Properties

Label 322.4.k
Level $322$
Weight $4$
Character orbit 322.k
Rep. character $\chi_{322}(83,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $480$
Sturm bound $192$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.k (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 161 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(192\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(322, [\chi])\).

Total New Old
Modular forms 1480 480 1000
Cusp forms 1400 480 920
Eisenstein series 80 0 80

Trace form

\( 480 q - 192 q^{4} + 376 q^{9} - 768 q^{16} - 152 q^{18} + 1320 q^{21} - 688 q^{23} - 1144 q^{25} - 176 q^{28} - 200 q^{29} + 1496 q^{30} + 502 q^{35} + 1504 q^{36} - 1188 q^{37} + 1328 q^{39} + 1716 q^{43}+ \cdots + 32340 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(322, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(322, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(322, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 2}\)