Properties

Label 3234.2.a.d
Level $3234$
Weight $2$
Character orbit 3234.a
Self dual yes
Analytic conductor $25.824$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3234.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(25.8236200137\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} - q^{11} - q^{12} + 4 q^{13} + q^{16} + 6 q^{17} - q^{18} + 4 q^{19} + q^{22} + 6 q^{23} + q^{24} - 5 q^{25} - 4 q^{26} - q^{27} + 6 q^{29} - 8 q^{31} - q^{32} + q^{33} - 6 q^{34} + q^{36} - 10 q^{37} - 4 q^{38} - 4 q^{39} - 6 q^{41} + 8 q^{43} - q^{44} - 6 q^{46} + 6 q^{47} - q^{48} + 5 q^{50} - 6 q^{51} + 4 q^{52} + q^{54} - 4 q^{57} - 6 q^{58} - 8 q^{61} + 8 q^{62} + q^{64} - q^{66} - 4 q^{67} + 6 q^{68} - 6 q^{69} + 6 q^{71} - q^{72} - 2 q^{73} + 10 q^{74} + 5 q^{75} + 4 q^{76} + 4 q^{78} + 14 q^{79} + q^{81} + 6 q^{82} + 12 q^{83} - 8 q^{86} - 6 q^{87} + q^{88} + 6 q^{89} + 6 q^{92} + 8 q^{93} - 6 q^{94} + q^{96} - 14 q^{97} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 1.00000 0 1.00000 0 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(7\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3234.2.a.d 1
3.b odd 2 1 9702.2.a.bu 1
7.b odd 2 1 66.2.a.a 1
21.c even 2 1 198.2.a.e 1
28.d even 2 1 528.2.a.d 1
35.c odd 2 1 1650.2.a.m 1
35.f even 4 2 1650.2.c.d 2
56.e even 2 1 2112.2.a.v 1
56.h odd 2 1 2112.2.a.i 1
63.l odd 6 2 1782.2.e.s 2
63.o even 6 2 1782.2.e.f 2
77.b even 2 1 726.2.a.i 1
77.j odd 10 4 726.2.e.k 4
77.l even 10 4 726.2.e.b 4
84.h odd 2 1 1584.2.a.h 1
105.g even 2 1 4950.2.a.g 1
105.k odd 4 2 4950.2.c.r 2
168.e odd 2 1 6336.2.a.bf 1
168.i even 2 1 6336.2.a.bj 1
231.h odd 2 1 2178.2.a.b 1
308.g odd 2 1 5808.2.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.a 1 7.b odd 2 1
198.2.a.e 1 21.c even 2 1
528.2.a.d 1 28.d even 2 1
726.2.a.i 1 77.b even 2 1
726.2.e.b 4 77.l even 10 4
726.2.e.k 4 77.j odd 10 4
1584.2.a.h 1 84.h odd 2 1
1650.2.a.m 1 35.c odd 2 1
1650.2.c.d 2 35.f even 4 2
1782.2.e.f 2 63.o even 6 2
1782.2.e.s 2 63.l odd 6 2
2112.2.a.i 1 56.h odd 2 1
2112.2.a.v 1 56.e even 2 1
2178.2.a.b 1 231.h odd 2 1
3234.2.a.d 1 1.a even 1 1 trivial
4950.2.a.g 1 105.g even 2 1
4950.2.c.r 2 105.k odd 4 2
5808.2.a.l 1 308.g odd 2 1
6336.2.a.bf 1 168.e odd 2 1
6336.2.a.bj 1 168.i even 2 1
9702.2.a.bu 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3234))\):

\( T_{5} \) Copy content Toggle raw display
\( T_{13} - 4 \) Copy content Toggle raw display
\( T_{17} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T - 6 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T + 8 \) Copy content Toggle raw display
$37$ \( T + 10 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T - 8 \) Copy content Toggle raw display
$47$ \( T - 6 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 8 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T - 6 \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T - 14 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less