Properties

Label 3234.2.a.x.1.1
Level $3234$
Weight $2$
Character 3234.1
Self dual yes
Analytic conductor $25.824$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3234,2,Mod(1,3234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3234.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.8236200137\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 462)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3234.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.46410 q^{5} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.46410 q^{5} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +3.46410 q^{10} +1.00000 q^{11} -1.00000 q^{12} -2.00000 q^{13} +3.46410 q^{15} +1.00000 q^{16} +3.46410 q^{17} -1.00000 q^{18} +1.46410 q^{19} -3.46410 q^{20} -1.00000 q^{22} -6.92820 q^{23} +1.00000 q^{24} +7.00000 q^{25} +2.00000 q^{26} -1.00000 q^{27} -6.00000 q^{29} -3.46410 q^{30} +1.46410 q^{31} -1.00000 q^{32} -1.00000 q^{33} -3.46410 q^{34} +1.00000 q^{36} +8.92820 q^{37} -1.46410 q^{38} +2.00000 q^{39} +3.46410 q^{40} +3.46410 q^{41} +2.92820 q^{43} +1.00000 q^{44} -3.46410 q^{45} +6.92820 q^{46} -2.53590 q^{47} -1.00000 q^{48} -7.00000 q^{50} -3.46410 q^{51} -2.00000 q^{52} +12.9282 q^{53} +1.00000 q^{54} -3.46410 q^{55} -1.46410 q^{57} +6.00000 q^{58} +6.92820 q^{59} +3.46410 q^{60} -2.00000 q^{61} -1.46410 q^{62} +1.00000 q^{64} +6.92820 q^{65} +1.00000 q^{66} +1.07180 q^{67} +3.46410 q^{68} +6.92820 q^{69} -12.0000 q^{71} -1.00000 q^{72} +7.46410 q^{73} -8.92820 q^{74} -7.00000 q^{75} +1.46410 q^{76} -2.00000 q^{78} +2.92820 q^{79} -3.46410 q^{80} +1.00000 q^{81} -3.46410 q^{82} +16.3923 q^{83} -12.0000 q^{85} -2.92820 q^{86} +6.00000 q^{87} -1.00000 q^{88} -12.9282 q^{89} +3.46410 q^{90} -6.92820 q^{92} -1.46410 q^{93} +2.53590 q^{94} -5.07180 q^{95} +1.00000 q^{96} -2.00000 q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{6} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{6} - 2 q^{8} + 2 q^{9} + 2 q^{11} - 2 q^{12} - 4 q^{13} + 2 q^{16} - 2 q^{18} - 4 q^{19} - 2 q^{22} + 2 q^{24} + 14 q^{25} + 4 q^{26} - 2 q^{27} - 12 q^{29} - 4 q^{31} - 2 q^{32} - 2 q^{33} + 2 q^{36} + 4 q^{37} + 4 q^{38} + 4 q^{39} - 8 q^{43} + 2 q^{44} - 12 q^{47} - 2 q^{48} - 14 q^{50} - 4 q^{52} + 12 q^{53} + 2 q^{54} + 4 q^{57} + 12 q^{58} - 4 q^{61} + 4 q^{62} + 2 q^{64} + 2 q^{66} + 16 q^{67} - 24 q^{71} - 2 q^{72} + 8 q^{73} - 4 q^{74} - 14 q^{75} - 4 q^{76} - 4 q^{78} - 8 q^{79} + 2 q^{81} + 12 q^{83} - 24 q^{85} + 8 q^{86} + 12 q^{87} - 2 q^{88} - 12 q^{89} + 4 q^{93} + 12 q^{94} - 24 q^{95} + 2 q^{96} - 4 q^{97} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −3.46410 −1.54919 −0.774597 0.632456i \(-0.782047\pi\)
−0.774597 + 0.632456i \(0.782047\pi\)
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 3.46410 1.09545
\(11\) 1.00000 0.301511
\(12\) −1.00000 −0.288675
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 3.46410 0.894427
\(16\) 1.00000 0.250000
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) −1.00000 −0.235702
\(19\) 1.46410 0.335888 0.167944 0.985797i \(-0.446287\pi\)
0.167944 + 0.985797i \(0.446287\pi\)
\(20\) −3.46410 −0.774597
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −6.92820 −1.44463 −0.722315 0.691564i \(-0.756922\pi\)
−0.722315 + 0.691564i \(0.756922\pi\)
\(24\) 1.00000 0.204124
\(25\) 7.00000 1.40000
\(26\) 2.00000 0.392232
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) −3.46410 −0.632456
\(31\) 1.46410 0.262960 0.131480 0.991319i \(-0.458027\pi\)
0.131480 + 0.991319i \(0.458027\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.00000 −0.174078
\(34\) −3.46410 −0.594089
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 8.92820 1.46779 0.733894 0.679264i \(-0.237701\pi\)
0.733894 + 0.679264i \(0.237701\pi\)
\(38\) −1.46410 −0.237509
\(39\) 2.00000 0.320256
\(40\) 3.46410 0.547723
\(41\) 3.46410 0.541002 0.270501 0.962720i \(-0.412811\pi\)
0.270501 + 0.962720i \(0.412811\pi\)
\(42\) 0 0
\(43\) 2.92820 0.446547 0.223273 0.974756i \(-0.428326\pi\)
0.223273 + 0.974756i \(0.428326\pi\)
\(44\) 1.00000 0.150756
\(45\) −3.46410 −0.516398
\(46\) 6.92820 1.02151
\(47\) −2.53590 −0.369899 −0.184949 0.982748i \(-0.559212\pi\)
−0.184949 + 0.982748i \(0.559212\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) −7.00000 −0.989949
\(51\) −3.46410 −0.485071
\(52\) −2.00000 −0.277350
\(53\) 12.9282 1.77583 0.887913 0.460012i \(-0.152155\pi\)
0.887913 + 0.460012i \(0.152155\pi\)
\(54\) 1.00000 0.136083
\(55\) −3.46410 −0.467099
\(56\) 0 0
\(57\) −1.46410 −0.193925
\(58\) 6.00000 0.787839
\(59\) 6.92820 0.901975 0.450988 0.892530i \(-0.351072\pi\)
0.450988 + 0.892530i \(0.351072\pi\)
\(60\) 3.46410 0.447214
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) −1.46410 −0.185941
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.92820 0.859338
\(66\) 1.00000 0.123091
\(67\) 1.07180 0.130941 0.0654704 0.997855i \(-0.479145\pi\)
0.0654704 + 0.997855i \(0.479145\pi\)
\(68\) 3.46410 0.420084
\(69\) 6.92820 0.834058
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) −1.00000 −0.117851
\(73\) 7.46410 0.873607 0.436804 0.899557i \(-0.356111\pi\)
0.436804 + 0.899557i \(0.356111\pi\)
\(74\) −8.92820 −1.03788
\(75\) −7.00000 −0.808290
\(76\) 1.46410 0.167944
\(77\) 0 0
\(78\) −2.00000 −0.226455
\(79\) 2.92820 0.329449 0.164724 0.986340i \(-0.447327\pi\)
0.164724 + 0.986340i \(0.447327\pi\)
\(80\) −3.46410 −0.387298
\(81\) 1.00000 0.111111
\(82\) −3.46410 −0.382546
\(83\) 16.3923 1.79929 0.899645 0.436623i \(-0.143826\pi\)
0.899645 + 0.436623i \(0.143826\pi\)
\(84\) 0 0
\(85\) −12.0000 −1.30158
\(86\) −2.92820 −0.315756
\(87\) 6.00000 0.643268
\(88\) −1.00000 −0.106600
\(89\) −12.9282 −1.37039 −0.685193 0.728361i \(-0.740282\pi\)
−0.685193 + 0.728361i \(0.740282\pi\)
\(90\) 3.46410 0.365148
\(91\) 0 0
\(92\) −6.92820 −0.722315
\(93\) −1.46410 −0.151820
\(94\) 2.53590 0.261558
\(95\) −5.07180 −0.520355
\(96\) 1.00000 0.102062
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 7.00000 0.700000
\(101\) −7.85641 −0.781742 −0.390871 0.920446i \(-0.627826\pi\)
−0.390871 + 0.920446i \(0.627826\pi\)
\(102\) 3.46410 0.342997
\(103\) 6.53590 0.644001 0.322001 0.946739i \(-0.395645\pi\)
0.322001 + 0.946739i \(0.395645\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −12.9282 −1.25570
\(107\) 6.92820 0.669775 0.334887 0.942258i \(-0.391302\pi\)
0.334887 + 0.942258i \(0.391302\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −11.8564 −1.13564 −0.567819 0.823154i \(-0.692213\pi\)
−0.567819 + 0.823154i \(0.692213\pi\)
\(110\) 3.46410 0.330289
\(111\) −8.92820 −0.847428
\(112\) 0 0
\(113\) −19.8564 −1.86793 −0.933967 0.357360i \(-0.883677\pi\)
−0.933967 + 0.357360i \(0.883677\pi\)
\(114\) 1.46410 0.137126
\(115\) 24.0000 2.23801
\(116\) −6.00000 −0.557086
\(117\) −2.00000 −0.184900
\(118\) −6.92820 −0.637793
\(119\) 0 0
\(120\) −3.46410 −0.316228
\(121\) 1.00000 0.0909091
\(122\) 2.00000 0.181071
\(123\) −3.46410 −0.312348
\(124\) 1.46410 0.131480
\(125\) −6.92820 −0.619677
\(126\) 0 0
\(127\) 2.92820 0.259836 0.129918 0.991525i \(-0.458529\pi\)
0.129918 + 0.991525i \(0.458529\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −2.92820 −0.257814
\(130\) −6.92820 −0.607644
\(131\) −16.3923 −1.43220 −0.716101 0.697997i \(-0.754075\pi\)
−0.716101 + 0.697997i \(0.754075\pi\)
\(132\) −1.00000 −0.0870388
\(133\) 0 0
\(134\) −1.07180 −0.0925891
\(135\) 3.46410 0.298142
\(136\) −3.46410 −0.297044
\(137\) −19.8564 −1.69645 −0.848224 0.529638i \(-0.822328\pi\)
−0.848224 + 0.529638i \(0.822328\pi\)
\(138\) −6.92820 −0.589768
\(139\) 6.53590 0.554368 0.277184 0.960817i \(-0.410599\pi\)
0.277184 + 0.960817i \(0.410599\pi\)
\(140\) 0 0
\(141\) 2.53590 0.213561
\(142\) 12.0000 1.00702
\(143\) −2.00000 −0.167248
\(144\) 1.00000 0.0833333
\(145\) 20.7846 1.72607
\(146\) −7.46410 −0.617733
\(147\) 0 0
\(148\) 8.92820 0.733894
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 7.00000 0.571548
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −1.46410 −0.118754
\(153\) 3.46410 0.280056
\(154\) 0 0
\(155\) −5.07180 −0.407377
\(156\) 2.00000 0.160128
\(157\) −18.3923 −1.46787 −0.733933 0.679222i \(-0.762317\pi\)
−0.733933 + 0.679222i \(0.762317\pi\)
\(158\) −2.92820 −0.232955
\(159\) −12.9282 −1.02527
\(160\) 3.46410 0.273861
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 3.46410 0.270501
\(165\) 3.46410 0.269680
\(166\) −16.3923 −1.27229
\(167\) −5.07180 −0.392467 −0.196234 0.980557i \(-0.562871\pi\)
−0.196234 + 0.980557i \(0.562871\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 12.0000 0.920358
\(171\) 1.46410 0.111963
\(172\) 2.92820 0.223273
\(173\) −12.9282 −0.982913 −0.491457 0.870902i \(-0.663535\pi\)
−0.491457 + 0.870902i \(0.663535\pi\)
\(174\) −6.00000 −0.454859
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) −6.92820 −0.520756
\(178\) 12.9282 0.969010
\(179\) 20.7846 1.55351 0.776757 0.629800i \(-0.216863\pi\)
0.776757 + 0.629800i \(0.216863\pi\)
\(180\) −3.46410 −0.258199
\(181\) 14.3923 1.06977 0.534886 0.844924i \(-0.320355\pi\)
0.534886 + 0.844924i \(0.320355\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 6.92820 0.510754
\(185\) −30.9282 −2.27389
\(186\) 1.46410 0.107353
\(187\) 3.46410 0.253320
\(188\) −2.53590 −0.184949
\(189\) 0 0
\(190\) 5.07180 0.367947
\(191\) −20.7846 −1.50392 −0.751961 0.659208i \(-0.770892\pi\)
−0.751961 + 0.659208i \(0.770892\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 26.0000 1.87152 0.935760 0.352636i \(-0.114715\pi\)
0.935760 + 0.352636i \(0.114715\pi\)
\(194\) 2.00000 0.143592
\(195\) −6.92820 −0.496139
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) −1.00000 −0.0710669
\(199\) 20.3923 1.44557 0.722786 0.691072i \(-0.242861\pi\)
0.722786 + 0.691072i \(0.242861\pi\)
\(200\) −7.00000 −0.494975
\(201\) −1.07180 −0.0755987
\(202\) 7.85641 0.552775
\(203\) 0 0
\(204\) −3.46410 −0.242536
\(205\) −12.0000 −0.838116
\(206\) −6.53590 −0.455378
\(207\) −6.92820 −0.481543
\(208\) −2.00000 −0.138675
\(209\) 1.46410 0.101274
\(210\) 0 0
\(211\) −24.7846 −1.70624 −0.853121 0.521712i \(-0.825293\pi\)
−0.853121 + 0.521712i \(0.825293\pi\)
\(212\) 12.9282 0.887913
\(213\) 12.0000 0.822226
\(214\) −6.92820 −0.473602
\(215\) −10.1436 −0.691787
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 11.8564 0.803017
\(219\) −7.46410 −0.504377
\(220\) −3.46410 −0.233550
\(221\) −6.92820 −0.466041
\(222\) 8.92820 0.599222
\(223\) −12.3923 −0.829850 −0.414925 0.909856i \(-0.636192\pi\)
−0.414925 + 0.909856i \(0.636192\pi\)
\(224\) 0 0
\(225\) 7.00000 0.466667
\(226\) 19.8564 1.32083
\(227\) −16.3923 −1.08800 −0.543998 0.839087i \(-0.683090\pi\)
−0.543998 + 0.839087i \(0.683090\pi\)
\(228\) −1.46410 −0.0969625
\(229\) −13.3205 −0.880244 −0.440122 0.897938i \(-0.645065\pi\)
−0.440122 + 0.897938i \(0.645065\pi\)
\(230\) −24.0000 −1.58251
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 19.8564 1.30084 0.650418 0.759576i \(-0.274594\pi\)
0.650418 + 0.759576i \(0.274594\pi\)
\(234\) 2.00000 0.130744
\(235\) 8.78461 0.573045
\(236\) 6.92820 0.450988
\(237\) −2.92820 −0.190207
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 3.46410 0.223607
\(241\) −30.3923 −1.95774 −0.978870 0.204482i \(-0.934449\pi\)
−0.978870 + 0.204482i \(0.934449\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −1.00000 −0.0641500
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 3.46410 0.220863
\(247\) −2.92820 −0.186317
\(248\) −1.46410 −0.0929705
\(249\) −16.3923 −1.03882
\(250\) 6.92820 0.438178
\(251\) −17.0718 −1.07756 −0.538781 0.842446i \(-0.681115\pi\)
−0.538781 + 0.842446i \(0.681115\pi\)
\(252\) 0 0
\(253\) −6.92820 −0.435572
\(254\) −2.92820 −0.183732
\(255\) 12.0000 0.751469
\(256\) 1.00000 0.0625000
\(257\) 0.928203 0.0578997 0.0289499 0.999581i \(-0.490784\pi\)
0.0289499 + 0.999581i \(0.490784\pi\)
\(258\) 2.92820 0.182302
\(259\) 0 0
\(260\) 6.92820 0.429669
\(261\) −6.00000 −0.371391
\(262\) 16.3923 1.01272
\(263\) −18.9282 −1.16716 −0.583582 0.812055i \(-0.698349\pi\)
−0.583582 + 0.812055i \(0.698349\pi\)
\(264\) 1.00000 0.0615457
\(265\) −44.7846 −2.75110
\(266\) 0 0
\(267\) 12.9282 0.791193
\(268\) 1.07180 0.0654704
\(269\) 24.2487 1.47847 0.739235 0.673448i \(-0.235187\pi\)
0.739235 + 0.673448i \(0.235187\pi\)
\(270\) −3.46410 −0.210819
\(271\) −16.7846 −1.01959 −0.509796 0.860295i \(-0.670279\pi\)
−0.509796 + 0.860295i \(0.670279\pi\)
\(272\) 3.46410 0.210042
\(273\) 0 0
\(274\) 19.8564 1.19957
\(275\) 7.00000 0.422116
\(276\) 6.92820 0.417029
\(277\) 15.8564 0.952719 0.476360 0.879251i \(-0.341956\pi\)
0.476360 + 0.879251i \(0.341956\pi\)
\(278\) −6.53590 −0.391997
\(279\) 1.46410 0.0876535
\(280\) 0 0
\(281\) 19.8564 1.18453 0.592267 0.805742i \(-0.298233\pi\)
0.592267 + 0.805742i \(0.298233\pi\)
\(282\) −2.53590 −0.151011
\(283\) 6.53590 0.388519 0.194259 0.980950i \(-0.437770\pi\)
0.194259 + 0.980950i \(0.437770\pi\)
\(284\) −12.0000 −0.712069
\(285\) 5.07180 0.300427
\(286\) 2.00000 0.118262
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) −5.00000 −0.294118
\(290\) −20.7846 −1.22051
\(291\) 2.00000 0.117242
\(292\) 7.46410 0.436804
\(293\) 11.0718 0.646821 0.323411 0.946259i \(-0.395170\pi\)
0.323411 + 0.946259i \(0.395170\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) −8.92820 −0.518941
\(297\) −1.00000 −0.0580259
\(298\) 6.00000 0.347571
\(299\) 13.8564 0.801337
\(300\) −7.00000 −0.404145
\(301\) 0 0
\(302\) 16.0000 0.920697
\(303\) 7.85641 0.451339
\(304\) 1.46410 0.0839720
\(305\) 6.92820 0.396708
\(306\) −3.46410 −0.198030
\(307\) −17.4641 −0.996729 −0.498364 0.866968i \(-0.666066\pi\)
−0.498364 + 0.866968i \(0.666066\pi\)
\(308\) 0 0
\(309\) −6.53590 −0.371814
\(310\) 5.07180 0.288059
\(311\) −7.60770 −0.431393 −0.215696 0.976460i \(-0.569202\pi\)
−0.215696 + 0.976460i \(0.569202\pi\)
\(312\) −2.00000 −0.113228
\(313\) 3.07180 0.173628 0.0868141 0.996225i \(-0.472331\pi\)
0.0868141 + 0.996225i \(0.472331\pi\)
\(314\) 18.3923 1.03794
\(315\) 0 0
\(316\) 2.92820 0.164724
\(317\) −0.928203 −0.0521331 −0.0260665 0.999660i \(-0.508298\pi\)
−0.0260665 + 0.999660i \(0.508298\pi\)
\(318\) 12.9282 0.724978
\(319\) −6.00000 −0.335936
\(320\) −3.46410 −0.193649
\(321\) −6.92820 −0.386695
\(322\) 0 0
\(323\) 5.07180 0.282202
\(324\) 1.00000 0.0555556
\(325\) −14.0000 −0.776580
\(326\) 4.00000 0.221540
\(327\) 11.8564 0.655661
\(328\) −3.46410 −0.191273
\(329\) 0 0
\(330\) −3.46410 −0.190693
\(331\) −22.9282 −1.26025 −0.630124 0.776495i \(-0.716996\pi\)
−0.630124 + 0.776495i \(0.716996\pi\)
\(332\) 16.3923 0.899645
\(333\) 8.92820 0.489263
\(334\) 5.07180 0.277516
\(335\) −3.71281 −0.202853
\(336\) 0 0
\(337\) 7.07180 0.385225 0.192613 0.981275i \(-0.438304\pi\)
0.192613 + 0.981275i \(0.438304\pi\)
\(338\) 9.00000 0.489535
\(339\) 19.8564 1.07845
\(340\) −12.0000 −0.650791
\(341\) 1.46410 0.0792855
\(342\) −1.46410 −0.0791695
\(343\) 0 0
\(344\) −2.92820 −0.157878
\(345\) −24.0000 −1.29212
\(346\) 12.9282 0.695025
\(347\) 20.7846 1.11578 0.557888 0.829916i \(-0.311612\pi\)
0.557888 + 0.829916i \(0.311612\pi\)
\(348\) 6.00000 0.321634
\(349\) 30.7846 1.64786 0.823931 0.566690i \(-0.191776\pi\)
0.823931 + 0.566690i \(0.191776\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) −1.00000 −0.0533002
\(353\) 0.928203 0.0494033 0.0247016 0.999695i \(-0.492136\pi\)
0.0247016 + 0.999695i \(0.492136\pi\)
\(354\) 6.92820 0.368230
\(355\) 41.5692 2.20627
\(356\) −12.9282 −0.685193
\(357\) 0 0
\(358\) −20.7846 −1.09850
\(359\) −18.9282 −0.998992 −0.499496 0.866316i \(-0.666482\pi\)
−0.499496 + 0.866316i \(0.666482\pi\)
\(360\) 3.46410 0.182574
\(361\) −16.8564 −0.887179
\(362\) −14.3923 −0.756443
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) −25.8564 −1.35339
\(366\) −2.00000 −0.104542
\(367\) 15.3205 0.799724 0.399862 0.916575i \(-0.369058\pi\)
0.399862 + 0.916575i \(0.369058\pi\)
\(368\) −6.92820 −0.361158
\(369\) 3.46410 0.180334
\(370\) 30.9282 1.60788
\(371\) 0 0
\(372\) −1.46410 −0.0759101
\(373\) −25.7128 −1.33136 −0.665679 0.746238i \(-0.731858\pi\)
−0.665679 + 0.746238i \(0.731858\pi\)
\(374\) −3.46410 −0.179124
\(375\) 6.92820 0.357771
\(376\) 2.53590 0.130779
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) 9.85641 0.506290 0.253145 0.967428i \(-0.418535\pi\)
0.253145 + 0.967428i \(0.418535\pi\)
\(380\) −5.07180 −0.260178
\(381\) −2.92820 −0.150016
\(382\) 20.7846 1.06343
\(383\) −21.4641 −1.09676 −0.548382 0.836228i \(-0.684756\pi\)
−0.548382 + 0.836228i \(0.684756\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −26.0000 −1.32337
\(387\) 2.92820 0.148849
\(388\) −2.00000 −0.101535
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 6.92820 0.350823
\(391\) −24.0000 −1.21373
\(392\) 0 0
\(393\) 16.3923 0.826882
\(394\) −18.0000 −0.906827
\(395\) −10.1436 −0.510380
\(396\) 1.00000 0.0502519
\(397\) −18.3923 −0.923083 −0.461542 0.887119i \(-0.652704\pi\)
−0.461542 + 0.887119i \(0.652704\pi\)
\(398\) −20.3923 −1.02217
\(399\) 0 0
\(400\) 7.00000 0.350000
\(401\) 31.8564 1.59083 0.795417 0.606063i \(-0.207252\pi\)
0.795417 + 0.606063i \(0.207252\pi\)
\(402\) 1.07180 0.0534564
\(403\) −2.92820 −0.145864
\(404\) −7.85641 −0.390871
\(405\) −3.46410 −0.172133
\(406\) 0 0
\(407\) 8.92820 0.442555
\(408\) 3.46410 0.171499
\(409\) −25.3205 −1.25202 −0.626009 0.779816i \(-0.715313\pi\)
−0.626009 + 0.779816i \(0.715313\pi\)
\(410\) 12.0000 0.592638
\(411\) 19.8564 0.979444
\(412\) 6.53590 0.322001
\(413\) 0 0
\(414\) 6.92820 0.340503
\(415\) −56.7846 −2.78745
\(416\) 2.00000 0.0980581
\(417\) −6.53590 −0.320064
\(418\) −1.46410 −0.0716116
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) 17.7128 0.863270 0.431635 0.902048i \(-0.357937\pi\)
0.431635 + 0.902048i \(0.357937\pi\)
\(422\) 24.7846 1.20650
\(423\) −2.53590 −0.123300
\(424\) −12.9282 −0.627849
\(425\) 24.2487 1.17624
\(426\) −12.0000 −0.581402
\(427\) 0 0
\(428\) 6.92820 0.334887
\(429\) 2.00000 0.0965609
\(430\) 10.1436 0.489168
\(431\) −5.07180 −0.244300 −0.122150 0.992512i \(-0.538979\pi\)
−0.122150 + 0.992512i \(0.538979\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) −20.7846 −0.996546
\(436\) −11.8564 −0.567819
\(437\) −10.1436 −0.485234
\(438\) 7.46410 0.356649
\(439\) −16.7846 −0.801086 −0.400543 0.916278i \(-0.631178\pi\)
−0.400543 + 0.916278i \(0.631178\pi\)
\(440\) 3.46410 0.165145
\(441\) 0 0
\(442\) 6.92820 0.329541
\(443\) 20.7846 0.987507 0.493753 0.869602i \(-0.335625\pi\)
0.493753 + 0.869602i \(0.335625\pi\)
\(444\) −8.92820 −0.423714
\(445\) 44.7846 2.12299
\(446\) 12.3923 0.586793
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) 7.85641 0.370767 0.185383 0.982666i \(-0.440647\pi\)
0.185383 + 0.982666i \(0.440647\pi\)
\(450\) −7.00000 −0.329983
\(451\) 3.46410 0.163118
\(452\) −19.8564 −0.933967
\(453\) 16.0000 0.751746
\(454\) 16.3923 0.769329
\(455\) 0 0
\(456\) 1.46410 0.0685628
\(457\) −11.8564 −0.554619 −0.277310 0.960781i \(-0.589443\pi\)
−0.277310 + 0.960781i \(0.589443\pi\)
\(458\) 13.3205 0.622426
\(459\) −3.46410 −0.161690
\(460\) 24.0000 1.11901
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) −6.00000 −0.278543
\(465\) 5.07180 0.235199
\(466\) −19.8564 −0.919830
\(467\) −39.7128 −1.83769 −0.918845 0.394619i \(-0.870877\pi\)
−0.918845 + 0.394619i \(0.870877\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 0 0
\(470\) −8.78461 −0.405204
\(471\) 18.3923 0.847473
\(472\) −6.92820 −0.318896
\(473\) 2.92820 0.134639
\(474\) 2.92820 0.134497
\(475\) 10.2487 0.470243
\(476\) 0 0
\(477\) 12.9282 0.591942
\(478\) 24.0000 1.09773
\(479\) −13.8564 −0.633115 −0.316558 0.948573i \(-0.602527\pi\)
−0.316558 + 0.948573i \(0.602527\pi\)
\(480\) −3.46410 −0.158114
\(481\) −17.8564 −0.814182
\(482\) 30.3923 1.38433
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 6.92820 0.314594
\(486\) 1.00000 0.0453609
\(487\) −0.784610 −0.0355541 −0.0177770 0.999842i \(-0.505659\pi\)
−0.0177770 + 0.999842i \(0.505659\pi\)
\(488\) 2.00000 0.0905357
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 25.8564 1.16688 0.583442 0.812155i \(-0.301706\pi\)
0.583442 + 0.812155i \(0.301706\pi\)
\(492\) −3.46410 −0.156174
\(493\) −20.7846 −0.936092
\(494\) 2.92820 0.131746
\(495\) −3.46410 −0.155700
\(496\) 1.46410 0.0657401
\(497\) 0 0
\(498\) 16.3923 0.734557
\(499\) −22.9282 −1.02641 −0.513204 0.858267i \(-0.671541\pi\)
−0.513204 + 0.858267i \(0.671541\pi\)
\(500\) −6.92820 −0.309839
\(501\) 5.07180 0.226591
\(502\) 17.0718 0.761952
\(503\) −5.07180 −0.226140 −0.113070 0.993587i \(-0.536068\pi\)
−0.113070 + 0.993587i \(0.536068\pi\)
\(504\) 0 0
\(505\) 27.2154 1.21107
\(506\) 6.92820 0.307996
\(507\) 9.00000 0.399704
\(508\) 2.92820 0.129918
\(509\) 6.67949 0.296063 0.148032 0.988983i \(-0.452706\pi\)
0.148032 + 0.988983i \(0.452706\pi\)
\(510\) −12.0000 −0.531369
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −1.46410 −0.0646417
\(514\) −0.928203 −0.0409413
\(515\) −22.6410 −0.997682
\(516\) −2.92820 −0.128907
\(517\) −2.53590 −0.111529
\(518\) 0 0
\(519\) 12.9282 0.567485
\(520\) −6.92820 −0.303822
\(521\) −23.0718 −1.01079 −0.505397 0.862887i \(-0.668654\pi\)
−0.505397 + 0.862887i \(0.668654\pi\)
\(522\) 6.00000 0.262613
\(523\) −3.60770 −0.157753 −0.0788767 0.996884i \(-0.525133\pi\)
−0.0788767 + 0.996884i \(0.525133\pi\)
\(524\) −16.3923 −0.716101
\(525\) 0 0
\(526\) 18.9282 0.825309
\(527\) 5.07180 0.220931
\(528\) −1.00000 −0.0435194
\(529\) 25.0000 1.08696
\(530\) 44.7846 1.94532
\(531\) 6.92820 0.300658
\(532\) 0 0
\(533\) −6.92820 −0.300094
\(534\) −12.9282 −0.559458
\(535\) −24.0000 −1.03761
\(536\) −1.07180 −0.0462946
\(537\) −20.7846 −0.896922
\(538\) −24.2487 −1.04544
\(539\) 0 0
\(540\) 3.46410 0.149071
\(541\) 29.7128 1.27745 0.638727 0.769434i \(-0.279461\pi\)
0.638727 + 0.769434i \(0.279461\pi\)
\(542\) 16.7846 0.720961
\(543\) −14.3923 −0.617633
\(544\) −3.46410 −0.148522
\(545\) 41.0718 1.75932
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) −19.8564 −0.848224
\(549\) −2.00000 −0.0853579
\(550\) −7.00000 −0.298481
\(551\) −8.78461 −0.374237
\(552\) −6.92820 −0.294884
\(553\) 0 0
\(554\) −15.8564 −0.673674
\(555\) 30.9282 1.31283
\(556\) 6.53590 0.277184
\(557\) −33.7128 −1.42846 −0.714229 0.699912i \(-0.753222\pi\)
−0.714229 + 0.699912i \(0.753222\pi\)
\(558\) −1.46410 −0.0619804
\(559\) −5.85641 −0.247700
\(560\) 0 0
\(561\) −3.46410 −0.146254
\(562\) −19.8564 −0.837592
\(563\) −30.2487 −1.27483 −0.637416 0.770520i \(-0.719997\pi\)
−0.637416 + 0.770520i \(0.719997\pi\)
\(564\) 2.53590 0.106781
\(565\) 68.7846 2.89379
\(566\) −6.53590 −0.274724
\(567\) 0 0
\(568\) 12.0000 0.503509
\(569\) −4.14359 −0.173708 −0.0868542 0.996221i \(-0.527681\pi\)
−0.0868542 + 0.996221i \(0.527681\pi\)
\(570\) −5.07180 −0.212434
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 20.7846 0.868290
\(574\) 0 0
\(575\) −48.4974 −2.02248
\(576\) 1.00000 0.0416667
\(577\) −10.7846 −0.448969 −0.224485 0.974478i \(-0.572070\pi\)
−0.224485 + 0.974478i \(0.572070\pi\)
\(578\) 5.00000 0.207973
\(579\) −26.0000 −1.08052
\(580\) 20.7846 0.863034
\(581\) 0 0
\(582\) −2.00000 −0.0829027
\(583\) 12.9282 0.535431
\(584\) −7.46410 −0.308867
\(585\) 6.92820 0.286446
\(586\) −11.0718 −0.457372
\(587\) −20.7846 −0.857873 −0.428936 0.903335i \(-0.641112\pi\)
−0.428936 + 0.903335i \(0.641112\pi\)
\(588\) 0 0
\(589\) 2.14359 0.0883252
\(590\) 24.0000 0.988064
\(591\) −18.0000 −0.740421
\(592\) 8.92820 0.366947
\(593\) 27.4641 1.12782 0.563908 0.825838i \(-0.309297\pi\)
0.563908 + 0.825838i \(0.309297\pi\)
\(594\) 1.00000 0.0410305
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) −20.3923 −0.834601
\(598\) −13.8564 −0.566631
\(599\) −25.8564 −1.05646 −0.528232 0.849100i \(-0.677145\pi\)
−0.528232 + 0.849100i \(0.677145\pi\)
\(600\) 7.00000 0.285774
\(601\) 2.39230 0.0975842 0.0487921 0.998809i \(-0.484463\pi\)
0.0487921 + 0.998809i \(0.484463\pi\)
\(602\) 0 0
\(603\) 1.07180 0.0436469
\(604\) −16.0000 −0.651031
\(605\) −3.46410 −0.140836
\(606\) −7.85641 −0.319145
\(607\) −35.7128 −1.44954 −0.724769 0.688992i \(-0.758054\pi\)
−0.724769 + 0.688992i \(0.758054\pi\)
\(608\) −1.46410 −0.0593772
\(609\) 0 0
\(610\) −6.92820 −0.280515
\(611\) 5.07180 0.205183
\(612\) 3.46410 0.140028
\(613\) −22.0000 −0.888572 −0.444286 0.895885i \(-0.646543\pi\)
−0.444286 + 0.895885i \(0.646543\pi\)
\(614\) 17.4641 0.704794
\(615\) 12.0000 0.483887
\(616\) 0 0
\(617\) 7.85641 0.316287 0.158144 0.987416i \(-0.449449\pi\)
0.158144 + 0.987416i \(0.449449\pi\)
\(618\) 6.53590 0.262912
\(619\) −23.7128 −0.953098 −0.476549 0.879148i \(-0.658113\pi\)
−0.476549 + 0.879148i \(0.658113\pi\)
\(620\) −5.07180 −0.203688
\(621\) 6.92820 0.278019
\(622\) 7.60770 0.305041
\(623\) 0 0
\(624\) 2.00000 0.0800641
\(625\) −11.0000 −0.440000
\(626\) −3.07180 −0.122774
\(627\) −1.46410 −0.0584706
\(628\) −18.3923 −0.733933
\(629\) 30.9282 1.23319
\(630\) 0 0
\(631\) 40.7846 1.62361 0.811805 0.583929i \(-0.198485\pi\)
0.811805 + 0.583929i \(0.198485\pi\)
\(632\) −2.92820 −0.116478
\(633\) 24.7846 0.985100
\(634\) 0.928203 0.0368637
\(635\) −10.1436 −0.402536
\(636\) −12.9282 −0.512637
\(637\) 0 0
\(638\) 6.00000 0.237542
\(639\) −12.0000 −0.474713
\(640\) 3.46410 0.136931
\(641\) 4.14359 0.163662 0.0818311 0.996646i \(-0.473923\pi\)
0.0818311 + 0.996646i \(0.473923\pi\)
\(642\) 6.92820 0.273434
\(643\) −1.07180 −0.0422675 −0.0211338 0.999777i \(-0.506728\pi\)
−0.0211338 + 0.999777i \(0.506728\pi\)
\(644\) 0 0
\(645\) 10.1436 0.399404
\(646\) −5.07180 −0.199547
\(647\) −35.3205 −1.38859 −0.694296 0.719689i \(-0.744284\pi\)
−0.694296 + 0.719689i \(0.744284\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 6.92820 0.271956
\(650\) 14.0000 0.549125
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 21.7128 0.849688 0.424844 0.905267i \(-0.360329\pi\)
0.424844 + 0.905267i \(0.360329\pi\)
\(654\) −11.8564 −0.463622
\(655\) 56.7846 2.21876
\(656\) 3.46410 0.135250
\(657\) 7.46410 0.291202
\(658\) 0 0
\(659\) −30.9282 −1.20479 −0.602396 0.798197i \(-0.705787\pi\)
−0.602396 + 0.798197i \(0.705787\pi\)
\(660\) 3.46410 0.134840
\(661\) 4.24871 0.165256 0.0826279 0.996580i \(-0.473669\pi\)
0.0826279 + 0.996580i \(0.473669\pi\)
\(662\) 22.9282 0.891130
\(663\) 6.92820 0.269069
\(664\) −16.3923 −0.636145
\(665\) 0 0
\(666\) −8.92820 −0.345961
\(667\) 41.5692 1.60957
\(668\) −5.07180 −0.196234
\(669\) 12.3923 0.479114
\(670\) 3.71281 0.143438
\(671\) −2.00000 −0.0772091
\(672\) 0 0
\(673\) 7.07180 0.272598 0.136299 0.990668i \(-0.456479\pi\)
0.136299 + 0.990668i \(0.456479\pi\)
\(674\) −7.07180 −0.272395
\(675\) −7.00000 −0.269430
\(676\) −9.00000 −0.346154
\(677\) 38.7846 1.49061 0.745307 0.666722i \(-0.232303\pi\)
0.745307 + 0.666722i \(0.232303\pi\)
\(678\) −19.8564 −0.762581
\(679\) 0 0
\(680\) 12.0000 0.460179
\(681\) 16.3923 0.628154
\(682\) −1.46410 −0.0560633
\(683\) 44.7846 1.71364 0.856818 0.515619i \(-0.172438\pi\)
0.856818 + 0.515619i \(0.172438\pi\)
\(684\) 1.46410 0.0559813
\(685\) 68.7846 2.62812
\(686\) 0 0
\(687\) 13.3205 0.508209
\(688\) 2.92820 0.111637
\(689\) −25.8564 −0.985051
\(690\) 24.0000 0.913664
\(691\) 46.9282 1.78523 0.892616 0.450817i \(-0.148867\pi\)
0.892616 + 0.450817i \(0.148867\pi\)
\(692\) −12.9282 −0.491457
\(693\) 0 0
\(694\) −20.7846 −0.788973
\(695\) −22.6410 −0.858823
\(696\) −6.00000 −0.227429
\(697\) 12.0000 0.454532
\(698\) −30.7846 −1.16521
\(699\) −19.8564 −0.751038
\(700\) 0 0
\(701\) −9.71281 −0.366848 −0.183424 0.983034i \(-0.558718\pi\)
−0.183424 + 0.983034i \(0.558718\pi\)
\(702\) −2.00000 −0.0754851
\(703\) 13.0718 0.493012
\(704\) 1.00000 0.0376889
\(705\) −8.78461 −0.330848
\(706\) −0.928203 −0.0349334
\(707\) 0 0
\(708\) −6.92820 −0.260378
\(709\) 5.21539 0.195868 0.0979340 0.995193i \(-0.468777\pi\)
0.0979340 + 0.995193i \(0.468777\pi\)
\(710\) −41.5692 −1.56007
\(711\) 2.92820 0.109816
\(712\) 12.9282 0.484505
\(713\) −10.1436 −0.379881
\(714\) 0 0
\(715\) 6.92820 0.259100
\(716\) 20.7846 0.776757
\(717\) 24.0000 0.896296
\(718\) 18.9282 0.706394
\(719\) −25.1769 −0.938940 −0.469470 0.882948i \(-0.655555\pi\)
−0.469470 + 0.882948i \(0.655555\pi\)
\(720\) −3.46410 −0.129099
\(721\) 0 0
\(722\) 16.8564 0.627330
\(723\) 30.3923 1.13030
\(724\) 14.3923 0.534886
\(725\) −42.0000 −1.55984
\(726\) 1.00000 0.0371135
\(727\) 29.1769 1.08211 0.541056 0.840987i \(-0.318025\pi\)
0.541056 + 0.840987i \(0.318025\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 25.8564 0.956989
\(731\) 10.1436 0.375174
\(732\) 2.00000 0.0739221
\(733\) −39.8564 −1.47213 −0.736065 0.676911i \(-0.763318\pi\)
−0.736065 + 0.676911i \(0.763318\pi\)
\(734\) −15.3205 −0.565490
\(735\) 0 0
\(736\) 6.92820 0.255377
\(737\) 1.07180 0.0394801
\(738\) −3.46410 −0.127515
\(739\) 8.00000 0.294285 0.147142 0.989115i \(-0.452992\pi\)
0.147142 + 0.989115i \(0.452992\pi\)
\(740\) −30.9282 −1.13694
\(741\) 2.92820 0.107570
\(742\) 0 0
\(743\) 41.5692 1.52503 0.762513 0.646972i \(-0.223965\pi\)
0.762513 + 0.646972i \(0.223965\pi\)
\(744\) 1.46410 0.0536766
\(745\) 20.7846 0.761489
\(746\) 25.7128 0.941413
\(747\) 16.3923 0.599763
\(748\) 3.46410 0.126660
\(749\) 0 0
\(750\) −6.92820 −0.252982
\(751\) 16.7846 0.612479 0.306240 0.951954i \(-0.400929\pi\)
0.306240 + 0.951954i \(0.400929\pi\)
\(752\) −2.53590 −0.0924747
\(753\) 17.0718 0.622131
\(754\) −12.0000 −0.437014
\(755\) 55.4256 2.01715
\(756\) 0 0
\(757\) −18.7846 −0.682738 −0.341369 0.939929i \(-0.610891\pi\)
−0.341369 + 0.939929i \(0.610891\pi\)
\(758\) −9.85641 −0.358001
\(759\) 6.92820 0.251478
\(760\) 5.07180 0.183973
\(761\) 46.3923 1.68172 0.840860 0.541253i \(-0.182050\pi\)
0.840860 + 0.541253i \(0.182050\pi\)
\(762\) 2.92820 0.106078
\(763\) 0 0
\(764\) −20.7846 −0.751961
\(765\) −12.0000 −0.433861
\(766\) 21.4641 0.775530
\(767\) −13.8564 −0.500326
\(768\) −1.00000 −0.0360844
\(769\) −35.4641 −1.27887 −0.639434 0.768846i \(-0.720831\pi\)
−0.639434 + 0.768846i \(0.720831\pi\)
\(770\) 0 0
\(771\) −0.928203 −0.0334284
\(772\) 26.0000 0.935760
\(773\) 39.4641 1.41943 0.709713 0.704491i \(-0.248825\pi\)
0.709713 + 0.704491i \(0.248825\pi\)
\(774\) −2.92820 −0.105252
\(775\) 10.2487 0.368145
\(776\) 2.00000 0.0717958
\(777\) 0 0
\(778\) 30.0000 1.07555
\(779\) 5.07180 0.181716
\(780\) −6.92820 −0.248069
\(781\) −12.0000 −0.429394
\(782\) 24.0000 0.858238
\(783\) 6.00000 0.214423
\(784\) 0 0
\(785\) 63.7128 2.27401
\(786\) −16.3923 −0.584694
\(787\) 29.1769 1.04004 0.520022 0.854153i \(-0.325924\pi\)
0.520022 + 0.854153i \(0.325924\pi\)
\(788\) 18.0000 0.641223
\(789\) 18.9282 0.673862
\(790\) 10.1436 0.360893
\(791\) 0 0
\(792\) −1.00000 −0.0355335
\(793\) 4.00000 0.142044
\(794\) 18.3923 0.652718
\(795\) 44.7846 1.58835
\(796\) 20.3923 0.722786
\(797\) 39.4641 1.39789 0.698945 0.715175i \(-0.253653\pi\)
0.698945 + 0.715175i \(0.253653\pi\)
\(798\) 0 0
\(799\) −8.78461 −0.310777
\(800\) −7.00000 −0.247487
\(801\) −12.9282 −0.456796
\(802\) −31.8564 −1.12489
\(803\) 7.46410 0.263402
\(804\) −1.07180 −0.0377994
\(805\) 0 0
\(806\) 2.92820 0.103142
\(807\) −24.2487 −0.853595
\(808\) 7.85641 0.276387
\(809\) 24.9282 0.876429 0.438214 0.898870i \(-0.355611\pi\)
0.438214 + 0.898870i \(0.355611\pi\)
\(810\) 3.46410 0.121716
\(811\) −45.1769 −1.58638 −0.793188 0.608977i \(-0.791580\pi\)
−0.793188 + 0.608977i \(0.791580\pi\)
\(812\) 0 0
\(813\) 16.7846 0.588662
\(814\) −8.92820 −0.312933
\(815\) 13.8564 0.485369
\(816\) −3.46410 −0.121268
\(817\) 4.28719 0.149990
\(818\) 25.3205 0.885311
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) −19.8564 −0.692572
\(823\) −0.784610 −0.0273498 −0.0136749 0.999906i \(-0.504353\pi\)
−0.0136749 + 0.999906i \(0.504353\pi\)
\(824\) −6.53590 −0.227689
\(825\) −7.00000 −0.243709
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) −6.92820 −0.240772
\(829\) 4.24871 0.147564 0.0737819 0.997274i \(-0.476493\pi\)
0.0737819 + 0.997274i \(0.476493\pi\)
\(830\) 56.7846 1.97102
\(831\) −15.8564 −0.550053
\(832\) −2.00000 −0.0693375
\(833\) 0 0
\(834\) 6.53590 0.226320
\(835\) 17.5692 0.608008
\(836\) 1.46410 0.0506370
\(837\) −1.46410 −0.0506068
\(838\) −36.0000 −1.24360
\(839\) 26.5359 0.916121 0.458060 0.888921i \(-0.348544\pi\)
0.458060 + 0.888921i \(0.348544\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −17.7128 −0.610424
\(843\) −19.8564 −0.683891
\(844\) −24.7846 −0.853121
\(845\) 31.1769 1.07252
\(846\) 2.53590 0.0871860
\(847\) 0 0
\(848\) 12.9282 0.443956
\(849\) −6.53590 −0.224311
\(850\) −24.2487 −0.831724
\(851\) −61.8564 −2.12041
\(852\) 12.0000 0.411113
\(853\) −5.71281 −0.195603 −0.0978015 0.995206i \(-0.531181\pi\)
−0.0978015 + 0.995206i \(0.531181\pi\)
\(854\) 0 0
\(855\) −5.07180 −0.173452
\(856\) −6.92820 −0.236801
\(857\) −29.3205 −1.00157 −0.500785 0.865572i \(-0.666955\pi\)
−0.500785 + 0.865572i \(0.666955\pi\)
\(858\) −2.00000 −0.0682789
\(859\) −11.2154 −0.382664 −0.191332 0.981525i \(-0.561281\pi\)
−0.191332 + 0.981525i \(0.561281\pi\)
\(860\) −10.1436 −0.345894
\(861\) 0 0
\(862\) 5.07180 0.172746
\(863\) 3.21539 0.109453 0.0547266 0.998501i \(-0.482571\pi\)
0.0547266 + 0.998501i \(0.482571\pi\)
\(864\) 1.00000 0.0340207
\(865\) 44.7846 1.52272
\(866\) 2.00000 0.0679628
\(867\) 5.00000 0.169809
\(868\) 0 0
\(869\) 2.92820 0.0993325
\(870\) 20.7846 0.704664
\(871\) −2.14359 −0.0726329
\(872\) 11.8564 0.401509
\(873\) −2.00000 −0.0676897
\(874\) 10.1436 0.343112
\(875\) 0 0
\(876\) −7.46410 −0.252189
\(877\) −46.0000 −1.55331 −0.776655 0.629926i \(-0.783085\pi\)
−0.776655 + 0.629926i \(0.783085\pi\)
\(878\) 16.7846 0.566453
\(879\) −11.0718 −0.373442
\(880\) −3.46410 −0.116775
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) −14.1436 −0.475970 −0.237985 0.971269i \(-0.576487\pi\)
−0.237985 + 0.971269i \(0.576487\pi\)
\(884\) −6.92820 −0.233021
\(885\) 24.0000 0.806751
\(886\) −20.7846 −0.698273
\(887\) −37.8564 −1.27109 −0.635547 0.772062i \(-0.719225\pi\)
−0.635547 + 0.772062i \(0.719225\pi\)
\(888\) 8.92820 0.299611
\(889\) 0 0
\(890\) −44.7846 −1.50118
\(891\) 1.00000 0.0335013
\(892\) −12.3923 −0.414925
\(893\) −3.71281 −0.124245
\(894\) −6.00000 −0.200670
\(895\) −72.0000 −2.40669
\(896\) 0 0
\(897\) −13.8564 −0.462652
\(898\) −7.85641 −0.262172
\(899\) −8.78461 −0.292983
\(900\) 7.00000 0.233333
\(901\) 44.7846 1.49199
\(902\) −3.46410 −0.115342
\(903\) 0 0
\(904\) 19.8564 0.660414
\(905\) −49.8564 −1.65728
\(906\) −16.0000 −0.531564
\(907\) 1.07180 0.0355884 0.0177942 0.999842i \(-0.494336\pi\)
0.0177942 + 0.999842i \(0.494336\pi\)
\(908\) −16.3923 −0.543998
\(909\) −7.85641 −0.260581
\(910\) 0 0
\(911\) 48.4974 1.60679 0.803396 0.595446i \(-0.203024\pi\)
0.803396 + 0.595446i \(0.203024\pi\)
\(912\) −1.46410 −0.0484812
\(913\) 16.3923 0.542506
\(914\) 11.8564 0.392175
\(915\) −6.92820 −0.229039
\(916\) −13.3205 −0.440122
\(917\) 0 0
\(918\) 3.46410 0.114332
\(919\) −5.85641 −0.193185 −0.0965925 0.995324i \(-0.530794\pi\)
−0.0965925 + 0.995324i \(0.530794\pi\)
\(920\) −24.0000 −0.791257
\(921\) 17.4641 0.575462
\(922\) −6.00000 −0.197599
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) 62.4974 2.05490
\(926\) −8.00000 −0.262896
\(927\) 6.53590 0.214667
\(928\) 6.00000 0.196960
\(929\) 28.6410 0.939681 0.469841 0.882751i \(-0.344311\pi\)
0.469841 + 0.882751i \(0.344311\pi\)
\(930\) −5.07180 −0.166311
\(931\) 0 0
\(932\) 19.8564 0.650418
\(933\) 7.60770 0.249065
\(934\) 39.7128 1.29944
\(935\) −12.0000 −0.392442
\(936\) 2.00000 0.0653720
\(937\) −6.39230 −0.208827 −0.104414 0.994534i \(-0.533297\pi\)
−0.104414 + 0.994534i \(0.533297\pi\)
\(938\) 0 0
\(939\) −3.07180 −0.100244
\(940\) 8.78461 0.286522
\(941\) 24.9282 0.812636 0.406318 0.913732i \(-0.366812\pi\)
0.406318 + 0.913732i \(0.366812\pi\)
\(942\) −18.3923 −0.599254
\(943\) −24.0000 −0.781548
\(944\) 6.92820 0.225494
\(945\) 0 0
\(946\) −2.92820 −0.0952041
\(947\) 22.1436 0.719570 0.359785 0.933035i \(-0.382850\pi\)
0.359785 + 0.933035i \(0.382850\pi\)
\(948\) −2.92820 −0.0951036
\(949\) −14.9282 −0.484590
\(950\) −10.2487 −0.332512
\(951\) 0.928203 0.0300991
\(952\) 0 0
\(953\) 14.7846 0.478920 0.239460 0.970906i \(-0.423030\pi\)
0.239460 + 0.970906i \(0.423030\pi\)
\(954\) −12.9282 −0.418566
\(955\) 72.0000 2.32987
\(956\) −24.0000 −0.776215
\(957\) 6.00000 0.193952
\(958\) 13.8564 0.447680
\(959\) 0 0
\(960\) 3.46410 0.111803
\(961\) −28.8564 −0.930852
\(962\) 17.8564 0.575714
\(963\) 6.92820 0.223258
\(964\) −30.3923 −0.978870
\(965\) −90.0666 −2.89935
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −5.07180 −0.162930
\(970\) −6.92820 −0.222451
\(971\) −39.7128 −1.27444 −0.637222 0.770680i \(-0.719917\pi\)
−0.637222 + 0.770680i \(0.719917\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) 0.784610 0.0251405
\(975\) 14.0000 0.448359
\(976\) −2.00000 −0.0640184
\(977\) 35.5692 1.13796 0.568980 0.822351i \(-0.307338\pi\)
0.568980 + 0.822351i \(0.307338\pi\)
\(978\) −4.00000 −0.127906
\(979\) −12.9282 −0.413187
\(980\) 0 0
\(981\) −11.8564 −0.378546
\(982\) −25.8564 −0.825111
\(983\) 11.3205 0.361068 0.180534 0.983569i \(-0.442217\pi\)
0.180534 + 0.983569i \(0.442217\pi\)
\(984\) 3.46410 0.110432
\(985\) −62.3538 −1.98676
\(986\) 20.7846 0.661917
\(987\) 0 0
\(988\) −2.92820 −0.0931586
\(989\) −20.2872 −0.645095
\(990\) 3.46410 0.110096
\(991\) −29.8564 −0.948420 −0.474210 0.880412i \(-0.657266\pi\)
−0.474210 + 0.880412i \(0.657266\pi\)
\(992\) −1.46410 −0.0464853
\(993\) 22.9282 0.727605
\(994\) 0 0
\(995\) −70.6410 −2.23947
\(996\) −16.3923 −0.519410
\(997\) 44.6410 1.41380 0.706898 0.707316i \(-0.250094\pi\)
0.706898 + 0.707316i \(0.250094\pi\)
\(998\) 22.9282 0.725780
\(999\) −8.92820 −0.282476
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3234.2.a.x.1.1 2
3.2 odd 2 9702.2.a.dd.1.2 2
7.6 odd 2 462.2.a.h.1.2 2
21.20 even 2 1386.2.a.p.1.1 2
28.27 even 2 3696.2.a.bc.1.2 2
77.76 even 2 5082.2.a.bu.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
462.2.a.h.1.2 2 7.6 odd 2
1386.2.a.p.1.1 2 21.20 even 2
3234.2.a.x.1.1 2 1.1 even 1 trivial
3696.2.a.bc.1.2 2 28.27 even 2
5082.2.a.bu.1.2 2 77.76 even 2
9702.2.a.dd.1.2 2 3.2 odd 2