Properties

Label 322.4.m
Level $322$
Weight $4$
Character orbit 322.m
Rep. character $\chi_{322}(9,\cdot)$
Character field $\Q(\zeta_{33})$
Dimension $960$
Sturm bound $192$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.m (of order \(33\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 161 \)
Character field: \(\Q(\zeta_{33})\)
Sturm bound: \(192\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(322, [\chi])\).

Total New Old
Modular forms 2960 960 2000
Cusp forms 2800 960 1840
Eisenstein series 160 0 160

Trace form

\( 960 q + 192 q^{4} - 4 q^{5} - 16 q^{6} + 8 q^{7} + 404 q^{9} - 40 q^{10} - 28 q^{11} - 168 q^{14} + 176 q^{15} + 768 q^{16} + 120 q^{17} + 184 q^{18} - 144 q^{19} + 736 q^{20} - 2612 q^{21} + 288 q^{22}+ \cdots - 18620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(322, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(322, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(322, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 2}\)