Properties

Label 3234.2.a.w.1.1
Level $3234$
Weight $2$
Character 3234.1
Self dual yes
Analytic conductor $25.824$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3234,2,Mod(1,3234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3234.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.8236200137\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 462)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.64575\) of defining polynomial
Character \(\chi\) \(=\) 3234.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -2.64575 q^{5} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +2.64575 q^{10} +1.00000 q^{11} -1.00000 q^{12} -4.00000 q^{13} +2.64575 q^{15} +1.00000 q^{16} -3.00000 q^{17} -1.00000 q^{18} -5.29150 q^{19} -2.64575 q^{20} -1.00000 q^{22} +2.64575 q^{23} +1.00000 q^{24} +2.00000 q^{25} +4.00000 q^{26} -1.00000 q^{27} +2.00000 q^{29} -2.64575 q^{30} -4.00000 q^{31} -1.00000 q^{32} -1.00000 q^{33} +3.00000 q^{34} +1.00000 q^{36} -9.29150 q^{37} +5.29150 q^{38} +4.00000 q^{39} +2.64575 q^{40} +9.00000 q^{41} -1.29150 q^{43} +1.00000 q^{44} -2.64575 q^{45} -2.64575 q^{46} +11.9373 q^{47} -1.00000 q^{48} -2.00000 q^{50} +3.00000 q^{51} -4.00000 q^{52} +4.00000 q^{53} +1.00000 q^{54} -2.64575 q^{55} +5.29150 q^{57} -2.00000 q^{58} -14.5830 q^{59} +2.64575 q^{60} -3.93725 q^{61} +4.00000 q^{62} +1.00000 q^{64} +10.5830 q^{65} +1.00000 q^{66} -13.5830 q^{67} -3.00000 q^{68} -2.64575 q^{69} -13.2915 q^{71} -1.00000 q^{72} -4.70850 q^{73} +9.29150 q^{74} -2.00000 q^{75} -5.29150 q^{76} -4.00000 q^{78} +5.35425 q^{79} -2.64575 q^{80} +1.00000 q^{81} -9.00000 q^{82} -5.58301 q^{83} +7.93725 q^{85} +1.29150 q^{86} -2.00000 q^{87} -1.00000 q^{88} +13.2915 q^{89} +2.64575 q^{90} +2.64575 q^{92} +4.00000 q^{93} -11.9373 q^{94} +14.0000 q^{95} +1.00000 q^{96} +9.58301 q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{6} - 2 q^{8} + 2 q^{9} + 2 q^{11} - 2 q^{12} - 8 q^{13} + 2 q^{16} - 6 q^{17} - 2 q^{18} - 2 q^{22} + 2 q^{24} + 4 q^{25} + 8 q^{26} - 2 q^{27} + 4 q^{29} - 8 q^{31}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −2.64575 −1.18322 −0.591608 0.806226i \(-0.701507\pi\)
−0.591608 + 0.806226i \(0.701507\pi\)
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 2.64575 0.836660
\(11\) 1.00000 0.301511
\(12\) −1.00000 −0.288675
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 2.64575 0.683130
\(16\) 1.00000 0.250000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) −1.00000 −0.235702
\(19\) −5.29150 −1.21395 −0.606977 0.794719i \(-0.707618\pi\)
−0.606977 + 0.794719i \(0.707618\pi\)
\(20\) −2.64575 −0.591608
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) 2.64575 0.551677 0.275839 0.961204i \(-0.411044\pi\)
0.275839 + 0.961204i \(0.411044\pi\)
\(24\) 1.00000 0.204124
\(25\) 2.00000 0.400000
\(26\) 4.00000 0.784465
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) −2.64575 −0.483046
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.00000 −0.174078
\(34\) 3.00000 0.514496
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −9.29150 −1.52751 −0.763757 0.645504i \(-0.776647\pi\)
−0.763757 + 0.645504i \(0.776647\pi\)
\(38\) 5.29150 0.858395
\(39\) 4.00000 0.640513
\(40\) 2.64575 0.418330
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) −1.29150 −0.196952 −0.0984762 0.995139i \(-0.531397\pi\)
−0.0984762 + 0.995139i \(0.531397\pi\)
\(44\) 1.00000 0.150756
\(45\) −2.64575 −0.394405
\(46\) −2.64575 −0.390095
\(47\) 11.9373 1.74123 0.870614 0.491967i \(-0.163722\pi\)
0.870614 + 0.491967i \(0.163722\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) −2.00000 −0.282843
\(51\) 3.00000 0.420084
\(52\) −4.00000 −0.554700
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 1.00000 0.136083
\(55\) −2.64575 −0.356753
\(56\) 0 0
\(57\) 5.29150 0.700877
\(58\) −2.00000 −0.262613
\(59\) −14.5830 −1.89855 −0.949273 0.314454i \(-0.898179\pi\)
−0.949273 + 0.314454i \(0.898179\pi\)
\(60\) 2.64575 0.341565
\(61\) −3.93725 −0.504114 −0.252057 0.967712i \(-0.581107\pi\)
−0.252057 + 0.967712i \(0.581107\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 10.5830 1.31266
\(66\) 1.00000 0.123091
\(67\) −13.5830 −1.65943 −0.829714 0.558189i \(-0.811497\pi\)
−0.829714 + 0.558189i \(0.811497\pi\)
\(68\) −3.00000 −0.363803
\(69\) −2.64575 −0.318511
\(70\) 0 0
\(71\) −13.2915 −1.57741 −0.788706 0.614771i \(-0.789248\pi\)
−0.788706 + 0.614771i \(0.789248\pi\)
\(72\) −1.00000 −0.117851
\(73\) −4.70850 −0.551088 −0.275544 0.961288i \(-0.588858\pi\)
−0.275544 + 0.961288i \(0.588858\pi\)
\(74\) 9.29150 1.08012
\(75\) −2.00000 −0.230940
\(76\) −5.29150 −0.606977
\(77\) 0 0
\(78\) −4.00000 −0.452911
\(79\) 5.35425 0.602400 0.301200 0.953561i \(-0.402613\pi\)
0.301200 + 0.953561i \(0.402613\pi\)
\(80\) −2.64575 −0.295804
\(81\) 1.00000 0.111111
\(82\) −9.00000 −0.993884
\(83\) −5.58301 −0.612814 −0.306407 0.951901i \(-0.599127\pi\)
−0.306407 + 0.951901i \(0.599127\pi\)
\(84\) 0 0
\(85\) 7.93725 0.860916
\(86\) 1.29150 0.139266
\(87\) −2.00000 −0.214423
\(88\) −1.00000 −0.106600
\(89\) 13.2915 1.40890 0.704448 0.709755i \(-0.251195\pi\)
0.704448 + 0.709755i \(0.251195\pi\)
\(90\) 2.64575 0.278887
\(91\) 0 0
\(92\) 2.64575 0.275839
\(93\) 4.00000 0.414781
\(94\) −11.9373 −1.23123
\(95\) 14.0000 1.43637
\(96\) 1.00000 0.102062
\(97\) 9.58301 0.973007 0.486503 0.873679i \(-0.338272\pi\)
0.486503 + 0.873679i \(0.338272\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 2.00000 0.200000
\(101\) −3.29150 −0.327517 −0.163758 0.986500i \(-0.552362\pi\)
−0.163758 + 0.986500i \(0.552362\pi\)
\(102\) −3.00000 −0.297044
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) 4.00000 0.392232
\(105\) 0 0
\(106\) −4.00000 −0.388514
\(107\) 9.00000 0.870063 0.435031 0.900415i \(-0.356737\pi\)
0.435031 + 0.900415i \(0.356737\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 11.9373 1.14338 0.571691 0.820469i \(-0.306288\pi\)
0.571691 + 0.820469i \(0.306288\pi\)
\(110\) 2.64575 0.252262
\(111\) 9.29150 0.881910
\(112\) 0 0
\(113\) −8.58301 −0.807421 −0.403711 0.914887i \(-0.632280\pi\)
−0.403711 + 0.914887i \(0.632280\pi\)
\(114\) −5.29150 −0.495595
\(115\) −7.00000 −0.652753
\(116\) 2.00000 0.185695
\(117\) −4.00000 −0.369800
\(118\) 14.5830 1.34247
\(119\) 0 0
\(120\) −2.64575 −0.241523
\(121\) 1.00000 0.0909091
\(122\) 3.93725 0.356462
\(123\) −9.00000 −0.811503
\(124\) −4.00000 −0.359211
\(125\) 7.93725 0.709930
\(126\) 0 0
\(127\) −2.64575 −0.234772 −0.117386 0.993086i \(-0.537452\pi\)
−0.117386 + 0.993086i \(0.537452\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 1.29150 0.113710
\(130\) −10.5830 −0.928191
\(131\) 2.58301 0.225678 0.112839 0.993613i \(-0.464006\pi\)
0.112839 + 0.993613i \(0.464006\pi\)
\(132\) −1.00000 −0.0870388
\(133\) 0 0
\(134\) 13.5830 1.17339
\(135\) 2.64575 0.227710
\(136\) 3.00000 0.257248
\(137\) −2.70850 −0.231403 −0.115701 0.993284i \(-0.536912\pi\)
−0.115701 + 0.993284i \(0.536912\pi\)
\(138\) 2.64575 0.225221
\(139\) 8.58301 0.728001 0.364001 0.931399i \(-0.381411\pi\)
0.364001 + 0.931399i \(0.381411\pi\)
\(140\) 0 0
\(141\) −11.9373 −1.00530
\(142\) 13.2915 1.11540
\(143\) −4.00000 −0.334497
\(144\) 1.00000 0.0833333
\(145\) −5.29150 −0.439435
\(146\) 4.70850 0.389678
\(147\) 0 0
\(148\) −9.29150 −0.763757
\(149\) −11.8745 −0.972798 −0.486399 0.873737i \(-0.661690\pi\)
−0.486399 + 0.873737i \(0.661690\pi\)
\(150\) 2.00000 0.163299
\(151\) 17.3542 1.41227 0.706134 0.708078i \(-0.250437\pi\)
0.706134 + 0.708078i \(0.250437\pi\)
\(152\) 5.29150 0.429198
\(153\) −3.00000 −0.242536
\(154\) 0 0
\(155\) 10.5830 0.850047
\(156\) 4.00000 0.320256
\(157\) −11.2915 −0.901160 −0.450580 0.892736i \(-0.648783\pi\)
−0.450580 + 0.892736i \(0.648783\pi\)
\(158\) −5.35425 −0.425961
\(159\) −4.00000 −0.317221
\(160\) 2.64575 0.209165
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) 15.5830 1.22056 0.610278 0.792188i \(-0.291058\pi\)
0.610278 + 0.792188i \(0.291058\pi\)
\(164\) 9.00000 0.702782
\(165\) 2.64575 0.205971
\(166\) 5.58301 0.433325
\(167\) 19.2915 1.49282 0.746411 0.665486i \(-0.231776\pi\)
0.746411 + 0.665486i \(0.231776\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −7.93725 −0.608760
\(171\) −5.29150 −0.404651
\(172\) −1.29150 −0.0984762
\(173\) 4.00000 0.304114 0.152057 0.988372i \(-0.451410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 2.00000 0.151620
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 14.5830 1.09613
\(178\) −13.2915 −0.996240
\(179\) 15.2915 1.14294 0.571470 0.820623i \(-0.306373\pi\)
0.571470 + 0.820623i \(0.306373\pi\)
\(180\) −2.64575 −0.197203
\(181\) 5.29150 0.393314 0.196657 0.980472i \(-0.436991\pi\)
0.196657 + 0.980472i \(0.436991\pi\)
\(182\) 0 0
\(183\) 3.93725 0.291050
\(184\) −2.64575 −0.195047
\(185\) 24.5830 1.80738
\(186\) −4.00000 −0.293294
\(187\) −3.00000 −0.219382
\(188\) 11.9373 0.870614
\(189\) 0 0
\(190\) −14.0000 −1.01567
\(191\) 17.2915 1.25117 0.625585 0.780156i \(-0.284861\pi\)
0.625585 + 0.780156i \(0.284861\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 15.8745 1.14267 0.571336 0.820716i \(-0.306425\pi\)
0.571336 + 0.820716i \(0.306425\pi\)
\(194\) −9.58301 −0.688020
\(195\) −10.5830 −0.757865
\(196\) 0 0
\(197\) −9.87451 −0.703530 −0.351765 0.936088i \(-0.614418\pi\)
−0.351765 + 0.936088i \(0.614418\pi\)
\(198\) −1.00000 −0.0710669
\(199\) 23.1660 1.64219 0.821097 0.570788i \(-0.193362\pi\)
0.821097 + 0.570788i \(0.193362\pi\)
\(200\) −2.00000 −0.141421
\(201\) 13.5830 0.958071
\(202\) 3.29150 0.231589
\(203\) 0 0
\(204\) 3.00000 0.210042
\(205\) −23.8118 −1.66309
\(206\) 10.0000 0.696733
\(207\) 2.64575 0.183892
\(208\) −4.00000 −0.277350
\(209\) −5.29150 −0.366021
\(210\) 0 0
\(211\) 10.7085 0.737203 0.368602 0.929587i \(-0.379837\pi\)
0.368602 + 0.929587i \(0.379837\pi\)
\(212\) 4.00000 0.274721
\(213\) 13.2915 0.910719
\(214\) −9.00000 −0.615227
\(215\) 3.41699 0.233037
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) −11.9373 −0.808493
\(219\) 4.70850 0.318171
\(220\) −2.64575 −0.178377
\(221\) 12.0000 0.807207
\(222\) −9.29150 −0.623605
\(223\) −24.4575 −1.63780 −0.818898 0.573939i \(-0.805415\pi\)
−0.818898 + 0.573939i \(0.805415\pi\)
\(224\) 0 0
\(225\) 2.00000 0.133333
\(226\) 8.58301 0.570933
\(227\) 23.5830 1.56526 0.782630 0.622488i \(-0.213878\pi\)
0.782630 + 0.622488i \(0.213878\pi\)
\(228\) 5.29150 0.350438
\(229\) 17.2915 1.14265 0.571327 0.820722i \(-0.306429\pi\)
0.571327 + 0.820722i \(0.306429\pi\)
\(230\) 7.00000 0.461566
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −22.1660 −1.45214 −0.726072 0.687619i \(-0.758656\pi\)
−0.726072 + 0.687619i \(0.758656\pi\)
\(234\) 4.00000 0.261488
\(235\) −31.5830 −2.06025
\(236\) −14.5830 −0.949273
\(237\) −5.35425 −0.347796
\(238\) 0 0
\(239\) 13.2915 0.859756 0.429878 0.902887i \(-0.358557\pi\)
0.429878 + 0.902887i \(0.358557\pi\)
\(240\) 2.64575 0.170783
\(241\) 15.1660 0.976929 0.488464 0.872584i \(-0.337557\pi\)
0.488464 + 0.872584i \(0.337557\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −1.00000 −0.0641500
\(244\) −3.93725 −0.252057
\(245\) 0 0
\(246\) 9.00000 0.573819
\(247\) 21.1660 1.34676
\(248\) 4.00000 0.254000
\(249\) 5.58301 0.353809
\(250\) −7.93725 −0.501996
\(251\) 12.7085 0.802153 0.401077 0.916045i \(-0.368636\pi\)
0.401077 + 0.916045i \(0.368636\pi\)
\(252\) 0 0
\(253\) 2.64575 0.166337
\(254\) 2.64575 0.166009
\(255\) −7.93725 −0.497050
\(256\) 1.00000 0.0625000
\(257\) −1.29150 −0.0805617 −0.0402809 0.999188i \(-0.512825\pi\)
−0.0402809 + 0.999188i \(0.512825\pi\)
\(258\) −1.29150 −0.0804054
\(259\) 0 0
\(260\) 10.5830 0.656330
\(261\) 2.00000 0.123797
\(262\) −2.58301 −0.159579
\(263\) −9.87451 −0.608888 −0.304444 0.952530i \(-0.598471\pi\)
−0.304444 + 0.952530i \(0.598471\pi\)
\(264\) 1.00000 0.0615457
\(265\) −10.5830 −0.650109
\(266\) 0 0
\(267\) −13.2915 −0.813427
\(268\) −13.5830 −0.829714
\(269\) −5.35425 −0.326454 −0.163227 0.986589i \(-0.552190\pi\)
−0.163227 + 0.986589i \(0.552190\pi\)
\(270\) −2.64575 −0.161015
\(271\) −1.29150 −0.0784532 −0.0392266 0.999230i \(-0.512489\pi\)
−0.0392266 + 0.999230i \(0.512489\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) 2.70850 0.163626
\(275\) 2.00000 0.120605
\(276\) −2.64575 −0.159256
\(277\) 25.1660 1.51208 0.756040 0.654526i \(-0.227132\pi\)
0.756040 + 0.654526i \(0.227132\pi\)
\(278\) −8.58301 −0.514774
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 11.9373 0.710853
\(283\) −22.4575 −1.33496 −0.667480 0.744627i \(-0.732627\pi\)
−0.667480 + 0.744627i \(0.732627\pi\)
\(284\) −13.2915 −0.788706
\(285\) −14.0000 −0.829288
\(286\) 4.00000 0.236525
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) −8.00000 −0.470588
\(290\) 5.29150 0.310728
\(291\) −9.58301 −0.561766
\(292\) −4.70850 −0.275544
\(293\) 6.58301 0.384583 0.192292 0.981338i \(-0.438408\pi\)
0.192292 + 0.981338i \(0.438408\pi\)
\(294\) 0 0
\(295\) 38.5830 2.24639
\(296\) 9.29150 0.540058
\(297\) −1.00000 −0.0580259
\(298\) 11.8745 0.687872
\(299\) −10.5830 −0.612031
\(300\) −2.00000 −0.115470
\(301\) 0 0
\(302\) −17.3542 −0.998625
\(303\) 3.29150 0.189092
\(304\) −5.29150 −0.303488
\(305\) 10.4170 0.596475
\(306\) 3.00000 0.171499
\(307\) −32.5830 −1.85961 −0.929805 0.368052i \(-0.880025\pi\)
−0.929805 + 0.368052i \(0.880025\pi\)
\(308\) 0 0
\(309\) 10.0000 0.568880
\(310\) −10.5830 −0.601074
\(311\) −14.5203 −0.823368 −0.411684 0.911327i \(-0.635059\pi\)
−0.411684 + 0.911327i \(0.635059\pi\)
\(312\) −4.00000 −0.226455
\(313\) 0.583005 0.0329534 0.0164767 0.999864i \(-0.494755\pi\)
0.0164767 + 0.999864i \(0.494755\pi\)
\(314\) 11.2915 0.637216
\(315\) 0 0
\(316\) 5.35425 0.301200
\(317\) −17.2288 −0.967663 −0.483832 0.875161i \(-0.660755\pi\)
−0.483832 + 0.875161i \(0.660755\pi\)
\(318\) 4.00000 0.224309
\(319\) 2.00000 0.111979
\(320\) −2.64575 −0.147902
\(321\) −9.00000 −0.502331
\(322\) 0 0
\(323\) 15.8745 0.883281
\(324\) 1.00000 0.0555556
\(325\) −8.00000 −0.443760
\(326\) −15.5830 −0.863063
\(327\) −11.9373 −0.660132
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) −2.64575 −0.145644
\(331\) 13.0000 0.714545 0.357272 0.934000i \(-0.383707\pi\)
0.357272 + 0.934000i \(0.383707\pi\)
\(332\) −5.58301 −0.306407
\(333\) −9.29150 −0.509171
\(334\) −19.2915 −1.05558
\(335\) 35.9373 1.96346
\(336\) 0 0
\(337\) 17.2915 0.941928 0.470964 0.882152i \(-0.343906\pi\)
0.470964 + 0.882152i \(0.343906\pi\)
\(338\) −3.00000 −0.163178
\(339\) 8.58301 0.466165
\(340\) 7.93725 0.430458
\(341\) −4.00000 −0.216612
\(342\) 5.29150 0.286132
\(343\) 0 0
\(344\) 1.29150 0.0696332
\(345\) 7.00000 0.376867
\(346\) −4.00000 −0.215041
\(347\) 8.41699 0.451848 0.225924 0.974145i \(-0.427460\pi\)
0.225924 + 0.974145i \(0.427460\pi\)
\(348\) −2.00000 −0.107211
\(349\) 13.2288 0.708119 0.354060 0.935223i \(-0.384801\pi\)
0.354060 + 0.935223i \(0.384801\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) −1.00000 −0.0533002
\(353\) −12.7085 −0.676405 −0.338203 0.941073i \(-0.609819\pi\)
−0.338203 + 0.941073i \(0.609819\pi\)
\(354\) −14.5830 −0.775078
\(355\) 35.1660 1.86642
\(356\) 13.2915 0.704448
\(357\) 0 0
\(358\) −15.2915 −0.808181
\(359\) −0.583005 −0.0307698 −0.0153849 0.999882i \(-0.504897\pi\)
−0.0153849 + 0.999882i \(0.504897\pi\)
\(360\) 2.64575 0.139443
\(361\) 9.00000 0.473684
\(362\) −5.29150 −0.278115
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 12.4575 0.652056
\(366\) −3.93725 −0.205804
\(367\) 21.2915 1.11141 0.555704 0.831380i \(-0.312449\pi\)
0.555704 + 0.831380i \(0.312449\pi\)
\(368\) 2.64575 0.137919
\(369\) 9.00000 0.468521
\(370\) −24.5830 −1.27801
\(371\) 0 0
\(372\) 4.00000 0.207390
\(373\) 31.8118 1.64715 0.823575 0.567207i \(-0.191976\pi\)
0.823575 + 0.567207i \(0.191976\pi\)
\(374\) 3.00000 0.155126
\(375\) −7.93725 −0.409878
\(376\) −11.9373 −0.615617
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) −6.41699 −0.329619 −0.164809 0.986325i \(-0.552701\pi\)
−0.164809 + 0.986325i \(0.552701\pi\)
\(380\) 14.0000 0.718185
\(381\) 2.64575 0.135546
\(382\) −17.2915 −0.884710
\(383\) 29.2915 1.49673 0.748363 0.663289i \(-0.230840\pi\)
0.748363 + 0.663289i \(0.230840\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −15.8745 −0.807991
\(387\) −1.29150 −0.0656508
\(388\) 9.58301 0.486503
\(389\) 16.0627 0.814414 0.407207 0.913336i \(-0.366503\pi\)
0.407207 + 0.913336i \(0.366503\pi\)
\(390\) 10.5830 0.535891
\(391\) −7.93725 −0.401404
\(392\) 0 0
\(393\) −2.58301 −0.130295
\(394\) 9.87451 0.497471
\(395\) −14.1660 −0.712769
\(396\) 1.00000 0.0502519
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) −23.1660 −1.16121
\(399\) 0 0
\(400\) 2.00000 0.100000
\(401\) −4.12549 −0.206017 −0.103009 0.994680i \(-0.532847\pi\)
−0.103009 + 0.994680i \(0.532847\pi\)
\(402\) −13.5830 −0.677459
\(403\) 16.0000 0.797017
\(404\) −3.29150 −0.163758
\(405\) −2.64575 −0.131468
\(406\) 0 0
\(407\) −9.29150 −0.460563
\(408\) −3.00000 −0.148522
\(409\) 4.12549 0.203992 0.101996 0.994785i \(-0.467477\pi\)
0.101996 + 0.994785i \(0.467477\pi\)
\(410\) 23.8118 1.17598
\(411\) 2.70850 0.133600
\(412\) −10.0000 −0.492665
\(413\) 0 0
\(414\) −2.64575 −0.130032
\(415\) 14.7712 0.725092
\(416\) 4.00000 0.196116
\(417\) −8.58301 −0.420312
\(418\) 5.29150 0.258816
\(419\) 21.8745 1.06864 0.534320 0.845282i \(-0.320568\pi\)
0.534320 + 0.845282i \(0.320568\pi\)
\(420\) 0 0
\(421\) 37.8745 1.84589 0.922945 0.384931i \(-0.125775\pi\)
0.922945 + 0.384931i \(0.125775\pi\)
\(422\) −10.7085 −0.521281
\(423\) 11.9373 0.580409
\(424\) −4.00000 −0.194257
\(425\) −6.00000 −0.291043
\(426\) −13.2915 −0.643975
\(427\) 0 0
\(428\) 9.00000 0.435031
\(429\) 4.00000 0.193122
\(430\) −3.41699 −0.164782
\(431\) −6.70850 −0.323137 −0.161568 0.986862i \(-0.551655\pi\)
−0.161568 + 0.986862i \(0.551655\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −19.5830 −0.941099 −0.470550 0.882374i \(-0.655944\pi\)
−0.470550 + 0.882374i \(0.655944\pi\)
\(434\) 0 0
\(435\) 5.29150 0.253708
\(436\) 11.9373 0.571691
\(437\) −14.0000 −0.669711
\(438\) −4.70850 −0.224981
\(439\) −14.6458 −0.699004 −0.349502 0.936936i \(-0.613649\pi\)
−0.349502 + 0.936936i \(0.613649\pi\)
\(440\) 2.64575 0.126131
\(441\) 0 0
\(442\) −12.0000 −0.570782
\(443\) 11.1660 0.530513 0.265257 0.964178i \(-0.414543\pi\)
0.265257 + 0.964178i \(0.414543\pi\)
\(444\) 9.29150 0.440955
\(445\) −35.1660 −1.66703
\(446\) 24.4575 1.15810
\(447\) 11.8745 0.561645
\(448\) 0 0
\(449\) −22.4575 −1.05984 −0.529918 0.848049i \(-0.677777\pi\)
−0.529918 + 0.848049i \(0.677777\pi\)
\(450\) −2.00000 −0.0942809
\(451\) 9.00000 0.423793
\(452\) −8.58301 −0.403711
\(453\) −17.3542 −0.815374
\(454\) −23.5830 −1.10681
\(455\) 0 0
\(456\) −5.29150 −0.247797
\(457\) −19.4170 −0.908289 −0.454144 0.890928i \(-0.650055\pi\)
−0.454144 + 0.890928i \(0.650055\pi\)
\(458\) −17.2915 −0.807979
\(459\) 3.00000 0.140028
\(460\) −7.00000 −0.326377
\(461\) −3.41699 −0.159145 −0.0795727 0.996829i \(-0.525356\pi\)
−0.0795727 + 0.996829i \(0.525356\pi\)
\(462\) 0 0
\(463\) −35.0405 −1.62847 −0.814235 0.580535i \(-0.802844\pi\)
−0.814235 + 0.580535i \(0.802844\pi\)
\(464\) 2.00000 0.0928477
\(465\) −10.5830 −0.490775
\(466\) 22.1660 1.02682
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) −4.00000 −0.184900
\(469\) 0 0
\(470\) 31.5830 1.45682
\(471\) 11.2915 0.520285
\(472\) 14.5830 0.671237
\(473\) −1.29150 −0.0593834
\(474\) 5.35425 0.245929
\(475\) −10.5830 −0.485582
\(476\) 0 0
\(477\) 4.00000 0.183147
\(478\) −13.2915 −0.607939
\(479\) −2.12549 −0.0971162 −0.0485581 0.998820i \(-0.515463\pi\)
−0.0485581 + 0.998820i \(0.515463\pi\)
\(480\) −2.64575 −0.120761
\(481\) 37.1660 1.69462
\(482\) −15.1660 −0.690793
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −25.3542 −1.15128
\(486\) 1.00000 0.0453609
\(487\) −9.87451 −0.447457 −0.223728 0.974652i \(-0.571823\pi\)
−0.223728 + 0.974652i \(0.571823\pi\)
\(488\) 3.93725 0.178231
\(489\) −15.5830 −0.704688
\(490\) 0 0
\(491\) −1.00000 −0.0451294 −0.0225647 0.999745i \(-0.507183\pi\)
−0.0225647 + 0.999745i \(0.507183\pi\)
\(492\) −9.00000 −0.405751
\(493\) −6.00000 −0.270226
\(494\) −21.1660 −0.952304
\(495\) −2.64575 −0.118918
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) −5.58301 −0.250180
\(499\) 2.58301 0.115631 0.0578156 0.998327i \(-0.481586\pi\)
0.0578156 + 0.998327i \(0.481586\pi\)
\(500\) 7.93725 0.354965
\(501\) −19.2915 −0.861881
\(502\) −12.7085 −0.567208
\(503\) 9.29150 0.414288 0.207144 0.978311i \(-0.433583\pi\)
0.207144 + 0.978311i \(0.433583\pi\)
\(504\) 0 0
\(505\) 8.70850 0.387523
\(506\) −2.64575 −0.117618
\(507\) −3.00000 −0.133235
\(508\) −2.64575 −0.117386
\(509\) −17.1660 −0.760870 −0.380435 0.924808i \(-0.624226\pi\)
−0.380435 + 0.924808i \(0.624226\pi\)
\(510\) 7.93725 0.351468
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 5.29150 0.233626
\(514\) 1.29150 0.0569657
\(515\) 26.4575 1.16586
\(516\) 1.29150 0.0568552
\(517\) 11.9373 0.525000
\(518\) 0 0
\(519\) −4.00000 −0.175581
\(520\) −10.5830 −0.464095
\(521\) 42.0000 1.84005 0.920027 0.391856i \(-0.128167\pi\)
0.920027 + 0.391856i \(0.128167\pi\)
\(522\) −2.00000 −0.0875376
\(523\) 13.2915 0.581197 0.290598 0.956845i \(-0.406146\pi\)
0.290598 + 0.956845i \(0.406146\pi\)
\(524\) 2.58301 0.112839
\(525\) 0 0
\(526\) 9.87451 0.430549
\(527\) 12.0000 0.522728
\(528\) −1.00000 −0.0435194
\(529\) −16.0000 −0.695652
\(530\) 10.5830 0.459696
\(531\) −14.5830 −0.632849
\(532\) 0 0
\(533\) −36.0000 −1.55933
\(534\) 13.2915 0.575180
\(535\) −23.8118 −1.02947
\(536\) 13.5830 0.586696
\(537\) −15.2915 −0.659877
\(538\) 5.35425 0.230838
\(539\) 0 0
\(540\) 2.64575 0.113855
\(541\) −43.8118 −1.88361 −0.941807 0.336153i \(-0.890874\pi\)
−0.941807 + 0.336153i \(0.890874\pi\)
\(542\) 1.29150 0.0554748
\(543\) −5.29150 −0.227080
\(544\) 3.00000 0.128624
\(545\) −31.5830 −1.35287
\(546\) 0 0
\(547\) 25.2915 1.08139 0.540693 0.841220i \(-0.318162\pi\)
0.540693 + 0.841220i \(0.318162\pi\)
\(548\) −2.70850 −0.115701
\(549\) −3.93725 −0.168038
\(550\) −2.00000 −0.0852803
\(551\) −10.5830 −0.450851
\(552\) 2.64575 0.112611
\(553\) 0 0
\(554\) −25.1660 −1.06920
\(555\) −24.5830 −1.04349
\(556\) 8.58301 0.364001
\(557\) −8.70850 −0.368991 −0.184495 0.982833i \(-0.559065\pi\)
−0.184495 + 0.982833i \(0.559065\pi\)
\(558\) 4.00000 0.169334
\(559\) 5.16601 0.218499
\(560\) 0 0
\(561\) 3.00000 0.126660
\(562\) 3.00000 0.126547
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) −11.9373 −0.502649
\(565\) 22.7085 0.955354
\(566\) 22.4575 0.943960
\(567\) 0 0
\(568\) 13.2915 0.557699
\(569\) 27.1660 1.13886 0.569429 0.822040i \(-0.307164\pi\)
0.569429 + 0.822040i \(0.307164\pi\)
\(570\) 14.0000 0.586395
\(571\) 33.7490 1.41235 0.706176 0.708036i \(-0.250419\pi\)
0.706176 + 0.708036i \(0.250419\pi\)
\(572\) −4.00000 −0.167248
\(573\) −17.2915 −0.722363
\(574\) 0 0
\(575\) 5.29150 0.220671
\(576\) 1.00000 0.0416667
\(577\) −40.7490 −1.69640 −0.848202 0.529673i \(-0.822315\pi\)
−0.848202 + 0.529673i \(0.822315\pi\)
\(578\) 8.00000 0.332756
\(579\) −15.8745 −0.659722
\(580\) −5.29150 −0.219718
\(581\) 0 0
\(582\) 9.58301 0.397228
\(583\) 4.00000 0.165663
\(584\) 4.70850 0.194839
\(585\) 10.5830 0.437553
\(586\) −6.58301 −0.271941
\(587\) −21.8745 −0.902858 −0.451429 0.892307i \(-0.649086\pi\)
−0.451429 + 0.892307i \(0.649086\pi\)
\(588\) 0 0
\(589\) 21.1660 0.872130
\(590\) −38.5830 −1.58844
\(591\) 9.87451 0.406183
\(592\) −9.29150 −0.381878
\(593\) 37.7490 1.55017 0.775083 0.631859i \(-0.217708\pi\)
0.775083 + 0.631859i \(0.217708\pi\)
\(594\) 1.00000 0.0410305
\(595\) 0 0
\(596\) −11.8745 −0.486399
\(597\) −23.1660 −0.948122
\(598\) 10.5830 0.432771
\(599\) 34.6458 1.41559 0.707794 0.706419i \(-0.249691\pi\)
0.707794 + 0.706419i \(0.249691\pi\)
\(600\) 2.00000 0.0816497
\(601\) −17.4170 −0.710454 −0.355227 0.934780i \(-0.615596\pi\)
−0.355227 + 0.934780i \(0.615596\pi\)
\(602\) 0 0
\(603\) −13.5830 −0.553143
\(604\) 17.3542 0.706134
\(605\) −2.64575 −0.107565
\(606\) −3.29150 −0.133708
\(607\) 45.1033 1.83069 0.915343 0.402676i \(-0.131920\pi\)
0.915343 + 0.402676i \(0.131920\pi\)
\(608\) 5.29150 0.214599
\(609\) 0 0
\(610\) −10.4170 −0.421772
\(611\) −47.7490 −1.93172
\(612\) −3.00000 −0.121268
\(613\) −39.8118 −1.60798 −0.803991 0.594642i \(-0.797294\pi\)
−0.803991 + 0.594642i \(0.797294\pi\)
\(614\) 32.5830 1.31494
\(615\) 23.8118 0.960183
\(616\) 0 0
\(617\) −25.2915 −1.01820 −0.509099 0.860708i \(-0.670021\pi\)
−0.509099 + 0.860708i \(0.670021\pi\)
\(618\) −10.0000 −0.402259
\(619\) −41.0000 −1.64793 −0.823965 0.566641i \(-0.808243\pi\)
−0.823965 + 0.566641i \(0.808243\pi\)
\(620\) 10.5830 0.425024
\(621\) −2.64575 −0.106170
\(622\) 14.5203 0.582209
\(623\) 0 0
\(624\) 4.00000 0.160128
\(625\) −31.0000 −1.24000
\(626\) −0.583005 −0.0233016
\(627\) 5.29150 0.211322
\(628\) −11.2915 −0.450580
\(629\) 27.8745 1.11143
\(630\) 0 0
\(631\) 10.1255 0.403089 0.201545 0.979479i \(-0.435404\pi\)
0.201545 + 0.979479i \(0.435404\pi\)
\(632\) −5.35425 −0.212981
\(633\) −10.7085 −0.425625
\(634\) 17.2288 0.684241
\(635\) 7.00000 0.277787
\(636\) −4.00000 −0.158610
\(637\) 0 0
\(638\) −2.00000 −0.0791808
\(639\) −13.2915 −0.525804
\(640\) 2.64575 0.104583
\(641\) −5.41699 −0.213958 −0.106979 0.994261i \(-0.534118\pi\)
−0.106979 + 0.994261i \(0.534118\pi\)
\(642\) 9.00000 0.355202
\(643\) 41.1660 1.62343 0.811714 0.584054i \(-0.198535\pi\)
0.811714 + 0.584054i \(0.198535\pi\)
\(644\) 0 0
\(645\) −3.41699 −0.134544
\(646\) −15.8745 −0.624574
\(647\) 42.3948 1.66671 0.833355 0.552738i \(-0.186417\pi\)
0.833355 + 0.552738i \(0.186417\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −14.5830 −0.572433
\(650\) 8.00000 0.313786
\(651\) 0 0
\(652\) 15.5830 0.610278
\(653\) 13.1033 0.512770 0.256385 0.966575i \(-0.417468\pi\)
0.256385 + 0.966575i \(0.417468\pi\)
\(654\) 11.9373 0.466784
\(655\) −6.83399 −0.267026
\(656\) 9.00000 0.351391
\(657\) −4.70850 −0.183696
\(658\) 0 0
\(659\) 18.1660 0.707647 0.353824 0.935312i \(-0.384881\pi\)
0.353824 + 0.935312i \(0.384881\pi\)
\(660\) 2.64575 0.102986
\(661\) 31.2915 1.21710 0.608549 0.793516i \(-0.291752\pi\)
0.608549 + 0.793516i \(0.291752\pi\)
\(662\) −13.0000 −0.505259
\(663\) −12.0000 −0.466041
\(664\) 5.58301 0.216663
\(665\) 0 0
\(666\) 9.29150 0.360038
\(667\) 5.29150 0.204888
\(668\) 19.2915 0.746411
\(669\) 24.4575 0.945582
\(670\) −35.9373 −1.38838
\(671\) −3.93725 −0.151996
\(672\) 0 0
\(673\) −40.5830 −1.56436 −0.782180 0.623053i \(-0.785892\pi\)
−0.782180 + 0.623053i \(0.785892\pi\)
\(674\) −17.2915 −0.666044
\(675\) −2.00000 −0.0769800
\(676\) 3.00000 0.115385
\(677\) −39.8745 −1.53250 −0.766251 0.642541i \(-0.777880\pi\)
−0.766251 + 0.642541i \(0.777880\pi\)
\(678\) −8.58301 −0.329628
\(679\) 0 0
\(680\) −7.93725 −0.304380
\(681\) −23.5830 −0.903703
\(682\) 4.00000 0.153168
\(683\) 25.1660 0.962951 0.481475 0.876460i \(-0.340101\pi\)
0.481475 + 0.876460i \(0.340101\pi\)
\(684\) −5.29150 −0.202326
\(685\) 7.16601 0.273799
\(686\) 0 0
\(687\) −17.2915 −0.659712
\(688\) −1.29150 −0.0492381
\(689\) −16.0000 −0.609551
\(690\) −7.00000 −0.266485
\(691\) −28.1660 −1.07149 −0.535743 0.844381i \(-0.679968\pi\)
−0.535743 + 0.844381i \(0.679968\pi\)
\(692\) 4.00000 0.152057
\(693\) 0 0
\(694\) −8.41699 −0.319505
\(695\) −22.7085 −0.861382
\(696\) 2.00000 0.0758098
\(697\) −27.0000 −1.02270
\(698\) −13.2288 −0.500716
\(699\) 22.1660 0.838396
\(700\) 0 0
\(701\) −10.4575 −0.394975 −0.197487 0.980305i \(-0.563278\pi\)
−0.197487 + 0.980305i \(0.563278\pi\)
\(702\) −4.00000 −0.150970
\(703\) 49.1660 1.85433
\(704\) 1.00000 0.0376889
\(705\) 31.5830 1.18948
\(706\) 12.7085 0.478291
\(707\) 0 0
\(708\) 14.5830 0.548063
\(709\) −47.7490 −1.79325 −0.896626 0.442789i \(-0.853989\pi\)
−0.896626 + 0.442789i \(0.853989\pi\)
\(710\) −35.1660 −1.31976
\(711\) 5.35425 0.200800
\(712\) −13.2915 −0.498120
\(713\) −10.5830 −0.396337
\(714\) 0 0
\(715\) 10.5830 0.395782
\(716\) 15.2915 0.571470
\(717\) −13.2915 −0.496380
\(718\) 0.583005 0.0217576
\(719\) −43.9373 −1.63858 −0.819292 0.573377i \(-0.805633\pi\)
−0.819292 + 0.573377i \(0.805633\pi\)
\(720\) −2.64575 −0.0986013
\(721\) 0 0
\(722\) −9.00000 −0.334945
\(723\) −15.1660 −0.564030
\(724\) 5.29150 0.196657
\(725\) 4.00000 0.148556
\(726\) 1.00000 0.0371135
\(727\) −2.00000 −0.0741759 −0.0370879 0.999312i \(-0.511808\pi\)
−0.0370879 + 0.999312i \(0.511808\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −12.4575 −0.461073
\(731\) 3.87451 0.143304
\(732\) 3.93725 0.145525
\(733\) −3.93725 −0.145426 −0.0727129 0.997353i \(-0.523166\pi\)
−0.0727129 + 0.997353i \(0.523166\pi\)
\(734\) −21.2915 −0.785884
\(735\) 0 0
\(736\) −2.64575 −0.0975237
\(737\) −13.5830 −0.500336
\(738\) −9.00000 −0.331295
\(739\) −3.41699 −0.125696 −0.0628481 0.998023i \(-0.520018\pi\)
−0.0628481 + 0.998023i \(0.520018\pi\)
\(740\) 24.5830 0.903689
\(741\) −21.1660 −0.777553
\(742\) 0 0
\(743\) −29.2915 −1.07460 −0.537301 0.843391i \(-0.680556\pi\)
−0.537301 + 0.843391i \(0.680556\pi\)
\(744\) −4.00000 −0.146647
\(745\) 31.4170 1.15103
\(746\) −31.8118 −1.16471
\(747\) −5.58301 −0.204271
\(748\) −3.00000 −0.109691
\(749\) 0 0
\(750\) 7.93725 0.289828
\(751\) −18.7085 −0.682683 −0.341341 0.939939i \(-0.610881\pi\)
−0.341341 + 0.939939i \(0.610881\pi\)
\(752\) 11.9373 0.435307
\(753\) −12.7085 −0.463123
\(754\) 8.00000 0.291343
\(755\) −45.9150 −1.67102
\(756\) 0 0
\(757\) −11.4170 −0.414958 −0.207479 0.978240i \(-0.566526\pi\)
−0.207479 + 0.978240i \(0.566526\pi\)
\(758\) 6.41699 0.233076
\(759\) −2.64575 −0.0960347
\(760\) −14.0000 −0.507833
\(761\) 26.4170 0.957615 0.478808 0.877920i \(-0.341069\pi\)
0.478808 + 0.877920i \(0.341069\pi\)
\(762\) −2.64575 −0.0958455
\(763\) 0 0
\(764\) 17.2915 0.625585
\(765\) 7.93725 0.286972
\(766\) −29.2915 −1.05835
\(767\) 58.3320 2.10625
\(768\) −1.00000 −0.0360844
\(769\) −41.2915 −1.48901 −0.744505 0.667617i \(-0.767314\pi\)
−0.744505 + 0.667617i \(0.767314\pi\)
\(770\) 0 0
\(771\) 1.29150 0.0465123
\(772\) 15.8745 0.571336
\(773\) −23.9373 −0.860963 −0.430482 0.902599i \(-0.641656\pi\)
−0.430482 + 0.902599i \(0.641656\pi\)
\(774\) 1.29150 0.0464221
\(775\) −8.00000 −0.287368
\(776\) −9.58301 −0.344010
\(777\) 0 0
\(778\) −16.0627 −0.575877
\(779\) −47.6235 −1.70629
\(780\) −10.5830 −0.378932
\(781\) −13.2915 −0.475607
\(782\) 7.93725 0.283836
\(783\) −2.00000 −0.0714742
\(784\) 0 0
\(785\) 29.8745 1.06627
\(786\) 2.58301 0.0921327
\(787\) −1.29150 −0.0460371 −0.0230185 0.999735i \(-0.507328\pi\)
−0.0230185 + 0.999735i \(0.507328\pi\)
\(788\) −9.87451 −0.351765
\(789\) 9.87451 0.351542
\(790\) 14.1660 0.504004
\(791\) 0 0
\(792\) −1.00000 −0.0355335
\(793\) 15.7490 0.559264
\(794\) −6.00000 −0.212932
\(795\) 10.5830 0.375341
\(796\) 23.1660 0.821097
\(797\) −13.1033 −0.464141 −0.232071 0.972699i \(-0.574550\pi\)
−0.232071 + 0.972699i \(0.574550\pi\)
\(798\) 0 0
\(799\) −35.8118 −1.26693
\(800\) −2.00000 −0.0707107
\(801\) 13.2915 0.469632
\(802\) 4.12549 0.145676
\(803\) −4.70850 −0.166159
\(804\) 13.5830 0.479036
\(805\) 0 0
\(806\) −16.0000 −0.563576
\(807\) 5.35425 0.188478
\(808\) 3.29150 0.115795
\(809\) −39.3320 −1.38284 −0.691420 0.722453i \(-0.743015\pi\)
−0.691420 + 0.722453i \(0.743015\pi\)
\(810\) 2.64575 0.0929622
\(811\) −4.58301 −0.160931 −0.0804655 0.996757i \(-0.525641\pi\)
−0.0804655 + 0.996757i \(0.525641\pi\)
\(812\) 0 0
\(813\) 1.29150 0.0452950
\(814\) 9.29150 0.325667
\(815\) −41.2288 −1.44418
\(816\) 3.00000 0.105021
\(817\) 6.83399 0.239091
\(818\) −4.12549 −0.144244
\(819\) 0 0
\(820\) −23.8118 −0.831543
\(821\) 54.3320 1.89620 0.948100 0.317971i \(-0.103002\pi\)
0.948100 + 0.317971i \(0.103002\pi\)
\(822\) −2.70850 −0.0944697
\(823\) −43.8745 −1.52937 −0.764685 0.644405i \(-0.777105\pi\)
−0.764685 + 0.644405i \(0.777105\pi\)
\(824\) 10.0000 0.348367
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) −49.3320 −1.71544 −0.857721 0.514115i \(-0.828120\pi\)
−0.857721 + 0.514115i \(0.828120\pi\)
\(828\) 2.64575 0.0919462
\(829\) −11.8745 −0.412419 −0.206209 0.978508i \(-0.566113\pi\)
−0.206209 + 0.978508i \(0.566113\pi\)
\(830\) −14.7712 −0.512717
\(831\) −25.1660 −0.872999
\(832\) −4.00000 −0.138675
\(833\) 0 0
\(834\) 8.58301 0.297205
\(835\) −51.0405 −1.76633
\(836\) −5.29150 −0.183010
\(837\) 4.00000 0.138260
\(838\) −21.8745 −0.755642
\(839\) 21.1033 0.728566 0.364283 0.931288i \(-0.381314\pi\)
0.364283 + 0.931288i \(0.381314\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −37.8745 −1.30524
\(843\) 3.00000 0.103325
\(844\) 10.7085 0.368602
\(845\) −7.93725 −0.273050
\(846\) −11.9373 −0.410411
\(847\) 0 0
\(848\) 4.00000 0.137361
\(849\) 22.4575 0.770740
\(850\) 6.00000 0.205798
\(851\) −24.5830 −0.842695
\(852\) 13.2915 0.455359
\(853\) −22.5203 −0.771079 −0.385539 0.922691i \(-0.625985\pi\)
−0.385539 + 0.922691i \(0.625985\pi\)
\(854\) 0 0
\(855\) 14.0000 0.478790
\(856\) −9.00000 −0.307614
\(857\) 52.1660 1.78196 0.890978 0.454046i \(-0.150020\pi\)
0.890978 + 0.454046i \(0.150020\pi\)
\(858\) −4.00000 −0.136558
\(859\) −14.7490 −0.503230 −0.251615 0.967827i \(-0.580962\pi\)
−0.251615 + 0.967827i \(0.580962\pi\)
\(860\) 3.41699 0.116519
\(861\) 0 0
\(862\) 6.70850 0.228492
\(863\) 25.1033 0.854525 0.427263 0.904128i \(-0.359478\pi\)
0.427263 + 0.904128i \(0.359478\pi\)
\(864\) 1.00000 0.0340207
\(865\) −10.5830 −0.359833
\(866\) 19.5830 0.665458
\(867\) 8.00000 0.271694
\(868\) 0 0
\(869\) 5.35425 0.181630
\(870\) −5.29150 −0.179399
\(871\) 54.3320 1.84097
\(872\) −11.9373 −0.404246
\(873\) 9.58301 0.324336
\(874\) 14.0000 0.473557
\(875\) 0 0
\(876\) 4.70850 0.159085
\(877\) 37.2288 1.25713 0.628563 0.777759i \(-0.283643\pi\)
0.628563 + 0.777759i \(0.283643\pi\)
\(878\) 14.6458 0.494270
\(879\) −6.58301 −0.222039
\(880\) −2.64575 −0.0891883
\(881\) −19.1660 −0.645719 −0.322860 0.946447i \(-0.604644\pi\)
−0.322860 + 0.946447i \(0.604644\pi\)
\(882\) 0 0
\(883\) −55.5830 −1.87052 −0.935259 0.353965i \(-0.884833\pi\)
−0.935259 + 0.353965i \(0.884833\pi\)
\(884\) 12.0000 0.403604
\(885\) −38.5830 −1.29695
\(886\) −11.1660 −0.375129
\(887\) 43.0405 1.44516 0.722580 0.691288i \(-0.242956\pi\)
0.722580 + 0.691288i \(0.242956\pi\)
\(888\) −9.29150 −0.311802
\(889\) 0 0
\(890\) 35.1660 1.17877
\(891\) 1.00000 0.0335013
\(892\) −24.4575 −0.818898
\(893\) −63.1660 −2.11377
\(894\) −11.8745 −0.397143
\(895\) −40.4575 −1.35235
\(896\) 0 0
\(897\) 10.5830 0.353356
\(898\) 22.4575 0.749417
\(899\) −8.00000 −0.266815
\(900\) 2.00000 0.0666667
\(901\) −12.0000 −0.399778
\(902\) −9.00000 −0.299667
\(903\) 0 0
\(904\) 8.58301 0.285467
\(905\) −14.0000 −0.465376
\(906\) 17.3542 0.576556
\(907\) −58.1660 −1.93137 −0.965685 0.259715i \(-0.916371\pi\)
−0.965685 + 0.259715i \(0.916371\pi\)
\(908\) 23.5830 0.782630
\(909\) −3.29150 −0.109172
\(910\) 0 0
\(911\) 50.3948 1.66965 0.834827 0.550513i \(-0.185568\pi\)
0.834827 + 0.550513i \(0.185568\pi\)
\(912\) 5.29150 0.175219
\(913\) −5.58301 −0.184771
\(914\) 19.4170 0.642257
\(915\) −10.4170 −0.344375
\(916\) 17.2915 0.571327
\(917\) 0 0
\(918\) −3.00000 −0.0990148
\(919\) 14.6458 0.483119 0.241559 0.970386i \(-0.422341\pi\)
0.241559 + 0.970386i \(0.422341\pi\)
\(920\) 7.00000 0.230783
\(921\) 32.5830 1.07365
\(922\) 3.41699 0.112533
\(923\) 53.1660 1.74998
\(924\) 0 0
\(925\) −18.5830 −0.611005
\(926\) 35.0405 1.15150
\(927\) −10.0000 −0.328443
\(928\) −2.00000 −0.0656532
\(929\) 18.4575 0.605571 0.302786 0.953059i \(-0.402083\pi\)
0.302786 + 0.953059i \(0.402083\pi\)
\(930\) 10.5830 0.347030
\(931\) 0 0
\(932\) −22.1660 −0.726072
\(933\) 14.5203 0.475372
\(934\) −8.00000 −0.261768
\(935\) 7.93725 0.259576
\(936\) 4.00000 0.130744
\(937\) 50.0000 1.63343 0.816714 0.577042i \(-0.195793\pi\)
0.816714 + 0.577042i \(0.195793\pi\)
\(938\) 0 0
\(939\) −0.583005 −0.0190257
\(940\) −31.5830 −1.03012
\(941\) 24.5830 0.801383 0.400692 0.916213i \(-0.368770\pi\)
0.400692 + 0.916213i \(0.368770\pi\)
\(942\) −11.2915 −0.367897
\(943\) 23.8118 0.775418
\(944\) −14.5830 −0.474636
\(945\) 0 0
\(946\) 1.29150 0.0419904
\(947\) −36.5830 −1.18879 −0.594394 0.804174i \(-0.702608\pi\)
−0.594394 + 0.804174i \(0.702608\pi\)
\(948\) −5.35425 −0.173898
\(949\) 18.8340 0.611377
\(950\) 10.5830 0.343358
\(951\) 17.2288 0.558681
\(952\) 0 0
\(953\) −36.7490 −1.19042 −0.595209 0.803571i \(-0.702931\pi\)
−0.595209 + 0.803571i \(0.702931\pi\)
\(954\) −4.00000 −0.129505
\(955\) −45.7490 −1.48040
\(956\) 13.2915 0.429878
\(957\) −2.00000 −0.0646508
\(958\) 2.12549 0.0686715
\(959\) 0 0
\(960\) 2.64575 0.0853913
\(961\) −15.0000 −0.483871
\(962\) −37.1660 −1.19828
\(963\) 9.00000 0.290021
\(964\) 15.1660 0.488464
\(965\) −42.0000 −1.35203
\(966\) 0 0
\(967\) 55.9373 1.79882 0.899410 0.437105i \(-0.143996\pi\)
0.899410 + 0.437105i \(0.143996\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −15.8745 −0.509963
\(970\) 25.3542 0.814076
\(971\) 6.00000 0.192549 0.0962746 0.995355i \(-0.469307\pi\)
0.0962746 + 0.995355i \(0.469307\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) 9.87451 0.316400
\(975\) 8.00000 0.256205
\(976\) −3.93725 −0.126028
\(977\) −29.1660 −0.933103 −0.466552 0.884494i \(-0.654504\pi\)
−0.466552 + 0.884494i \(0.654504\pi\)
\(978\) 15.5830 0.498290
\(979\) 13.2915 0.424798
\(980\) 0 0
\(981\) 11.9373 0.381127
\(982\) 1.00000 0.0319113
\(983\) 5.47974 0.174777 0.0873883 0.996174i \(-0.472148\pi\)
0.0873883 + 0.996174i \(0.472148\pi\)
\(984\) 9.00000 0.286910
\(985\) 26.1255 0.832427
\(986\) 6.00000 0.191079
\(987\) 0 0
\(988\) 21.1660 0.673380
\(989\) −3.41699 −0.108654
\(990\) 2.64575 0.0840875
\(991\) −12.1255 −0.385179 −0.192589 0.981279i \(-0.561689\pi\)
−0.192589 + 0.981279i \(0.561689\pi\)
\(992\) 4.00000 0.127000
\(993\) −13.0000 −0.412543
\(994\) 0 0
\(995\) −61.2915 −1.94307
\(996\) 5.58301 0.176904
\(997\) 49.1660 1.55710 0.778552 0.627581i \(-0.215955\pi\)
0.778552 + 0.627581i \(0.215955\pi\)
\(998\) −2.58301 −0.0817636
\(999\) 9.29150 0.293970
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3234.2.a.w.1.1 2
3.2 odd 2 9702.2.a.db.1.2 2
7.2 even 3 462.2.i.e.67.2 4
7.4 even 3 462.2.i.e.331.2 yes 4
7.6 odd 2 3234.2.a.ba.1.2 2
21.2 odd 6 1386.2.k.r.991.1 4
21.11 odd 6 1386.2.k.r.793.1 4
21.20 even 2 9702.2.a.dm.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
462.2.i.e.67.2 4 7.2 even 3
462.2.i.e.331.2 yes 4 7.4 even 3
1386.2.k.r.793.1 4 21.11 odd 6
1386.2.k.r.991.1 4 21.2 odd 6
3234.2.a.w.1.1 2 1.1 even 1 trivial
3234.2.a.ba.1.2 2 7.6 odd 2
9702.2.a.db.1.2 2 3.2 odd 2
9702.2.a.dm.1.1 2 21.20 even 2