Properties

Label 3234.2.a.bf
Level $3234$
Weight $2$
Character orbit 3234.a
Self dual yes
Analytic conductor $25.824$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3234.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(25.8236200137\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2700.1
Defining polynomial: \(x^{3} - 15 x - 20\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 462)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} + \beta_{1} q^{5} - q^{6} + q^{8} + q^{9} +O(q^{10})\) \( q + q^{2} - q^{3} + q^{4} + \beta_{1} q^{5} - q^{6} + q^{8} + q^{9} + \beta_{1} q^{10} - q^{11} - q^{12} -\beta_{1} q^{15} + q^{16} + ( 1 + 2 \beta_{2} ) q^{17} + q^{18} + ( -3 - \beta_{2} ) q^{19} + \beta_{1} q^{20} - q^{22} + ( 1 + \beta_{1} - \beta_{2} ) q^{23} - q^{24} + ( 5 + 2 \beta_{1} + \beta_{2} ) q^{25} - q^{27} + ( 3 - 2 \beta_{1} - \beta_{2} ) q^{29} -\beta_{1} q^{30} + ( -2 - 2 \beta_{2} ) q^{31} + q^{32} + q^{33} + ( 1 + 2 \beta_{2} ) q^{34} + q^{36} + ( 7 + \beta_{2} ) q^{37} + ( -3 - \beta_{2} ) q^{38} + \beta_{1} q^{40} + ( 4 + 2 \beta_{1} - \beta_{2} ) q^{41} + ( 1 + 3 \beta_{2} ) q^{43} - q^{44} + \beta_{1} q^{45} + ( 1 + \beta_{1} - \beta_{2} ) q^{46} + ( 1 - \beta_{1} - \beta_{2} ) q^{47} - q^{48} + ( 5 + 2 \beta_{1} + \beta_{2} ) q^{50} + ( -1 - 2 \beta_{2} ) q^{51} + 8 q^{53} - q^{54} -\beta_{1} q^{55} + ( 3 + \beta_{2} ) q^{57} + ( 3 - 2 \beta_{1} - \beta_{2} ) q^{58} + ( -3 - 2 \beta_{1} - \beta_{2} ) q^{59} -\beta_{1} q^{60} + ( -2 + \beta_{1} + 2 \beta_{2} ) q^{61} + ( -2 - 2 \beta_{2} ) q^{62} + q^{64} + q^{66} + ( 2 + 2 \beta_{1} - \beta_{2} ) q^{67} + ( 1 + 2 \beta_{2} ) q^{68} + ( -1 - \beta_{1} + \beta_{2} ) q^{69} + ( 3 - 3 \beta_{2} ) q^{71} + q^{72} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{73} + ( 7 + \beta_{2} ) q^{74} + ( -5 - 2 \beta_{1} - \beta_{2} ) q^{75} + ( -3 - \beta_{2} ) q^{76} + ( 4 - \beta_{1} ) q^{79} + \beta_{1} q^{80} + q^{81} + ( 4 + 2 \beta_{1} - \beta_{2} ) q^{82} + ( 6 - 2 \beta_{1} + \beta_{2} ) q^{83} + ( 3 \beta_{1} - 4 \beta_{2} ) q^{85} + ( 1 + 3 \beta_{2} ) q^{86} + ( -3 + 2 \beta_{1} + \beta_{2} ) q^{87} - q^{88} + ( -4 - 2 \beta_{1} ) q^{89} + \beta_{1} q^{90} + ( 1 + \beta_{1} - \beta_{2} ) q^{92} + ( 2 + 2 \beta_{2} ) q^{93} + ( 1 - \beta_{1} - \beta_{2} ) q^{94} + ( -4 \beta_{1} + 2 \beta_{2} ) q^{95} - q^{96} + 7 q^{97} - q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 3q^{2} - 3q^{3} + 3q^{4} - 3q^{6} + 3q^{8} + 3q^{9} + O(q^{10}) \) \( 3q + 3q^{2} - 3q^{3} + 3q^{4} - 3q^{6} + 3q^{8} + 3q^{9} - 3q^{11} - 3q^{12} + 3q^{16} + 3q^{17} + 3q^{18} - 9q^{19} - 3q^{22} + 3q^{23} - 3q^{24} + 15q^{25} - 3q^{27} + 9q^{29} - 6q^{31} + 3q^{32} + 3q^{33} + 3q^{34} + 3q^{36} + 21q^{37} - 9q^{38} + 12q^{41} + 3q^{43} - 3q^{44} + 3q^{46} + 3q^{47} - 3q^{48} + 15q^{50} - 3q^{51} + 24q^{53} - 3q^{54} + 9q^{57} + 9q^{58} - 9q^{59} - 6q^{61} - 6q^{62} + 3q^{64} + 3q^{66} + 6q^{67} + 3q^{68} - 3q^{69} + 9q^{71} + 3q^{72} + 21q^{74} - 15q^{75} - 9q^{76} + 12q^{79} + 3q^{81} + 12q^{82} + 18q^{83} + 3q^{86} - 9q^{87} - 3q^{88} - 12q^{89} + 3q^{92} + 6q^{93} + 3q^{94} - 3q^{96} + 21q^{97} - 3q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - 15 x - 20\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 2 \nu - 10 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 2 \beta_{1} + 10\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.80560
−1.61323
4.41883
1.00000 −1.00000 1.00000 −2.80560 −1.00000 0 1.00000 1.00000 −2.80560
1.2 1.00000 −1.00000 1.00000 −1.61323 −1.00000 0 1.00000 1.00000 −1.61323
1.3 1.00000 −1.00000 1.00000 4.41883 −1.00000 0 1.00000 1.00000 4.41883
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3234.2.a.bf 3
3.b odd 2 1 9702.2.a.dv 3
7.b odd 2 1 3234.2.a.bh 3
7.c even 3 2 462.2.i.g 6
21.c even 2 1 9702.2.a.dw 3
21.h odd 6 2 1386.2.k.v 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
462.2.i.g 6 7.c even 3 2
1386.2.k.v 6 21.h odd 6 2
3234.2.a.bf 3 1.a even 1 1 trivial
3234.2.a.bh 3 7.b odd 2 1
9702.2.a.dv 3 3.b odd 2 1
9702.2.a.dw 3 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3234))\):

\( T_{5}^{3} - 15 T_{5} - 20 \)
\( T_{13} \)
\( T_{17}^{3} - 3 T_{17}^{2} - 57 T_{17} + 139 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -1 + T )^{3} \)
$3$ \( ( 1 + T )^{3} \)
$5$ \( -20 - 15 T + T^{3} \)
$7$ \( T^{3} \)
$11$ \( ( 1 + T )^{3} \)
$13$ \( T^{3} \)
$17$ \( 139 - 57 T - 3 T^{2} + T^{3} \)
$19$ \( -28 + 12 T + 9 T^{2} + T^{3} \)
$23$ \( 89 - 27 T - 3 T^{2} + T^{3} \)
$29$ \( 348 - 48 T - 9 T^{2} + T^{3} \)
$31$ \( -192 - 48 T + 6 T^{2} + T^{3} \)
$37$ \( -228 + 132 T - 21 T^{2} + T^{3} \)
$41$ \( 306 - 27 T - 12 T^{2} + T^{3} \)
$43$ \( 404 - 132 T - 3 T^{2} + T^{3} \)
$47$ \( 9 - 27 T - 3 T^{2} + T^{3} \)
$53$ \( ( -8 + T )^{3} \)
$59$ \( -48 - 48 T + 9 T^{2} + T^{3} \)
$61$ \( 98 - 63 T + 6 T^{2} + T^{3} \)
$67$ \( 212 - 63 T - 6 T^{2} + T^{3} \)
$71$ \( 108 - 108 T - 9 T^{2} + T^{3} \)
$73$ \( -480 - 120 T + T^{3} \)
$79$ \( 16 + 33 T - 12 T^{2} + T^{3} \)
$83$ \( 164 + 33 T - 18 T^{2} + T^{3} \)
$89$ \( -16 - 12 T + 12 T^{2} + T^{3} \)
$97$ \( ( -7 + T )^{3} \)
show more
show less