Properties

Label 322.4.i
Level $322$
Weight $4$
Character orbit 322.i
Rep. character $\chi_{322}(29,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $360$
Sturm bound $192$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.i (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Sturm bound: \(192\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(322, [\chi])\).

Total New Old
Modular forms 1480 360 1120
Cusp forms 1400 360 1040
Eisenstein series 80 0 80

Trace form

\( 360 q - 16 q^{3} - 144 q^{4} + 32 q^{5} - 196 q^{9} - 124 q^{11} - 64 q^{12} - 224 q^{13} - 56 q^{14} - 1400 q^{15} - 576 q^{16} - 416 q^{17} + 72 q^{18} + 456 q^{19} + 128 q^{20} - 84 q^{21} + 736 q^{22}+ \cdots + 692 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(322, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(322, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(322, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 2}\)