Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,4,Mod(45,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 3]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.45");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.g (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.9986150218\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45.1 | 1.00000 | + | 1.73205i | −8.30485 | − | 4.79481i | −2.00000 | + | 3.46410i | −3.30728 | − | 5.72837i | − | 19.1792i | 18.4666 | − | 1.40941i | −8.00000 | 32.4804 | + | 56.2577i | 6.61455 | − | 11.4567i | |||
45.2 | 1.00000 | + | 1.73205i | −8.30485 | − | 4.79481i | −2.00000 | + | 3.46410i | 3.30728 | + | 5.72837i | − | 19.1792i | −18.4666 | + | 1.40941i | −8.00000 | 32.4804 | + | 56.2577i | −6.61455 | + | 11.4567i | |||
45.3 | 1.00000 | + | 1.73205i | −6.35182 | − | 3.66723i | −2.00000 | + | 3.46410i | 10.4076 | + | 18.0265i | − | 14.6689i | 18.4875 | − | 1.10056i | −8.00000 | 13.3971 | + | 23.2044i | −20.8152 | + | 36.0530i | |||
45.4 | 1.00000 | + | 1.73205i | −6.35182 | − | 3.66723i | −2.00000 | + | 3.46410i | −10.4076 | − | 18.0265i | − | 14.6689i | −18.4875 | + | 1.10056i | −8.00000 | 13.3971 | + | 23.2044i | 20.8152 | − | 36.0530i | |||
45.5 | 1.00000 | + | 1.73205i | −4.84170 | − | 2.79536i | −2.00000 | + | 3.46410i | −1.72971 | − | 2.99594i | − | 11.1814i | 11.5448 | + | 14.4817i | −8.00000 | 2.12806 | + | 3.68590i | 3.45941 | − | 5.99188i | |||
45.6 | 1.00000 | + | 1.73205i | −4.84170 | − | 2.79536i | −2.00000 | + | 3.46410i | 1.72971 | + | 2.99594i | − | 11.1814i | −11.5448 | − | 14.4817i | −8.00000 | 2.12806 | + | 3.68590i | −3.45941 | + | 5.99188i | |||
45.7 | 1.00000 | + | 1.73205i | −4.14481 | − | 2.39301i | −2.00000 | + | 3.46410i | −6.52505 | − | 11.3017i | − | 9.57204i | 5.69807 | − | 17.6219i | −8.00000 | −2.04701 | − | 3.54553i | 13.0501 | − | 22.6034i | |||
45.8 | 1.00000 | + | 1.73205i | −4.14481 | − | 2.39301i | −2.00000 | + | 3.46410i | 6.52505 | + | 11.3017i | − | 9.57204i | −5.69807 | + | 17.6219i | −8.00000 | −2.04701 | − | 3.54553i | −13.0501 | + | 22.6034i | |||
45.9 | 1.00000 | + | 1.73205i | −1.92970 | − | 1.11411i | −2.00000 | + | 3.46410i | −9.74500 | − | 16.8788i | − | 4.45646i | 13.5231 | + | 12.6541i | −8.00000 | −11.0175 | − | 19.0829i | 19.4900 | − | 33.7577i | |||
45.10 | 1.00000 | + | 1.73205i | −1.92970 | − | 1.11411i | −2.00000 | + | 3.46410i | 9.74500 | + | 16.8788i | − | 4.45646i | −13.5231 | − | 12.6541i | −8.00000 | −11.0175 | − | 19.0829i | −19.4900 | + | 33.7577i | |||
45.11 | 1.00000 | + | 1.73205i | −1.25301 | − | 0.723424i | −2.00000 | + | 3.46410i | 3.76650 | + | 6.52377i | − | 2.89370i | 12.9781 | − | 13.2124i | −8.00000 | −12.4533 | − | 21.5698i | −7.53300 | + | 13.0475i | |||
45.12 | 1.00000 | + | 1.73205i | −1.25301 | − | 0.723424i | −2.00000 | + | 3.46410i | −3.76650 | − | 6.52377i | − | 2.89370i | −12.9781 | + | 13.2124i | −8.00000 | −12.4533 | − | 21.5698i | 7.53300 | − | 13.0475i | |||
45.13 | 1.00000 | + | 1.73205i | 1.60569 | + | 0.927044i | −2.00000 | + | 3.46410i | 0.439139 | + | 0.760611i | 3.70818i | −15.4941 | + | 10.1456i | −8.00000 | −11.7812 | − | 20.4056i | −0.878278 | + | 1.52122i | ||||
45.14 | 1.00000 | + | 1.73205i | 1.60569 | + | 0.927044i | −2.00000 | + | 3.46410i | −0.439139 | − | 0.760611i | 3.70818i | 15.4941 | − | 10.1456i | −8.00000 | −11.7812 | − | 20.4056i | 0.878278 | − | 1.52122i | ||||
45.15 | 1.00000 | + | 1.73205i | 2.75730 | + | 1.59193i | −2.00000 | + | 3.46410i | −2.64180 | − | 4.57574i | 6.36770i | −11.7394 | − | 14.3243i | −8.00000 | −8.43154 | − | 14.6039i | 5.28361 | − | 9.15148i | ||||
45.16 | 1.00000 | + | 1.73205i | 2.75730 | + | 1.59193i | −2.00000 | + | 3.46410i | 2.64180 | + | 4.57574i | 6.36770i | 11.7394 | + | 14.3243i | −8.00000 | −8.43154 | − | 14.6039i | −5.28361 | + | 9.15148i | ||||
45.17 | 1.00000 | + | 1.73205i | 3.71144 | + | 2.14280i | −2.00000 | + | 3.46410i | −8.09327 | − | 14.0180i | 8.57121i | 5.43016 | + | 17.7063i | −8.00000 | −4.31679 | − | 7.47690i | 16.1865 | − | 28.0359i | ||||
45.18 | 1.00000 | + | 1.73205i | 3.71144 | + | 2.14280i | −2.00000 | + | 3.46410i | 8.09327 | + | 14.0180i | 8.57121i | −5.43016 | − | 17.7063i | −8.00000 | −4.31679 | − | 7.47690i | −16.1865 | + | 28.0359i | ||||
45.19 | 1.00000 | + | 1.73205i | 5.64024 | + | 3.25639i | −2.00000 | + | 3.46410i | −7.10993 | − | 12.3148i | 13.0256i | 17.2059 | − | 6.85245i | −8.00000 | 7.70819 | + | 13.3510i | 14.2199 | − | 24.6295i | ||||
45.20 | 1.00000 | + | 1.73205i | 5.64024 | + | 3.25639i | −2.00000 | + | 3.46410i | 7.10993 | + | 12.3148i | 13.0256i | −17.2059 | + | 6.85245i | −8.00000 | 7.70819 | + | 13.3510i | −14.2199 | + | 24.6295i | ||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
23.b | odd | 2 | 1 | inner |
161.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.4.g.b | ✓ | 48 |
7.d | odd | 6 | 1 | inner | 322.4.g.b | ✓ | 48 |
23.b | odd | 2 | 1 | inner | 322.4.g.b | ✓ | 48 |
161.g | even | 6 | 1 | inner | 322.4.g.b | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.4.g.b | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
322.4.g.b | ✓ | 48 | 7.d | odd | 6 | 1 | inner |
322.4.g.b | ✓ | 48 | 23.b | odd | 2 | 1 | inner |
322.4.g.b | ✓ | 48 | 161.g | even | 6 | 1 | inner |