# Properties

 Label 3234.2.a.d Level $3234$ Weight $2$ Character orbit 3234.a Self dual yes Analytic conductor $25.824$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3234,2,Mod(1,3234)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3234, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3234.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3234.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$25.8236200137$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 66) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9}+O(q^{10})$$ q - q^2 - q^3 + q^4 + q^6 - q^8 + q^9 $$q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} - q^{11} - q^{12} + 4 q^{13} + q^{16} + 6 q^{17} - q^{18} + 4 q^{19} + q^{22} + 6 q^{23} + q^{24} - 5 q^{25} - 4 q^{26} - q^{27} + 6 q^{29} - 8 q^{31} - q^{32} + q^{33} - 6 q^{34} + q^{36} - 10 q^{37} - 4 q^{38} - 4 q^{39} - 6 q^{41} + 8 q^{43} - q^{44} - 6 q^{46} + 6 q^{47} - q^{48} + 5 q^{50} - 6 q^{51} + 4 q^{52} + q^{54} - 4 q^{57} - 6 q^{58} - 8 q^{61} + 8 q^{62} + q^{64} - q^{66} - 4 q^{67} + 6 q^{68} - 6 q^{69} + 6 q^{71} - q^{72} - 2 q^{73} + 10 q^{74} + 5 q^{75} + 4 q^{76} + 4 q^{78} + 14 q^{79} + q^{81} + 6 q^{82} + 12 q^{83} - 8 q^{86} - 6 q^{87} + q^{88} + 6 q^{89} + 6 q^{92} + 8 q^{93} - 6 q^{94} + q^{96} - 14 q^{97} - q^{99}+O(q^{100})$$ q - q^2 - q^3 + q^4 + q^6 - q^8 + q^9 - q^11 - q^12 + 4 * q^13 + q^16 + 6 * q^17 - q^18 + 4 * q^19 + q^22 + 6 * q^23 + q^24 - 5 * q^25 - 4 * q^26 - q^27 + 6 * q^29 - 8 * q^31 - q^32 + q^33 - 6 * q^34 + q^36 - 10 * q^37 - 4 * q^38 - 4 * q^39 - 6 * q^41 + 8 * q^43 - q^44 - 6 * q^46 + 6 * q^47 - q^48 + 5 * q^50 - 6 * q^51 + 4 * q^52 + q^54 - 4 * q^57 - 6 * q^58 - 8 * q^61 + 8 * q^62 + q^64 - q^66 - 4 * q^67 + 6 * q^68 - 6 * q^69 + 6 * q^71 - q^72 - 2 * q^73 + 10 * q^74 + 5 * q^75 + 4 * q^76 + 4 * q^78 + 14 * q^79 + q^81 + 6 * q^82 + 12 * q^83 - 8 * q^86 - 6 * q^87 + q^88 + 6 * q^89 + 6 * q^92 + 8 * q^93 - 6 * q^94 + q^96 - 14 * q^97 - q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 −1.00000 1.00000 0 1.00000 0 −1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$
$$7$$ $$-1$$
$$11$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3234.2.a.d 1
3.b odd 2 1 9702.2.a.bu 1
7.b odd 2 1 66.2.a.a 1
21.c even 2 1 198.2.a.e 1
28.d even 2 1 528.2.a.d 1
35.c odd 2 1 1650.2.a.m 1
35.f even 4 2 1650.2.c.d 2
56.e even 2 1 2112.2.a.v 1
56.h odd 2 1 2112.2.a.i 1
63.l odd 6 2 1782.2.e.s 2
63.o even 6 2 1782.2.e.f 2
77.b even 2 1 726.2.a.i 1
77.j odd 10 4 726.2.e.k 4
77.l even 10 4 726.2.e.b 4
84.h odd 2 1 1584.2.a.h 1
105.g even 2 1 4950.2.a.g 1
105.k odd 4 2 4950.2.c.r 2
168.e odd 2 1 6336.2.a.bf 1
168.i even 2 1 6336.2.a.bj 1
231.h odd 2 1 2178.2.a.b 1
308.g odd 2 1 5808.2.a.l 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.a 1 7.b odd 2 1
198.2.a.e 1 21.c even 2 1
528.2.a.d 1 28.d even 2 1
726.2.a.i 1 77.b even 2 1
726.2.e.b 4 77.l even 10 4
726.2.e.k 4 77.j odd 10 4
1584.2.a.h 1 84.h odd 2 1
1650.2.a.m 1 35.c odd 2 1
1650.2.c.d 2 35.f even 4 2
1782.2.e.f 2 63.o even 6 2
1782.2.e.s 2 63.l odd 6 2
2112.2.a.i 1 56.h odd 2 1
2112.2.a.v 1 56.e even 2 1
2178.2.a.b 1 231.h odd 2 1
3234.2.a.d 1 1.a even 1 1 trivial
4950.2.a.g 1 105.g even 2 1
4950.2.c.r 2 105.k odd 4 2
5808.2.a.l 1 308.g odd 2 1
6336.2.a.bf 1 168.e odd 2 1
6336.2.a.bj 1 168.i even 2 1
9702.2.a.bu 1 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3234))$$:

 $$T_{5}$$ T5 $$T_{13} - 4$$ T13 - 4 $$T_{17} - 6$$ T17 - 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T + 1$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T + 1$$
$13$ $$T - 4$$
$17$ $$T - 6$$
$19$ $$T - 4$$
$23$ $$T - 6$$
$29$ $$T - 6$$
$31$ $$T + 8$$
$37$ $$T + 10$$
$41$ $$T + 6$$
$43$ $$T - 8$$
$47$ $$T - 6$$
$53$ $$T$$
$59$ $$T$$
$61$ $$T + 8$$
$67$ $$T + 4$$
$71$ $$T - 6$$
$73$ $$T + 2$$
$79$ $$T - 14$$
$83$ $$T - 12$$
$89$ $$T - 6$$
$97$ $$T + 14$$