 \nu^{7} - 11573124741 \nu^{6} + 17710001596 \nu^{5} - 22848161615 \nu^{4} + 21441640105 \nu^{3} - 14950384260 \nu^{2} + 6439036695 \nu - 1021023169\)\()/ 148251792 \)
\(\beta_{4}\)\(=\)\((\)\(-1252325 \nu^{14} + 8766275 \nu^{13} - 81315274 \nu^{12} + 373930069 \nu^{11} - 1818246999 \nu^{10} + 5872472250 \nu^{9} - 18432565677 \nu^{8} + 42250495017 \nu^{7} - 88964564157 \nu^{6} + 139944185800 \nu^{5} - 189878074001 \nu^{4} + 185929817443 \nu^{3} - 140966904954 \nu^{2} + 65763256533 \nu - 14998863325\)\()/ 815384856 \)
\(\beta_{5}\)\(=\)\((\)\(-250035 \nu^{14} + 1750245 \nu^{13} - 16051742 \nu^{12} + 73557267 \nu^{11} - 351447497 \nu^{10} + 1124676710 \nu^{9} - 3429869109 \nu^{8} + 7709036103 \nu^{7} - 15429510803 \nu^{6} + 23296503804 \nu^{5} - 28630334953 \nu^{4} + 25544328593 \nu^{3} - 15305197790 \nu^{2} + 5412809207 \nu + 128107011\)\()/ 135897476 \)
\(\beta_{6}\)\(=\)\((\)\(31288770 \nu^{15} - 16748485 \nu^{14} + 797619205 \nu^{13} + 2631204646 \nu^{12} - 4029956479 \nu^{11} + 98833917597 \nu^{10} - 253528285620 \nu^{9} + 1180057442883 \nu^{8} - 2297035581639 \nu^{7} + 5676299627439 \nu^{6} - 7256018389690 \nu^{5} + 10030408696559 \nu^{4} - 6580080409159 \nu^{3} + 4269219214770 \nu^{2} - 43198382379 \nu - 181576943117\)\()/ 158184662064 \)
\(\beta_{7}\)\(=\)\((\)\(-31288770 \nu^{15} + 452583065 \nu^{14} - 3848461265 \nu^{13} + 25712532526 \nu^{12} - 126371519773 \nu^{11} + 533477938419 \nu^{10} - 1785395864580 \nu^{9} + 5160916096233 \nu^{8} - 12143081222517 \nu^{7} + 24141818008761 \nu^{6} - 38917872020806 \nu^{5} + 50481947842229 \nu^{4} - 50908209830125 \nu^{3} + 37436097284178 \nu^{2} - 18719983335993 \nu + 4642794315301\)\()/ 158184662064 \)
\(\beta_{8}\)\(=\)\((\)\(-61841878 \nu^{15} + 463814085 \nu^{14} - 4332228469 \nu^{13} + 21124971426 \nu^{12} - 103973734141 \nu^{11} + 354956782059 \nu^{10} - 1130840178408 \nu^{9} + 2742004258845 \nu^{8} - 5867164985181 \nu^{7} + 9805433466473 \nu^{6} - 13472523722594 \nu^{5} + 14104341127729 \nu^{4} - 10389357329569 \nu^{3} + 4991902261014 \nu^{2} - 438472848665 \nu - 306749906363\)\()/ 158184662064 \)
\(\beta_{9}\)\(=\)\((\)\(124647224 \nu^{15} - 792790405 \nu^{14} + 7684579947 \nu^{13} - 32966828504 \nu^{12} + 164837589985 \nu^{11} - 499636537173 \nu^{10} + 1593858572646 \nu^{9} - 3402670735473 \nu^{8} + 7208963912421 \nu^{7} - 10318496609323 \nu^{6} + 14096862838860 \nu^{5} - 12094824539073 \nu^{4} + 10307867859415 \nu^{3} - 4833384190332 \nu^{2} + 3394648790233 \nu - 1247802075679\)\()/ 158184662064 \)
\(\beta_{10}\)\(=\)\((\)\(124647224 \nu^{15} - 1076917955 \nu^{14} + 9673472797 \nu^{13} - 51503270872 \nu^{12} + 250200637143 \nu^{11} - 916288554507 \nu^{10} + 2942026006626 \nu^{9} - 7649444175615 \nu^{8} + 16964786108547 \nu^{7} - 30953383474645 \nu^{6} + 46664778955628 \nu^{5} - 56590192827103 \nu^{4} + 54130606016001 \nu^{3} - 38151775447740 \nu^{2} + 18943545384919 \nu - 4344274484769\)\()/ 158184662064 \)
\(\beta_{11}\)\(=\)\((\)\(15958 \nu^{15} - 119685 \nu^{14} + 1130119 \nu^{13} - 5530551 \nu^{12} + 27795985 \nu^{11} - 96035346 \nu^{10} + 317610396 \nu^{9} - 791678301 \nu^{8} + 1812360285 \nu^{7} - 3211318028 \nu^{6} + 5028988886 \nu^{5} - 5993427763 \nu^{4} + 5979185161 \nu^{3} - 4172380467 \nu^{2} + 2140166891 \nu - 518381770\)\()/18627492\)
\(\beta_{12}\)\(=\)\((\)\(-13342 \nu^{15} + 100065 \nu^{14} - 928497 \nu^{13} + 4517578 \nu^{12} - 22245945 \nu^{11} + 75998175 \nu^{10} - 244879016 \nu^{9} + 599354649 \nu^{8} - 1324712505 \nu^{7} + 2282122421 \nu^{6} - 3405656298 \nu^{5} + 3894289773 \nu^{4} - 3651650205 \nu^{3} + 2418391182 \nu^{2} - 1148282565 \nu + 261797265\)\()/7787936\)
\(\beta_{13}\)\(=\)\((\)\(15958 \nu^{15} - 119685 \nu^{14} + 1130119 \nu^{13} - 5530551 \nu^{12} + 27795985 \nu^{11} - 96035346 \nu^{10} + 317610396 \nu^{9} - 791678301 \nu^{8} + 1812360285 \nu^{7} - 3211318028 \nu^{6} + 5028988886 \nu^{5} - 5993427763 \nu^{4} + 5979185161 \nu^{3} - 4172380467 \nu^{2} + 2121539399 \nu - 509068024\)\()/9313746\)
\(\beta_{14}\)\(=\)\((\)\(575875964 \nu^{15} - 4436099745 \nu^{14} + 41319402047 \nu^{13} - 205410283332 \nu^{12} + 1021087579937 \nu^{11} - 3562268688861 \nu^{10} + 11652271091298 \nu^{9} - 29183922744189 \nu^{8} + 65936755256061 \nu^{7} - 116732328141163 \nu^{6} + 179642141127088 \nu^{5} - 212376054391829 \nu^{4} + 207235157443403 \nu^{3} - 142699154525280 \nu^{2} + 71422281850849 \nu - 16963072781711\)\()/ 158184662064 \)
\(\beta_{15}\)\(=\)\((\)\(158954387 \nu^{15} - 1172652900 \nu^{14} + 11041151095 \nu^{13} - 53296410441 \nu^{12} + 265930611712 \nu^{11} - 905854992267 \nu^{10} + 2960788040621 \nu^{9} - 7259574921286 \nu^{8} + 16337255299198 \nu^{7} - 28374154378543 \nu^{6} + 43439436758339 \nu^{5} - 50569373700088 \nu^{4} + 49211364580575 \nu^{3} - 33565389721049 \nu^{2} + 16733640083382 \nu - 3970555117103\)\()/ 26364110344 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{13} + 2 \beta_{11} + 1\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{13} + 2 \beta_{11} + 2 \beta_{10} - 2 \beta_{9} - 2 \beta_{7} - 2 \beta_{6} + 2 \beta_{5} - 4 \beta_{4} - 2 \beta_{3} - 4 \beta_{2} - 9\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(-2 \beta_{15} + \beta_{14} + 9 \beta_{13} - 2 \beta_{12} - 17 \beta_{11} + 3 \beta_{10} - 2 \beta_{8} - 4 \beta_{7} + \beta_{6} + 3 \beta_{5} - 3 \beta_{4} - 3 \beta_{3} - 6 \beta_{2} - 14\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(-4 \beta_{15} + 2 \beta_{14} + 19 \beta_{13} - 4 \beta_{12} - 36 \beta_{11} - 22 \beta_{10} + 28 \beta_{9} - 4 \beta_{8} + 20 \beta_{7} + 30 \beta_{6} - 22 \beta_{5} + 46 \beta_{4} + 26 \beta_{3} + 42 \beta_{2} - 10 \beta_{1} + 71\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(19 \beta_{15} + 3 \beta_{14} - 83 \beta_{13} + 34 \beta_{12} + 145 \beta_{11} - 69 \beta_{10} + 35 \beta_{9} + 22 \beta_{8} + 87 \beta_{7} + 17 \beta_{6} - 60 \beta_{5} + 94 \beta_{4} + 70 \beta_{3} + 115 \beta_{2} - 25 \beta_{1} + 201\)\()/2\)
\(\nu^{6}\)\(=\)\((\)\(67 \beta_{15} + 4 \beta_{14} - 297 \beta_{13} + 112 \beta_{12} + 526 \beta_{11} + 176 \beta_{10} - 293 \beta_{9} + 76 \beta_{8} - 97 \beta_{7} - 332 \beta_{6} + 207 \beta_{5} - 393 \beta_{4} - 259 \beta_{3} - 361 \beta_{2} + 141 \beta_{1} - 586\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(-150 \beta_{15} - 121 \beta_{14} + 707 \beta_{13} - 360 \beta_{12} - 1095 \beta_{11} + 1072 \beta_{10} - 747 \beta_{9} - 175 \beta_{8} - 1169 \beta_{7} - 510 \beta_{6} + 938 \beta_{5} - 1518 \beta_{4} - 1155 \beta_{3} - 1673 \beta_{2} + 581 \beta_{1} - 2771\)\()/2\)
\(\nu^{8}\)\(=\)\((\)\(-922 \beta_{15} - 498 \beta_{14} + 4259 \beta_{13} - 1972 \beta_{12} - 6920 \beta_{11} - 826 \beta_{10} + 2686 \beta_{9} - 1064 \beta_{8} - 482 \beta_{7} + 3274 \beta_{6} - 1508 \beta_{5} + 2644 \beta_{4} + 1964 \beta_{3} + 2428 \beta_{2} - 1340 \beta_{1} + 3975\)\()/2\)
\(\nu^{9}\)\(=\)\((\)\(927 \beta_{15} + 1353 \beta_{14} - 4574 \beta_{13} + 2602 \beta_{12} + 5587 \beta_{11} - 14119 \beta_{10} + 11807 \beta_{9} + 992 \beta_{8} + 12937 \beta_{7} + 8909 \beta_{6} - 12672 \beta_{5} + 20172 \beta_{4} + 16068 \beta_{3} + 21459 \beta_{2} - 9621 \beta_{1} + 35386\)\()/2\)
\(\nu^{10}\)\(=\)\((\)\(12039 \beta_{15} + 10518 \beta_{14} - 56988 \beta_{13} + 28604 \beta_{12} + 83700 \beta_{11} - 6230 \beta_{10} - 20129 \beta_{9} + 13492 \beta_{8} + 21505 \beta_{7} - 28500 \beta_{6} + 4915 \beta_{5} - 8061 \beta_{4} - 7043 \beta_{3} - 6263 \beta_{2} + 7359 \beta_{1} - 11089\)\()/2\)
\(\nu^{11}\)\(=\)\((\)\(-50 \beta_{15} - 6198 \beta_{14} + 796 \beta_{13} - 3010 \beta_{12} + 18558 \beta_{11} + 166047 \beta_{10} - 163611 \beta_{9} + 1489 \beta_{8} - 124121 \beta_{7} - 128625 \beta_{6} + 154187 \beta_{5} - 241383 \beta_{4} - 199518 \beta_{3} - 250855 \beta_{2} + 135333 \beta_{1} - 418131\)\()/2\)
\(\nu^{12}\)\(=\)\(-74741 \beta_{15} - 80579 \beta_{14} + 354385 \beta_{13} - 183886 \beta_{12} - 467854 \beta_{11} + 130150 \beta_{10} + 38814 \beta_{9} - 79386 \beta_{8} - 195571 \beta_{7} + 99599 \beta_{6} + 48888 \beta_{5} - 81749 \beta_{4} - 59284 \beta_{3} - 89044 \beta_{2} + 24892 \beta_{1} - 141469\)
\(\nu^{13}\)\(=\)\((\)\(-144088 \beta_{15} - 108010 \beta_{14} + 697161 \beta_{13} - 343180 \beta_{12} - 1133136 \beta_{11} - 1750154 \beta_{10} + 2068612 \beta_{9} - 175276 \beta_{8} + 997188 \beta_{7} + 1658494 \beta_{6} - 1711866 \beta_{5} + 2645958 \beta_{4} + 2256254 \beta_{3} + 2688400 \beta_{2} - 1689844 \beta_{1} + 4562117\)\()/2\)
\(\nu^{14}\)\(=\)\((\)\(1733162 \beta_{15} + 2074966 \beta_{14} - 8106763 \beta_{13} + 4282548 \beta_{12} + 9602618 \beta_{11} - 5068490 \beta_{10} + 1147786 \beta_{9} + 1715280 \beta_{8} + 5625272 \beta_{7} - 660412 \beta_{6} - 2864062 \beta_{5} + 4680930 \beta_{4} + 3676122 \beta_{3} + 4707416 \beta_{2} - 2421852 \beta_{1} + 7785995\)\()/2\)
\(\nu^{15}\)\(=\)\((\)\(3522094 \beta_{15} + 3795721 \beta_{14} - 16818405 \beta_{13} + 8683710 \beta_{12} + 22482349 \beta_{11} + 16006457 \beta_{10} - 24041258 \beta_{9} + 3807178 \beta_{8} - 5454972 \beta_{7} - 19608667 \beta_{6} + 17217975 \beta_{5} - 26269633 \beta_{4} - 23170387 \beta_{3} - 26098192 \beta_{2} + 18842846 \beta_{1} - 45325614\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3234\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(1079\) \(2059\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2155.1
0.500000 + 3.43554i
0.500000 + 3.19339i
0.500000 + 0.921602i
0.500000 0.0286340i
0.500000 + 1.56688i
0.500000 1.35798i
0.500000 3.32851i
0.500000 2.40229i
0.500000 + 2.40229i
0.500000 + 3.32851i
0.500000 + 1.35798i
0.500000 1.56688i
0.500000 + 0.0286340i
0.500000 0.921602i
0.500000 3.19339i
0.500000 3.43554i
1.00000i 1.00000i −1.00000 4.30156i −1.00000 0 1.00000i −1.00000 −4.30156
2155.2 1.00000i 1.00000i −1.00000 2.32736i −1.00000 0 1.00000i −1.00000 −2.32736
2155.3 1.00000i 1.00000i −1.00000 1.78763i −1.00000 0 1.00000i −1.00000 −1.78763
2155.4 1.00000i 1.00000i −1.00000 0.837391i −1.00000 0 1.00000i −1.00000 −0.837391
2155.5 1.00000i 1.00000i −1.00000 0.700858i −1.00000 0 1.00000i −1.00000 −0.700858
2155.6 1.00000i 1.00000i −1.00000 2.22400i −1.00000 0 1.00000i −1.00000 2.22400
2155.7 1.00000i 1.00000i −1.00000 2.46248i −1.00000 0 1.00000i −1.00000 2.46248
2155.8 1.00000i 1.00000i −1.00000 3.26832i −1.00000 0 1.00000i −1.00000 3.26832
2155.9 1.00000i 1.00000i −1.00000 3.26832i −1.00000 0 1.00000i −1.00000 3.26832
2155.10 1.00000i 1.00000i −1.00000 2.46248i −1.00000 0 1.00000i −1.00000 2.46248
2155.11 1.00000i 1.00000i −1.00000 2.22400i −1.00000 0 1.00000i −1.00000 2.22400
2155.12 1.00000i 1.00000i −1.00000 0.700858i −1.00000 0 1.00000i −1.00000 −0.700858
2155.13 1.00000i 1.00000i −1.00000 0.837391i −1.00000 0 1.00000i −1.00000 −0.837391
2155.14 1.00000i 1.00000i −1.00000 1.78763i −1.00000 0 1.00000i −1.00000 −1.78763
2155.15 1.00000i 1.00000i −1.00000 2.32736i −1.00000 0 1.00000i −1.00000 −2.32736
2155.16 1.00000i 1.00000i −1.00000 4.30156i −1.00000 0 1.00000i −1.00000 −4.30156
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2155.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
77.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3234.2.e.a 16
7.b odd 2 1 3234.2.e.b 16
7.c even 3 1 462.2.p.a 16
7.d odd 6 1 462.2.p.b yes 16
11.b odd 2 1 3234.2.e.b 16
21.g even 6 1 1386.2.bk.b 16
21.h odd 6 1 1386.2.bk.a 16
77.b even 2 1 inner 3234.2.e.a 16
77.h odd 6 1 462.2.p.b yes 16
77.i even 6 1 462.2.p.a 16
231.k odd 6 1 1386.2.bk.a 16
231.l even 6 1 1386.2.bk.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
462.2.p.a 16 7.c even 3 1
462.2.p.a 16 77.i even 6 1
462.2.p.b yes 16 7.d odd 6 1
462.2.p.b yes 16 77.h odd 6 1
1386.2.bk.a 16 21.h odd 6 1
1386.2.bk.a 16 231.k odd 6 1
1386.2.bk.b 16 21.g even 6 1
1386.2.bk.b 16 231.l even 6 1
3234.2.e.a 16 1.a even 1 1 trivial
3234.2.e.a 16 77.b even 2 1 inner
3234.2.e.b 16 7.b odd 2 1
3234.2.e.b 16 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3234, [\chi])\):

\(T_{5}^{16} + \cdots\)
\( T_{13}^{8} - 64 T_{13}^{6} - 8 T_{13}^{5} + 836 T_{13}^{4} + 1168 T_{13}^{3} - 592 T_{13}^{2} - 1216 T_{13} - 128 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T^{2} )^{8} \)
$3$ \( ( 1 + T^{2} )^{8} \)
$5$ \( 35344 + 158136 T^{2} + 240841 T^{4} + 156530 T^{6} + 52131 T^{8} + 9580 T^{10} + 971 T^{12} + 50 T^{14} + T^{16} \)
$7$ \( T^{16} \)
$11$ \( 214358881 - 155897368 T + 58461513 T^{2} - 9018856 T^{3} - 3016046 T^{4} + 1756920 T^{5} - 142417 T^{6} - 170808 T^{7} + 86618 T^{8} - 15528 T^{9} - 1177 T^{10} + 1320 T^{11} - 206 T^{12} - 56 T^{13} + 33 T^{14} - 8 T^{15} + T^{16} \)
$13$ \( ( -128 - 1216 T - 592 T^{2} + 1168 T^{3} + 836 T^{4} - 8 T^{5} - 64 T^{6} + T^{8} )^{2} \)
$17$ \( ( 24 + 276 T + 277 T^{2} - 1736 T^{3} + 727 T^{4} + 68 T^{5} - 53 T^{6} + T^{8} )^{2} \)
$19$ \( ( -1664 + 2368 T + 4368 T^{2} - 2272 T^{3} - 440 T^{4} + 300 T^{5} - 7 T^{6} - 10 T^{7} + T^{8} )^{2} \)
$23$ \( ( -155048 + 244956 T - 51751 T^{2} - 20192 T^{3} + 4817 T^{4} + 520 T^{5} - 127 T^{6} - 4 T^{7} + T^{8} )^{2} \)
$29$ \( 12810617856 + 11931674112 T^{2} + 3667420672 T^{4} + 491528720 T^{6} + 33087905 T^{8} + 1203204 T^{10} + 23910 T^{12} + 244 T^{14} + T^{16} \)
$31$ \( 262144 + 2588672 T^{2} + 4282624 T^{4} + 2570240 T^{6} + 637600 T^{8} + 75296 T^{10} + 4321 T^{12} + 110 T^{14} + T^{16} \)
$37$ \( ( -354432 - 97728 T + 87184 T^{2} + 29632 T^{3} - 2472 T^{4} - 1500 T^{5} - 67 T^{6} + 14 T^{7} + T^{8} )^{2} \)
$41$ \( ( 256 - 8064 T + 2848 T^{2} + 6824 T^{3} - 4815 T^{4} + 952 T^{5} + 2 T^{6} - 16 T^{7} + T^{8} )^{2} \)
$43$ \( 23084548096 + 25298960384 T^{2} + 8477803520 T^{4} + 1124077312 T^{6} + 71086992 T^{8} + 2303384 T^{10} + 38761 T^{12} + 318 T^{14} + T^{16} \)
$47$ \( 1344737098384 + 2709628962904 T^{2} + 763408512409 T^{4} + 67398714066 T^{6} + 1958321891 T^{8} + 26776492 T^{10} + 190971 T^{12} + 690 T^{14} + T^{16} \)
$53$ \( ( -162752 - 375904 T - 185836 T^{2} + 8776 T^{3} + 14360 T^{4} - 116 T^{5} - 235 T^{6} + T^{8} )^{2} \)
$59$ \( 109280491776 + 413934441216 T^{2} + 104526860512 T^{4} + 10191969456 T^{6} + 463763809 T^{8} + 10035524 T^{10} + 106438 T^{12} + 532 T^{14} + T^{16} \)
$61$ \( ( -59072 + 62880 T + 133652 T^{2} + 9776 T^{3} - 10375 T^{4} - 1168 T^{5} + 164 T^{6} + 28 T^{7} + T^{8} )^{2} \)
$67$ \( ( 49024 + 152928 T - 1900 T^{2} - 47276 T^{3} + 1025 T^{4} + 1924 T^{5} - 94 T^{6} - 16 T^{7} + T^{8} )^{2} \)
$71$ \( ( 4193232 + 2297712 T - 45068 T^{2} - 251544 T^{3} - 58124 T^{4} - 4360 T^{5} + 97 T^{6} + 28 T^{7} + T^{8} )^{2} \)
$73$ \( ( -346112 - 2721792 T + 397696 T^{2} + 174976 T^{3} - 31680 T^{4} - 1504 T^{5} + 620 T^{6} - 44 T^{7} + T^{8} )^{2} \)
$79$ \( 1130708969104 + 4846349134264 T^{2} + 1006354044337 T^{4} + 67984476246 T^{6} + 1939764659 T^{8} + 27483124 T^{10} + 201843 T^{12} + 726 T^{14} + T^{16} \)
$83$ \( ( 5604 + 12516 T - 263 T^{2} - 8396 T^{3} + 1031 T^{4} + 780 T^{5} - 141 T^{6} - 4 T^{7} + T^{8} )^{2} \)
$89$ \( 96546188427264 + 26162967478272 T^{2} + 2506860298240 T^{4} + 114502692864 T^{6} + 2742795520 T^{8} + 35171840 T^{10} + 236896 T^{12} + 784 T^{14} + T^{16} \)
$97$ \( 68597371921 + 325271379408 T^{2} + 446119112140 T^{4} + 163854186512 T^{6} + 4910736438 T^{8} + 58793584 T^{10} + 340460 T^{12} + 944 T^{14} + T^{16} \)
show more
show less