Properties

Label 322.4.e.d.277.9
Level $322$
Weight $4$
Character 322.277
Analytic conductor $18.999$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [322,4,Mod(93,322)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(322, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("322.93"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,22,0,-44,23] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.9986150218\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.9
Character \(\chi\) \(=\) 322.277
Dual form 322.4.e.d.93.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(3.65246 - 6.32625i) q^{3} +(-2.00000 + 3.46410i) q^{4} +(3.77669 + 6.54142i) q^{5} +14.6098 q^{6} +(-18.3937 - 2.16118i) q^{7} -8.00000 q^{8} +(-13.1810 - 22.8301i) q^{9} +(-7.55338 + 13.0828i) q^{10} +(-28.1561 + 48.7678i) q^{11} +(14.6098 + 25.3050i) q^{12} -65.8379 q^{13} +(-14.6505 - 34.0201i) q^{14} +55.1768 q^{15} +(-8.00000 - 13.8564i) q^{16} +(-54.4173 + 94.2535i) q^{17} +(26.3619 - 45.6602i) q^{18} +(46.1829 + 79.9912i) q^{19} -30.2135 q^{20} +(-80.8546 + 108.470i) q^{21} -112.624 q^{22} +(-11.5000 - 19.9186i) q^{23} +(-29.2197 + 50.6100i) q^{24} +(33.9733 - 58.8434i) q^{25} +(-65.8379 - 114.035i) q^{26} +4.66115 q^{27} +(44.2740 - 59.3954i) q^{28} +58.1564 q^{29} +(55.1768 + 95.5691i) q^{30} +(117.440 - 203.413i) q^{31} +(16.0000 - 27.7128i) q^{32} +(205.678 + 356.245i) q^{33} -217.669 q^{34} +(-55.3302 - 128.483i) q^{35} +105.448 q^{36} +(61.4557 + 106.444i) q^{37} +(-92.3659 + 159.982i) q^{38} +(-240.470 + 416.507i) q^{39} +(-30.2135 - 52.3313i) q^{40} -359.331 q^{41} +(-268.730 - 31.5745i) q^{42} -33.0320 q^{43} +(-112.624 - 195.071i) q^{44} +(99.5607 - 172.444i) q^{45} +(23.0000 - 39.8372i) q^{46} +(-73.9247 - 128.041i) q^{47} -116.879 q^{48} +(333.659 + 79.5043i) q^{49} +135.893 q^{50} +(397.514 + 688.515i) q^{51} +(131.676 - 228.069i) q^{52} +(-320.360 + 554.881i) q^{53} +(4.66115 + 8.07334i) q^{54} -425.347 q^{55} +(147.150 + 17.2894i) q^{56} +674.726 q^{57} +(58.1564 + 100.730i) q^{58} +(-201.015 + 348.168i) q^{59} +(-110.354 + 191.138i) q^{60} +(-120.197 - 208.188i) q^{61} +469.762 q^{62} +(193.107 + 448.417i) q^{63} +64.0000 q^{64} +(-248.649 - 430.673i) q^{65} +(-411.356 + 712.490i) q^{66} +(-56.4426 + 97.7615i) q^{67} +(-217.669 - 377.014i) q^{68} -168.013 q^{69} +(167.209 - 224.318i) q^{70} +171.363 q^{71} +(105.448 + 182.641i) q^{72} +(180.860 - 313.258i) q^{73} +(-122.911 + 212.889i) q^{74} +(-248.172 - 429.847i) q^{75} -369.464 q^{76} +(623.292 - 836.171i) q^{77} -961.881 q^{78} +(421.158 + 729.467i) q^{79} +(60.4270 - 104.663i) q^{80} +(372.911 - 645.900i) q^{81} +(-359.331 - 622.379i) q^{82} -1374.29 q^{83} +(-214.041 - 497.028i) q^{84} -822.069 q^{85} +(-33.0320 - 57.2131i) q^{86} +(212.414 - 367.912i) q^{87} +(225.249 - 390.142i) q^{88} +(-620.557 - 1074.84i) q^{89} +398.243 q^{90} +(1211.00 + 142.287i) q^{91} +92.0000 q^{92} +(-857.894 - 1485.92i) q^{93} +(147.849 - 256.083i) q^{94} +(-348.837 + 604.204i) q^{95} +(-116.879 - 202.440i) q^{96} +997.907 q^{97} +(195.953 + 657.418i) q^{98} +1484.50 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 22 q^{2} - 44 q^{4} + 23 q^{5} + 43 q^{7} - 176 q^{8} - 171 q^{9} - 46 q^{10} + 48 q^{11} - 154 q^{13} - 20 q^{14} + 208 q^{15} - 176 q^{16} + 97 q^{17} + 342 q^{18} + 138 q^{19} - 184 q^{20} - 125 q^{21}+ \cdots - 5090 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.353553 + 0.612372i
\(3\) 3.65246 6.32625i 0.702917 1.21749i −0.264521 0.964380i \(-0.585214\pi\)
0.967438 0.253108i \(-0.0814527\pi\)
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) 3.77669 + 6.54142i 0.337797 + 0.585082i 0.984018 0.178068i \(-0.0569848\pi\)
−0.646221 + 0.763150i \(0.723652\pi\)
\(6\) 14.6098 0.994074
\(7\) −18.3937 2.16118i −0.993168 0.116693i
\(8\) −8.00000 −0.353553
\(9\) −13.1810 22.8301i −0.488184 0.845559i
\(10\) −7.55338 + 13.0828i −0.238859 + 0.413715i
\(11\) −28.1561 + 48.7678i −0.771762 + 1.33673i 0.164834 + 0.986321i \(0.447291\pi\)
−0.936596 + 0.350410i \(0.886042\pi\)
\(12\) 14.6098 + 25.3050i 0.351458 + 0.608744i
\(13\) −65.8379 −1.40463 −0.702313 0.711868i \(-0.747849\pi\)
−0.702313 + 0.711868i \(0.747849\pi\)
\(14\) −14.6505 34.0201i −0.279679 0.649446i
\(15\) 55.1768 0.949773
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −54.4173 + 94.2535i −0.776361 + 1.34470i 0.157666 + 0.987493i \(0.449603\pi\)
−0.934026 + 0.357204i \(0.883730\pi\)
\(18\) 26.3619 45.6602i 0.345198 0.597900i
\(19\) 46.1829 + 79.9912i 0.557637 + 0.965855i 0.997693 + 0.0678848i \(0.0216250\pi\)
−0.440057 + 0.897970i \(0.645042\pi\)
\(20\) −30.2135 −0.337797
\(21\) −80.8546 + 108.470i −0.840186 + 1.12714i
\(22\) −112.624 −1.09144
\(23\) −11.5000 19.9186i −0.104257 0.180579i
\(24\) −29.2197 + 50.6100i −0.248519 + 0.430447i
\(25\) 33.9733 58.8434i 0.271786 0.470747i
\(26\) −65.8379 114.035i −0.496610 0.860154i
\(27\) 4.66115 0.0332236
\(28\) 44.2740 59.3954i 0.298821 0.400881i
\(29\) 58.1564 0.372392 0.186196 0.982513i \(-0.440384\pi\)
0.186196 + 0.982513i \(0.440384\pi\)
\(30\) 55.1768 + 95.5691i 0.335796 + 0.581615i
\(31\) 117.440 203.413i 0.680417 1.17852i −0.294437 0.955671i \(-0.595132\pi\)
0.974854 0.222846i \(-0.0715347\pi\)
\(32\) 16.0000 27.7128i 0.0883883 0.153093i
\(33\) 205.678 + 356.245i 1.08497 + 1.87922i
\(34\) −217.669 −1.09794
\(35\) −55.3302 128.483i −0.267215 0.620503i
\(36\) 105.448 0.488184
\(37\) 61.4557 + 106.444i 0.273061 + 0.472955i 0.969644 0.244521i \(-0.0786307\pi\)
−0.696583 + 0.717476i \(0.745297\pi\)
\(38\) −92.3659 + 159.982i −0.394309 + 0.682962i
\(39\) −240.470 + 416.507i −0.987335 + 1.71011i
\(40\) −30.2135 52.3313i −0.119429 0.206858i
\(41\) −359.331 −1.36873 −0.684366 0.729139i \(-0.739921\pi\)
−0.684366 + 0.729139i \(0.739921\pi\)
\(42\) −268.730 31.5745i −0.987283 0.116001i
\(43\) −33.0320 −0.117147 −0.0585736 0.998283i \(-0.518655\pi\)
−0.0585736 + 0.998283i \(0.518655\pi\)
\(44\) −112.624 195.071i −0.385881 0.668366i
\(45\) 99.5607 172.444i 0.329814 0.571255i
\(46\) 23.0000 39.8372i 0.0737210 0.127688i
\(47\) −73.9247 128.041i −0.229426 0.397378i 0.728212 0.685352i \(-0.240352\pi\)
−0.957638 + 0.287974i \(0.907018\pi\)
\(48\) −116.879 −0.351458
\(49\) 333.659 + 79.5043i 0.972766 + 0.231791i
\(50\) 135.893 0.384363
\(51\) 397.514 + 688.515i 1.09143 + 1.89042i
\(52\) 131.676 228.069i 0.351157 0.608221i
\(53\) −320.360 + 554.881i −0.830281 + 1.43809i 0.0675344 + 0.997717i \(0.478487\pi\)
−0.897815 + 0.440372i \(0.854847\pi\)
\(54\) 4.66115 + 8.07334i 0.0117463 + 0.0203452i
\(55\) −425.347 −1.04280
\(56\) 147.150 + 17.2894i 0.351138 + 0.0412571i
\(57\) 674.726 1.56789
\(58\) 58.1564 + 100.730i 0.131660 + 0.228043i
\(59\) −201.015 + 348.168i −0.443557 + 0.768264i −0.997950 0.0639909i \(-0.979617\pi\)
0.554393 + 0.832255i \(0.312950\pi\)
\(60\) −110.354 + 191.138i −0.237443 + 0.411264i
\(61\) −120.197 208.188i −0.252290 0.436979i 0.711866 0.702315i \(-0.247850\pi\)
−0.964156 + 0.265336i \(0.914517\pi\)
\(62\) 469.762 0.962255
\(63\) 193.107 + 448.417i 0.386178 + 0.896750i
\(64\) 64.0000 0.125000
\(65\) −248.649 430.673i −0.474479 0.821822i
\(66\) −411.356 + 712.490i −0.767189 + 1.32881i
\(67\) −56.4426 + 97.7615i −0.102919 + 0.178261i −0.912886 0.408215i \(-0.866152\pi\)
0.809967 + 0.586475i \(0.199485\pi\)
\(68\) −217.669 377.014i −0.388180 0.672348i
\(69\) −168.013 −0.293137
\(70\) 167.209 224.318i 0.285504 0.383016i
\(71\) 171.363 0.286437 0.143219 0.989691i \(-0.454255\pi\)
0.143219 + 0.989691i \(0.454255\pi\)
\(72\) 105.448 + 182.641i 0.172599 + 0.298950i
\(73\) 180.860 313.258i 0.289973 0.502248i −0.683830 0.729641i \(-0.739687\pi\)
0.973803 + 0.227394i \(0.0730204\pi\)
\(74\) −122.911 + 212.889i −0.193083 + 0.334430i
\(75\) −248.172 429.847i −0.382086 0.661792i
\(76\) −369.464 −0.557637
\(77\) 623.292 836.171i 0.922476 1.23754i
\(78\) −961.881 −1.39630
\(79\) 421.158 + 729.467i 0.599797 + 1.03888i 0.992851 + 0.119364i \(0.0380855\pi\)
−0.393053 + 0.919516i \(0.628581\pi\)
\(80\) 60.4270 104.663i 0.0844493 0.146271i
\(81\) 372.911 645.900i 0.511537 0.886008i
\(82\) −359.331 622.379i −0.483920 0.838174i
\(83\) −1374.29 −1.81744 −0.908721 0.417404i \(-0.862940\pi\)
−0.908721 + 0.417404i \(0.862940\pi\)
\(84\) −214.041 497.028i −0.278021 0.645597i
\(85\) −822.069 −1.04901
\(86\) −33.0320 57.2131i −0.0414178 0.0717377i
\(87\) 212.414 367.912i 0.261760 0.453382i
\(88\) 225.249 390.142i 0.272859 0.472606i
\(89\) −620.557 1074.84i −0.739088 1.28014i −0.952906 0.303265i \(-0.901923\pi\)
0.213818 0.976874i \(-0.431410\pi\)
\(90\) 398.243 0.466428
\(91\) 1211.00 + 142.287i 1.39503 + 0.163910i
\(92\) 92.0000 0.104257
\(93\) −857.894 1485.92i −0.956553 1.65680i
\(94\) 147.849 256.083i 0.162229 0.280988i
\(95\) −348.837 + 604.204i −0.376736 + 0.652526i
\(96\) −116.879 202.440i −0.124259 0.215223i
\(97\) 997.907 1.04456 0.522279 0.852775i \(-0.325082\pi\)
0.522279 + 0.852775i \(0.325082\pi\)
\(98\) 195.953 + 657.418i 0.201982 + 0.677645i
\(99\) 1484.50 1.50705
\(100\) 135.893 + 235.374i 0.135893 + 0.235374i
\(101\) −473.324 + 819.822i −0.466312 + 0.807676i −0.999260 0.0384720i \(-0.987751\pi\)
0.532948 + 0.846148i \(0.321084\pi\)
\(102\) −795.028 + 1377.03i −0.771760 + 1.33673i
\(103\) −211.106 365.647i −0.201951 0.349789i 0.747206 0.664592i \(-0.231395\pi\)
−0.949157 + 0.314803i \(0.898061\pi\)
\(104\) 526.703 0.496610
\(105\) −1014.91 119.247i −0.943284 0.110832i
\(106\) −1281.44 −1.17419
\(107\) −294.423 509.956i −0.266009 0.460741i 0.701818 0.712356i \(-0.252372\pi\)
−0.967827 + 0.251615i \(0.919038\pi\)
\(108\) −9.32230 + 16.1467i −0.00830591 + 0.0143863i
\(109\) −53.4270 + 92.5383i −0.0469484 + 0.0813171i −0.888545 0.458790i \(-0.848283\pi\)
0.841596 + 0.540107i \(0.181616\pi\)
\(110\) −425.347 736.723i −0.368684 0.638580i
\(111\) 897.858 0.767756
\(112\) 117.204 + 272.160i 0.0988813 + 0.229614i
\(113\) 21.1869 0.0176380 0.00881901 0.999961i \(-0.497193\pi\)
0.00881901 + 0.999961i \(0.497193\pi\)
\(114\) 674.726 + 1168.66i 0.554332 + 0.960131i
\(115\) 86.8638 150.453i 0.0704356 0.121998i
\(116\) −116.313 + 201.460i −0.0930980 + 0.161250i
\(117\) 867.806 + 1503.08i 0.685716 + 1.18769i
\(118\) −804.059 −0.627285
\(119\) 1204.64 1616.07i 0.927973 1.24491i
\(120\) −441.415 −0.335796
\(121\) −920.032 1593.54i −0.691233 1.19725i
\(122\) 240.394 416.375i 0.178396 0.308991i
\(123\) −1312.44 + 2273.22i −0.962105 + 1.66641i
\(124\) 469.762 + 813.651i 0.340209 + 0.589258i
\(125\) 1457.40 1.04283
\(126\) −583.574 + 782.888i −0.412610 + 0.553534i
\(127\) 2173.95 1.51895 0.759475 0.650536i \(-0.225456\pi\)
0.759475 + 0.650536i \(0.225456\pi\)
\(128\) 64.0000 + 110.851i 0.0441942 + 0.0765466i
\(129\) −120.648 + 208.969i −0.0823447 + 0.142625i
\(130\) 497.298 861.346i 0.335507 0.581116i
\(131\) 1227.89 + 2126.76i 0.818939 + 1.41844i 0.906465 + 0.422281i \(0.138771\pi\)
−0.0875259 + 0.996162i \(0.527896\pi\)
\(132\) −1645.43 −1.08497
\(133\) −676.601 1571.15i −0.441119 1.02433i
\(134\) −225.770 −0.145549
\(135\) 17.6037 + 30.4905i 0.0112229 + 0.0194386i
\(136\) 435.338 754.028i 0.274485 0.475422i
\(137\) −510.645 + 884.464i −0.318448 + 0.551568i −0.980164 0.198186i \(-0.936495\pi\)
0.661716 + 0.749754i \(0.269828\pi\)
\(138\) −168.013 291.007i −0.103639 0.179509i
\(139\) 418.904 0.255619 0.127809 0.991799i \(-0.459205\pi\)
0.127809 + 0.991799i \(0.459205\pi\)
\(140\) 555.739 + 65.2968i 0.335489 + 0.0394185i
\(141\) −1080.03 −0.645069
\(142\) 171.363 + 296.809i 0.101271 + 0.175406i
\(143\) 1853.74 3210.77i 1.08404 1.87761i
\(144\) −210.895 + 365.281i −0.122046 + 0.211390i
\(145\) 219.638 + 380.425i 0.125793 + 0.217880i
\(146\) 723.438 0.410083
\(147\) 1721.64 1820.42i 0.965976 1.02140i
\(148\) −491.645 −0.273061
\(149\) −492.160 852.446i −0.270599 0.468692i 0.698416 0.715692i \(-0.253889\pi\)
−0.969015 + 0.247000i \(0.920555\pi\)
\(150\) 496.344 859.693i 0.270176 0.467958i
\(151\) −1002.50 + 1736.38i −0.540278 + 0.935789i 0.458609 + 0.888638i \(0.348348\pi\)
−0.998888 + 0.0471515i \(0.984986\pi\)
\(152\) −369.464 639.930i −0.197154 0.341481i
\(153\) 2869.09 1.51603
\(154\) 2071.58 + 243.401i 1.08398 + 0.127363i
\(155\) 1774.14 0.919372
\(156\) −961.881 1666.03i −0.493668 0.855057i
\(157\) 192.934 334.171i 0.0980752 0.169871i −0.812813 0.582525i \(-0.802065\pi\)
0.910888 + 0.412654i \(0.135398\pi\)
\(158\) −842.316 + 1458.93i −0.424121 + 0.734599i
\(159\) 2340.21 + 4053.36i 1.16724 + 2.02171i
\(160\) 241.708 0.119429
\(161\) 168.480 + 391.231i 0.0824727 + 0.191511i
\(162\) 1491.64 0.723423
\(163\) 1198.69 + 2076.19i 0.576003 + 0.997666i 0.995932 + 0.0901093i \(0.0287216\pi\)
−0.419929 + 0.907557i \(0.637945\pi\)
\(164\) 718.661 1244.76i 0.342183 0.592678i
\(165\) −1553.56 + 2690.85i −0.732999 + 1.26959i
\(166\) −1374.29 2380.34i −0.642563 1.11295i
\(167\) 3438.93 1.59349 0.796743 0.604318i \(-0.206554\pi\)
0.796743 + 0.604318i \(0.206554\pi\)
\(168\) 646.836 867.758i 0.297051 0.398506i
\(169\) 2137.63 0.972975
\(170\) −822.069 1423.86i −0.370881 0.642385i
\(171\) 1217.47 2108.72i 0.544458 0.943029i
\(172\) 66.0640 114.426i 0.0292868 0.0507262i
\(173\) −1004.49 1739.84i −0.441447 0.764609i 0.556350 0.830948i \(-0.312201\pi\)
−0.997797 + 0.0663393i \(0.978868\pi\)
\(174\) 849.656 0.370185
\(175\) −752.066 + 1008.93i −0.324862 + 0.435816i
\(176\) 900.995 0.385881
\(177\) 1468.40 + 2543.34i 0.623568 + 1.08005i
\(178\) 1241.11 2149.67i 0.522614 0.905195i
\(179\) −2006.12 + 3474.70i −0.837677 + 1.45090i 0.0541550 + 0.998533i \(0.482754\pi\)
−0.891832 + 0.452367i \(0.850580\pi\)
\(180\) 398.243 + 689.777i 0.164907 + 0.285627i
\(181\) 2231.44 0.916361 0.458181 0.888859i \(-0.348501\pi\)
0.458181 + 0.888859i \(0.348501\pi\)
\(182\) 964.555 + 2239.81i 0.392844 + 0.912229i
\(183\) −1756.06 −0.709355
\(184\) 92.0000 + 159.349i 0.0368605 + 0.0638442i
\(185\) −464.198 + 804.014i −0.184478 + 0.319526i
\(186\) 1715.79 2971.83i 0.676385 1.17153i
\(187\) −3064.36 5307.62i −1.19833 2.07557i
\(188\) 591.397 0.229426
\(189\) −85.7359 10.0736i −0.0329967 0.00387695i
\(190\) −1395.35 −0.532785
\(191\) −65.3333 113.161i −0.0247505 0.0428692i 0.853385 0.521281i \(-0.174546\pi\)
−0.878135 + 0.478412i \(0.841212\pi\)
\(192\) 233.758 404.880i 0.0878646 0.152186i
\(193\) 1721.66 2982.00i 0.642113 1.11217i −0.342847 0.939391i \(-0.611391\pi\)
0.984960 0.172781i \(-0.0552754\pi\)
\(194\) 997.907 + 1728.43i 0.369307 + 0.639658i
\(195\) −3632.73 −1.33408
\(196\) −942.728 + 996.819i −0.343560 + 0.363272i
\(197\) −2976.33 −1.07642 −0.538211 0.842810i \(-0.680900\pi\)
−0.538211 + 0.842810i \(0.680900\pi\)
\(198\) 1484.50 + 2571.22i 0.532821 + 0.922874i
\(199\) 451.479 781.985i 0.160827 0.278560i −0.774339 0.632771i \(-0.781917\pi\)
0.935165 + 0.354211i \(0.115251\pi\)
\(200\) −271.786 + 470.747i −0.0960909 + 0.166434i
\(201\) 412.309 + 714.140i 0.144687 + 0.250605i
\(202\) −1893.30 −0.659465
\(203\) −1069.71 125.686i −0.369848 0.0434554i
\(204\) −3180.11 −1.09143
\(205\) −1357.08 2350.53i −0.462354 0.800820i
\(206\) 422.213 731.294i 0.142801 0.247338i
\(207\) −303.162 + 525.092i −0.101793 + 0.176311i
\(208\) 526.703 + 912.276i 0.175578 + 0.304111i
\(209\) −5201.33 −1.72145
\(210\) −808.366 1877.12i −0.265631 0.616826i
\(211\) −2439.95 −0.796081 −0.398041 0.917368i \(-0.630310\pi\)
−0.398041 + 0.917368i \(0.630310\pi\)
\(212\) −1281.44 2219.52i −0.415141 0.719044i
\(213\) 625.897 1084.08i 0.201341 0.348734i
\(214\) 588.846 1019.91i 0.188097 0.325793i
\(215\) −124.752 216.076i −0.0395720 0.0685407i
\(216\) −37.2892 −0.0117463
\(217\) −2599.78 + 3487.71i −0.813293 + 1.09107i
\(218\) −213.708 −0.0663951
\(219\) −1321.17 2288.33i −0.407653 0.706076i
\(220\) 850.694 1473.45i 0.260699 0.451544i
\(221\) 3582.72 6205.45i 1.09050 1.88880i
\(222\) 897.858 + 1555.14i 0.271443 + 0.470152i
\(223\) −5414.35 −1.62588 −0.812941 0.582346i \(-0.802135\pi\)
−0.812941 + 0.582346i \(0.802135\pi\)
\(224\) −354.192 + 475.163i −0.105649 + 0.141733i
\(225\) −1791.20 −0.530726
\(226\) 21.1869 + 36.6968i 0.00623598 + 0.0108010i
\(227\) −2239.77 + 3879.39i −0.654884 + 1.13429i 0.327039 + 0.945011i \(0.393949\pi\)
−0.981923 + 0.189282i \(0.939384\pi\)
\(228\) −1349.45 + 2337.32i −0.391972 + 0.678915i
\(229\) 1813.95 + 3141.85i 0.523445 + 0.906634i 0.999628 + 0.0272874i \(0.00868694\pi\)
−0.476182 + 0.879347i \(0.657980\pi\)
\(230\) 347.455 0.0996110
\(231\) −3013.28 6997.18i −0.858265 1.99299i
\(232\) −465.251 −0.131660
\(233\) 1841.37 + 3189.34i 0.517734 + 0.896741i 0.999788 + 0.0205997i \(0.00655757\pi\)
−0.482054 + 0.876142i \(0.660109\pi\)
\(234\) −1735.61 + 3006.17i −0.484874 + 0.839827i
\(235\) 558.381 967.144i 0.154999 0.268466i
\(236\) −804.059 1392.67i −0.221779 0.384132i
\(237\) 6153.06 1.68643
\(238\) 4003.75 + 470.422i 1.09044 + 0.128122i
\(239\) 1289.59 0.349025 0.174512 0.984655i \(-0.444165\pi\)
0.174512 + 0.984655i \(0.444165\pi\)
\(240\) −441.415 764.553i −0.118722 0.205632i
\(241\) 332.076 575.173i 0.0887590 0.153735i −0.818228 0.574894i \(-0.805043\pi\)
0.906987 + 0.421159i \(0.138377\pi\)
\(242\) 1840.06 3187.08i 0.488776 0.846584i
\(243\) −2661.16 4609.26i −0.702524 1.21681i
\(244\) 961.578 0.252290
\(245\) 740.054 + 2482.86i 0.192981 + 0.647446i
\(246\) −5249.77 −1.36062
\(247\) −3040.59 5266.45i −0.783271 1.35667i
\(248\) −939.524 + 1627.30i −0.240564 + 0.416669i
\(249\) −5019.53 + 8694.09i −1.27751 + 2.21271i
\(250\) 1457.40 + 2524.29i 0.368696 + 0.638600i
\(251\) 4771.08 1.19979 0.599896 0.800078i \(-0.295209\pi\)
0.599896 + 0.800078i \(0.295209\pi\)
\(252\) −1939.58 227.891i −0.484848 0.0569674i
\(253\) 1295.18 0.321847
\(254\) 2173.95 + 3765.39i 0.537030 + 0.930164i
\(255\) −3002.57 + 5200.61i −0.737367 + 1.27716i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 1067.14 + 1848.35i 0.259014 + 0.448626i 0.965978 0.258624i \(-0.0832690\pi\)
−0.706964 + 0.707250i \(0.749936\pi\)
\(258\) −482.592 −0.116453
\(259\) −900.354 2090.72i −0.216005 0.501588i
\(260\) 1989.19 0.474479
\(261\) −766.557 1327.72i −0.181796 0.314879i
\(262\) −2455.77 + 4253.53i −0.579077 + 1.00299i
\(263\) −3405.12 + 5897.84i −0.798360 + 1.38280i 0.122323 + 0.992490i \(0.460966\pi\)
−0.920683 + 0.390310i \(0.872368\pi\)
\(264\) −1645.43 2849.96i −0.383594 0.664405i
\(265\) −4839.61 −1.12187
\(266\) 2044.70 2743.05i 0.471311 0.632284i
\(267\) −9066.24 −2.07807
\(268\) −225.770 391.046i −0.0514594 0.0891303i
\(269\) 3346.56 5796.42i 0.758526 1.31381i −0.185076 0.982724i \(-0.559253\pi\)
0.943602 0.331082i \(-0.107414\pi\)
\(270\) −35.2074 + 60.9810i −0.00793576 + 0.0137451i
\(271\) 4320.68 + 7483.64i 0.968497 + 1.67749i 0.699909 + 0.714232i \(0.253224\pi\)
0.268588 + 0.963255i \(0.413443\pi\)
\(272\) 1741.35 0.388180
\(273\) 5323.29 7141.42i 1.18015 1.58322i
\(274\) −2042.58 −0.450353
\(275\) 1913.11 + 3313.60i 0.419508 + 0.726610i
\(276\) 336.027 582.015i 0.0732841 0.126932i
\(277\) 3746.79 6489.63i 0.812718 1.40767i −0.0982373 0.995163i \(-0.531320\pi\)
0.910955 0.412506i \(-0.135346\pi\)
\(278\) 418.904 + 725.563i 0.0903748 + 0.156534i
\(279\) −6191.91 −1.32867
\(280\) 442.642 + 1027.87i 0.0944747 + 0.219381i
\(281\) 1976.73 0.419651 0.209825 0.977739i \(-0.432710\pi\)
0.209825 + 0.977739i \(0.432710\pi\)
\(282\) −1080.03 1870.66i −0.228066 0.395023i
\(283\) −3077.31 + 5330.05i −0.646384 + 1.11957i 0.337595 + 0.941291i \(0.390386\pi\)
−0.983980 + 0.178279i \(0.942947\pi\)
\(284\) −342.726 + 593.619i −0.0716093 + 0.124031i
\(285\) 2548.23 + 4413.66i 0.529628 + 0.917343i
\(286\) 7414.95 1.53306
\(287\) 6609.43 + 776.577i 1.35938 + 0.159721i
\(288\) −843.581 −0.172599
\(289\) −3465.98 6003.26i −0.705472 1.22191i
\(290\) −439.277 + 760.850i −0.0889491 + 0.154064i
\(291\) 3644.82 6313.01i 0.734237 1.27174i
\(292\) 723.438 + 1253.03i 0.144986 + 0.251124i
\(293\) −1905.58 −0.379950 −0.189975 0.981789i \(-0.560841\pi\)
−0.189975 + 0.981789i \(0.560841\pi\)
\(294\) 4874.70 + 1161.55i 0.967001 + 0.230417i
\(295\) −3036.68 −0.599330
\(296\) −491.645 851.555i −0.0965416 0.167215i
\(297\) −131.240 + 227.314i −0.0256407 + 0.0444111i
\(298\) 984.319 1704.89i 0.191343 0.331415i
\(299\) 757.136 + 1311.40i 0.146442 + 0.253646i
\(300\) 1985.38 0.382086
\(301\) 607.582 + 71.3880i 0.116347 + 0.0136702i
\(302\) −4009.99 −0.764069
\(303\) 3457.60 + 5988.73i 0.655557 + 1.13546i
\(304\) 738.927 1279.86i 0.139409 0.241464i
\(305\) 907.895 1572.52i 0.170446 0.295220i
\(306\) 2869.09 + 4969.41i 0.535996 + 0.928373i
\(307\) 643.667 0.119661 0.0598307 0.998209i \(-0.480944\pi\)
0.0598307 + 0.998209i \(0.480944\pi\)
\(308\) 1650.00 + 3831.49i 0.305251 + 0.708829i
\(309\) −3084.23 −0.567818
\(310\) 1774.14 + 3072.91i 0.325047 + 0.562998i
\(311\) 2565.52 4443.62i 0.467773 0.810207i −0.531549 0.847028i \(-0.678390\pi\)
0.999322 + 0.0368206i \(0.0117230\pi\)
\(312\) 1923.76 3332.06i 0.349076 0.604617i
\(313\) −2422.97 4196.70i −0.437553 0.757864i 0.559947 0.828528i \(-0.310821\pi\)
−0.997500 + 0.0706642i \(0.977488\pi\)
\(314\) 771.736 0.138699
\(315\) −2203.98 + 2956.72i −0.394222 + 0.528865i
\(316\) −3369.27 −0.599797
\(317\) −1074.53 1861.15i −0.190384 0.329756i 0.754993 0.655733i \(-0.227640\pi\)
−0.945378 + 0.325977i \(0.894307\pi\)
\(318\) −4680.42 + 8106.72i −0.825361 + 1.42957i
\(319\) −1637.46 + 2836.16i −0.287398 + 0.497788i
\(320\) 241.708 + 418.651i 0.0422247 + 0.0731353i
\(321\) −4301.48 −0.747929
\(322\) −509.151 + 683.047i −0.0881176 + 0.118213i
\(323\) −10052.6 −1.73171
\(324\) 1491.64 + 2583.60i 0.255769 + 0.443004i
\(325\) −2236.73 + 3874.12i −0.381758 + 0.661224i
\(326\) −2397.38 + 4152.38i −0.407296 + 0.705457i
\(327\) 390.280 + 675.985i 0.0660017 + 0.114318i
\(328\) 2874.64 0.483920
\(329\) 1083.03 + 2514.92i 0.181488 + 0.421435i
\(330\) −6214.26 −1.03662
\(331\) −366.672 635.094i −0.0608886 0.105462i 0.833974 0.551803i \(-0.186060\pi\)
−0.894863 + 0.446341i \(0.852727\pi\)
\(332\) 2748.58 4760.67i 0.454361 0.786976i
\(333\) 1620.09 2806.08i 0.266608 0.461778i
\(334\) 3438.93 + 5956.40i 0.563383 + 0.975807i
\(335\) −852.665 −0.139063
\(336\) 2149.84 + 252.596i 0.349057 + 0.0410126i
\(337\) −1922.41 −0.310743 −0.155372 0.987856i \(-0.549657\pi\)
−0.155372 + 0.987856i \(0.549657\pi\)
\(338\) 2137.63 + 3702.48i 0.343999 + 0.595823i
\(339\) 77.3844 134.034i 0.0123981 0.0214741i
\(340\) 1644.14 2847.73i 0.262253 0.454235i
\(341\) 6613.33 + 11454.6i 1.05024 + 1.81907i
\(342\) 4869.88 0.769980
\(343\) −5965.40 2183.48i −0.939071 0.343722i
\(344\) 264.256 0.0414178
\(345\) −634.534 1099.04i −0.0990207 0.171509i
\(346\) 2008.99 3479.67i 0.312150 0.540660i
\(347\) −5654.75 + 9794.32i −0.874821 + 1.51523i −0.0178681 + 0.999840i \(0.505688\pi\)
−0.856953 + 0.515394i \(0.827645\pi\)
\(348\) 849.656 + 1471.65i 0.130880 + 0.226691i
\(349\) 5202.37 0.797927 0.398963 0.916967i \(-0.369370\pi\)
0.398963 + 0.916967i \(0.369370\pi\)
\(350\) −2499.58 293.689i −0.381738 0.0448524i
\(351\) −306.880 −0.0466668
\(352\) 900.995 + 1560.57i 0.136430 + 0.236303i
\(353\) −3151.34 + 5458.28i −0.475153 + 0.822989i −0.999595 0.0284571i \(-0.990941\pi\)
0.524442 + 0.851446i \(0.324274\pi\)
\(354\) −2936.79 + 5086.68i −0.440929 + 0.763712i
\(355\) 647.184 + 1120.96i 0.0967577 + 0.167589i
\(356\) 4964.45 0.739088
\(357\) −5823.77 13523.5i −0.863379 2.00487i
\(358\) −8024.47 −1.18465
\(359\) 6398.94 + 11083.3i 0.940733 + 1.62940i 0.764078 + 0.645124i \(0.223194\pi\)
0.176655 + 0.984273i \(0.443472\pi\)
\(360\) −796.486 + 1379.55i −0.116607 + 0.201969i
\(361\) −836.229 + 1448.39i −0.121917 + 0.211166i
\(362\) 2231.44 + 3864.96i 0.323983 + 0.561154i
\(363\) −13441.5 −1.94352
\(364\) −2914.91 + 3910.47i −0.419732 + 0.563088i
\(365\) 2732.20 0.391808
\(366\) −1756.06 3041.59i −0.250795 0.434389i
\(367\) 3897.37 6750.44i 0.554335 0.960136i −0.443620 0.896215i \(-0.646306\pi\)
0.997955 0.0639213i \(-0.0203607\pi\)
\(368\) −184.000 + 318.697i −0.0260643 + 0.0451447i
\(369\) 4736.32 + 8203.55i 0.668193 + 1.15734i
\(370\) −1856.79 −0.260892
\(371\) 7091.82 9513.97i 0.992423 1.33138i
\(372\) 6863.15 0.956553
\(373\) −4676.01 8099.08i −0.649101 1.12428i −0.983338 0.181786i \(-0.941812\pi\)
0.334237 0.942489i \(-0.391521\pi\)
\(374\) 6128.71 10615.2i 0.847348 1.46765i
\(375\) 5323.09 9219.86i 0.733022 1.26963i
\(376\) 591.397 + 1024.33i 0.0811143 + 0.140494i
\(377\) −3828.89 −0.523072
\(378\) −68.2880 158.572i −0.00929194 0.0215770i
\(379\) −671.508 −0.0910107 −0.0455054 0.998964i \(-0.514490\pi\)
−0.0455054 + 0.998964i \(0.514490\pi\)
\(380\) −1395.35 2416.81i −0.188368 0.326263i
\(381\) 7940.26 13752.9i 1.06770 1.84930i
\(382\) 130.667 226.321i 0.0175013 0.0303131i
\(383\) −2961.57 5129.58i −0.395115 0.684359i 0.598001 0.801495i \(-0.295962\pi\)
−0.993116 + 0.117136i \(0.962629\pi\)
\(384\) 935.030 0.124259
\(385\) 7823.72 + 919.251i 1.03567 + 0.121687i
\(386\) 6886.64 0.908085
\(387\) 435.393 + 754.123i 0.0571894 + 0.0990549i
\(388\) −1995.81 + 3456.85i −0.261139 + 0.452307i
\(389\) 1726.23 2989.91i 0.224995 0.389703i −0.731323 0.682032i \(-0.761097\pi\)
0.956318 + 0.292328i \(0.0944300\pi\)
\(390\) −3632.73 6292.07i −0.471667 0.816952i
\(391\) 2503.20 0.323765
\(392\) −2669.27 636.034i −0.343925 0.0819504i
\(393\) 17939.2 2.30258
\(394\) −2976.33 5155.16i −0.380573 0.659171i
\(395\) −3181.17 + 5509.94i −0.405220 + 0.701861i
\(396\) −2968.99 + 5142.45i −0.376762 + 0.652570i
\(397\) 1231.35 + 2132.77i 0.155667 + 0.269624i 0.933302 0.359093i \(-0.116914\pi\)
−0.777635 + 0.628717i \(0.783581\pi\)
\(398\) 1805.92 0.227443
\(399\) −12410.7 1458.20i −1.55718 0.182961i
\(400\) −1087.14 −0.135893
\(401\) 6314.01 + 10936.2i 0.786301 + 1.36191i 0.928219 + 0.372035i \(0.121340\pi\)
−0.141917 + 0.989879i \(0.545327\pi\)
\(402\) −824.618 + 1428.28i −0.102309 + 0.177204i
\(403\) −7732.03 + 13392.3i −0.955732 + 1.65538i
\(404\) −1893.30 3279.29i −0.233156 0.403838i
\(405\) 5633.47 0.691183
\(406\) −852.017 1978.48i −0.104150 0.241848i
\(407\) −6921.41 −0.842952
\(408\) −3180.11 5508.12i −0.385880 0.668364i
\(409\) −4928.87 + 8537.06i −0.595885 + 1.03210i 0.397536 + 0.917587i \(0.369865\pi\)
−0.993421 + 0.114517i \(0.963468\pi\)
\(410\) 2714.16 4701.06i 0.326934 0.566266i
\(411\) 3730.23 + 6460.94i 0.447685 + 0.775413i
\(412\) 1688.85 0.201951
\(413\) 4449.86 5969.68i 0.530178 0.711255i
\(414\) −1212.65 −0.143958
\(415\) −5190.26 8989.79i −0.613927 1.06335i
\(416\) −1053.41 + 1824.55i −0.124153 + 0.215039i
\(417\) 1530.03 2650.09i 0.179679 0.311212i
\(418\) −5201.33 9008.96i −0.608625 1.05417i
\(419\) −15594.0 −1.81818 −0.909090 0.416599i \(-0.863222\pi\)
−0.909090 + 0.416599i \(0.863222\pi\)
\(420\) 2442.90 3277.25i 0.283813 0.380746i
\(421\) −2429.98 −0.281306 −0.140653 0.990059i \(-0.544920\pi\)
−0.140653 + 0.990059i \(0.544920\pi\)
\(422\) −2439.95 4226.12i −0.281457 0.487498i
\(423\) −1948.80 + 3375.41i −0.224004 + 0.387986i
\(424\) 2562.88 4439.04i 0.293549 0.508441i
\(425\) 3697.47 + 6404.20i 0.422008 + 0.730939i
\(426\) 2503.59 0.284740
\(427\) 1760.94 + 4089.12i 0.199574 + 0.463434i
\(428\) 2355.39 0.266009
\(429\) −13541.4 23454.4i −1.52398 2.63960i
\(430\) 249.503 432.152i 0.0279816 0.0484656i
\(431\) 2270.14 3932.00i 0.253710 0.439438i −0.710834 0.703359i \(-0.751683\pi\)
0.964544 + 0.263921i \(0.0850158\pi\)
\(432\) −37.2892 64.5868i −0.00415296 0.00719313i
\(433\) −15322.6 −1.70060 −0.850299 0.526300i \(-0.823579\pi\)
−0.850299 + 0.526300i \(0.823579\pi\)
\(434\) −8640.67 1015.24i −0.955681 0.112288i
\(435\) 3208.88 0.353688
\(436\) −213.708 370.153i −0.0234742 0.0406585i
\(437\) 1062.21 1839.80i 0.116275 0.201395i
\(438\) 2642.33 4576.65i 0.288254 0.499271i
\(439\) 2570.90 + 4452.92i 0.279504 + 0.484115i 0.971262 0.238015i \(-0.0764967\pi\)
−0.691758 + 0.722130i \(0.743163\pi\)
\(440\) 3402.78 0.368684
\(441\) −2582.85 8665.40i −0.278895 0.935687i
\(442\) 14330.9 1.54220
\(443\) 3769.16 + 6528.38i 0.404240 + 0.700165i 0.994233 0.107244i \(-0.0342027\pi\)
−0.589993 + 0.807409i \(0.700869\pi\)
\(444\) −1795.72 + 3110.27i −0.191939 + 0.332448i
\(445\) 4687.30 8118.64i 0.499324 0.864855i
\(446\) −5414.35 9377.93i −0.574836 0.995646i
\(447\) −7190.38 −0.760835
\(448\) −1177.20 138.315i −0.124146 0.0145866i
\(449\) −7253.14 −0.762354 −0.381177 0.924502i \(-0.624481\pi\)
−0.381177 + 0.924502i \(0.624481\pi\)
\(450\) −1791.20 3102.45i −0.187640 0.325002i
\(451\) 10117.3 17523.8i 1.05634 1.82963i
\(452\) −42.3738 + 73.3936i −0.00440950 + 0.00763749i
\(453\) 7323.16 + 12684.1i 0.759541 + 1.31556i
\(454\) −8959.08 −0.926146
\(455\) 3642.82 + 8459.06i 0.375337 + 0.871575i
\(456\) −5397.81 −0.554332
\(457\) 7056.72 + 12222.6i 0.722319 + 1.25109i 0.960068 + 0.279766i \(0.0902569\pi\)
−0.237750 + 0.971326i \(0.576410\pi\)
\(458\) −3627.89 + 6283.70i −0.370132 + 0.641087i
\(459\) −253.647 + 439.330i −0.0257935 + 0.0446757i
\(460\) 347.455 + 601.810i 0.0352178 + 0.0609990i
\(461\) 1996.06 0.201662 0.100831 0.994904i \(-0.467850\pi\)
0.100831 + 0.994904i \(0.467850\pi\)
\(462\) 9106.19 12216.3i 0.917010 1.23021i
\(463\) 8301.53 0.833271 0.416636 0.909074i \(-0.363209\pi\)
0.416636 + 0.909074i \(0.363209\pi\)
\(464\) −465.251 805.838i −0.0465490 0.0806252i
\(465\) 6479.99 11223.7i 0.646242 1.11932i
\(466\) −3682.73 + 6378.68i −0.366093 + 0.634092i
\(467\) 2258.92 + 3912.57i 0.223834 + 0.387692i 0.955969 0.293468i \(-0.0948094\pi\)
−0.732135 + 0.681159i \(0.761476\pi\)
\(468\) −6942.45 −0.685716
\(469\) 1249.47 1676.22i 0.123017 0.165033i
\(470\) 2233.52 0.219202
\(471\) −1409.37 2441.10i −0.137877 0.238811i
\(472\) 1608.12 2785.34i 0.156821 0.271622i
\(473\) 930.052 1610.90i 0.0904098 0.156594i
\(474\) 6153.06 + 10657.4i 0.596243 + 1.03272i
\(475\) 6275.94 0.606231
\(476\) 3188.95 + 7405.12i 0.307070 + 0.713053i
\(477\) 16890.6 1.62132
\(478\) 1289.59 + 2233.64i 0.123399 + 0.213733i
\(479\) 8257.82 14303.0i 0.787702 1.36434i −0.139669 0.990198i \(-0.544604\pi\)
0.927371 0.374142i \(-0.122063\pi\)
\(480\) 882.829 1529.11i 0.0839489 0.145404i
\(481\) −4046.11 7008.07i −0.383548 0.664325i
\(482\) 1328.31 0.125524
\(483\) 3090.39 + 363.107i 0.291134 + 0.0342069i
\(484\) 7360.25 0.691233
\(485\) 3768.78 + 6527.72i 0.352849 + 0.611152i
\(486\) 5322.32 9218.52i 0.496760 0.860413i
\(487\) −4526.54 + 7840.20i −0.421185 + 0.729514i −0.996056 0.0887304i \(-0.971719\pi\)
0.574871 + 0.818244i \(0.305052\pi\)
\(488\) 961.578 + 1665.50i 0.0891979 + 0.154495i
\(489\) 17512.6 1.61953
\(490\) −3560.39 + 3764.67i −0.328249 + 0.347083i
\(491\) −7398.88 −0.680055 −0.340027 0.940416i \(-0.610436\pi\)
−0.340027 + 0.940416i \(0.610436\pi\)
\(492\) −5249.77 9092.86i −0.481052 0.833207i
\(493\) −3164.71 + 5481.44i −0.289110 + 0.500754i
\(494\) 6081.17 10532.9i 0.553856 0.959307i
\(495\) 5606.48 + 9710.71i 0.509076 + 0.881746i
\(496\) −3758.09 −0.340209
\(497\) −3152.00 370.346i −0.284480 0.0334251i
\(498\) −20078.1 −1.80667
\(499\) 358.911 + 621.652i 0.0321985 + 0.0557694i 0.881676 0.471856i \(-0.156416\pi\)
−0.849477 + 0.527625i \(0.823082\pi\)
\(500\) −2914.80 + 5048.57i −0.260707 + 0.451558i
\(501\) 12560.6 21755.5i 1.12009 1.94005i
\(502\) 4771.08 + 8263.75i 0.424190 + 0.734719i
\(503\) −1927.68 −0.170877 −0.0854385 0.996343i \(-0.527229\pi\)
−0.0854385 + 0.996343i \(0.527229\pi\)
\(504\) −1544.86 3587.34i −0.136535 0.317049i
\(505\) −7150.39 −0.630076
\(506\) 1295.18 + 2243.32i 0.113790 + 0.197090i
\(507\) 7807.60 13523.2i 0.683920 1.18459i
\(508\) −4347.90 + 7530.78i −0.379738 + 0.657725i
\(509\) 3902.44 + 6759.22i 0.339828 + 0.588600i 0.984400 0.175944i \(-0.0562978\pi\)
−0.644572 + 0.764544i \(0.722964\pi\)
\(510\) −12010.3 −1.04279
\(511\) −4003.69 + 5371.11i −0.346600 + 0.464979i
\(512\) −512.000 −0.0441942
\(513\) 215.266 + 372.851i 0.0185267 + 0.0320892i
\(514\) −2134.29 + 3696.70i −0.183151 + 0.317226i
\(515\) 1594.57 2761.87i 0.136437 0.236316i
\(516\) −482.592 835.874i −0.0411724 0.0713126i
\(517\) 8325.72 0.708249
\(518\) 2720.89 3650.18i 0.230789 0.309614i
\(519\) −14675.5 −1.24120
\(520\) 1989.19 + 3445.38i 0.167754 + 0.290558i
\(521\) 10703.4 18538.9i 0.900049 1.55893i 0.0726198 0.997360i \(-0.476864\pi\)
0.827429 0.561570i \(-0.189803\pi\)
\(522\) 1533.11 2655.43i 0.128549 0.222653i
\(523\) −5663.92 9810.20i −0.473549 0.820211i 0.525993 0.850489i \(-0.323694\pi\)
−0.999542 + 0.0302784i \(0.990361\pi\)
\(524\) −9823.10 −0.818939
\(525\) 3635.83 + 8442.83i 0.302249 + 0.701857i
\(526\) −13620.5 −1.12905
\(527\) 12781.6 + 22138.4i 1.05650 + 1.82991i
\(528\) 3290.85 5699.92i 0.271242 0.469805i
\(529\) −264.500 + 458.127i −0.0217391 + 0.0376533i
\(530\) −4839.61 8382.44i −0.396640 0.687000i
\(531\) 10598.3 0.866150
\(532\) 6795.81 + 798.477i 0.553827 + 0.0650721i
\(533\) 23657.6 1.92256
\(534\) −9066.24 15703.2i −0.734709 1.27255i
\(535\) 2223.89 3851.89i 0.179714 0.311274i
\(536\) 451.541 782.092i 0.0363873 0.0630247i
\(537\) 14654.5 + 25382.4i 1.17763 + 2.03972i
\(538\) 13386.3 1.07272
\(539\) −13271.8 + 14033.3i −1.06059 + 1.12144i
\(540\) −140.830 −0.0112229
\(541\) 4254.43 + 7368.89i 0.338100 + 0.585607i 0.984075 0.177752i \(-0.0568824\pi\)
−0.645975 + 0.763358i \(0.723549\pi\)
\(542\) −8641.37 + 14967.3i −0.684831 + 1.18616i
\(543\) 8150.24 14116.6i 0.644125 1.11566i
\(544\) 1741.35 + 3016.11i 0.137242 + 0.237711i
\(545\) −807.109 −0.0634362
\(546\) 17692.6 + 2078.80i 1.38676 + 0.162938i
\(547\) 7097.86 0.554813 0.277406 0.960753i \(-0.410525\pi\)
0.277406 + 0.960753i \(0.410525\pi\)
\(548\) −2042.58 3537.85i −0.159224 0.275784i
\(549\) −3168.63 + 5488.23i −0.246327 + 0.426652i
\(550\) −3826.22 + 6627.20i −0.296637 + 0.513791i
\(551\) 2685.83 + 4652.00i 0.207659 + 0.359677i
\(552\) 1344.11 0.103639
\(553\) −6170.16 14327.8i −0.474470 1.10177i
\(554\) 14987.2 1.14936
\(555\) 3390.93 + 5873.26i 0.259346 + 0.449200i
\(556\) −837.808 + 1451.13i −0.0639046 + 0.110686i
\(557\) −134.978 + 233.790i −0.0102679 + 0.0177845i −0.871114 0.491081i \(-0.836602\pi\)
0.860846 + 0.508866i \(0.169935\pi\)
\(558\) −6191.91 10724.7i −0.469757 0.813643i
\(559\) 2174.76 0.164548
\(560\) −1337.67 + 1794.54i −0.100941 + 0.135417i
\(561\) −44769.8 −3.36931
\(562\) 1976.73 + 3423.80i 0.148369 + 0.256983i
\(563\) 11374.8 19701.7i 0.851491 1.47482i −0.0283723 0.999597i \(-0.509032\pi\)
0.879863 0.475228i \(-0.157634\pi\)
\(564\) 2160.06 3741.33i 0.161267 0.279323i
\(565\) 80.0163 + 138.592i 0.00595807 + 0.0103197i
\(566\) −12309.2 −0.914126
\(567\) −8255.12 + 11074.6i −0.611433 + 0.820262i
\(568\) −1370.90 −0.101271
\(569\) 46.8598 + 81.1636i 0.00345249 + 0.00597988i 0.867746 0.497007i \(-0.165568\pi\)
−0.864294 + 0.502987i \(0.832234\pi\)
\(570\) −5096.46 + 8827.32i −0.374504 + 0.648660i
\(571\) −1755.96 + 3041.41i −0.128695 + 0.222906i −0.923171 0.384389i \(-0.874412\pi\)
0.794476 + 0.607295i \(0.207745\pi\)
\(572\) 7414.95 + 12843.1i 0.542019 + 0.938804i
\(573\) −954.510 −0.0695903
\(574\) 5264.36 + 12224.4i 0.382805 + 0.888917i
\(575\) −1562.77 −0.113343
\(576\) −843.581 1461.13i −0.0610230 0.105695i
\(577\) 1821.94 3155.69i 0.131453 0.227683i −0.792784 0.609503i \(-0.791369\pi\)
0.924237 + 0.381820i \(0.124703\pi\)
\(578\) 6931.97 12006.5i 0.498844 0.864023i
\(579\) −12576.6 21783.3i −0.902704 1.56353i
\(580\) −1757.11 −0.125793
\(581\) 25278.3 + 2970.08i 1.80503 + 0.212082i
\(582\) 14579.3 1.03837
\(583\) −18040.2 31246.5i −1.28156 2.21972i
\(584\) −1446.88 + 2506.06i −0.102521 + 0.177571i
\(585\) −6554.87 + 11353.4i −0.463266 + 0.802400i
\(586\) −1905.58 3300.56i −0.134332 0.232671i
\(587\) 12611.0 0.886730 0.443365 0.896341i \(-0.353784\pi\)
0.443365 + 0.896341i \(0.353784\pi\)
\(588\) 2862.85 + 9604.78i 0.200785 + 0.673630i
\(589\) 21695.0 1.51770
\(590\) −3036.68 5259.68i −0.211895 0.367013i
\(591\) −10870.9 + 18829.0i −0.756635 + 1.31053i
\(592\) 983.291 1703.11i 0.0682652 0.118239i
\(593\) 258.426 + 447.607i 0.0178959 + 0.0309967i 0.874835 0.484422i \(-0.160970\pi\)
−0.856939 + 0.515418i \(0.827637\pi\)
\(594\) −524.959 −0.0362615
\(595\) 15120.9 + 1776.64i 1.04184 + 0.122412i
\(596\) 3937.28 0.270599
\(597\) −3298.02 5712.34i −0.226096 0.391609i
\(598\) −1514.27 + 2622.79i −0.103550 + 0.179355i
\(599\) 3119.99 5403.98i 0.212820 0.368615i −0.739776 0.672853i \(-0.765068\pi\)
0.952596 + 0.304238i \(0.0984018\pi\)
\(600\) 1985.38 + 3438.77i 0.135088 + 0.233979i
\(601\) −22085.1 −1.49895 −0.749477 0.662031i \(-0.769695\pi\)
−0.749477 + 0.662031i \(0.769695\pi\)
\(602\) 483.934 + 1123.75i 0.0327636 + 0.0760808i
\(603\) 2975.87 0.200973
\(604\) −4009.99 6945.50i −0.270139 0.467895i
\(605\) 6949.34 12036.6i 0.466993 0.808856i
\(606\) −6915.20 + 11977.5i −0.463549 + 0.802890i
\(607\) −11694.2 20254.9i −0.781963 1.35440i −0.930797 0.365538i \(-0.880885\pi\)
0.148833 0.988862i \(-0.452448\pi\)
\(608\) 2955.71 0.197154
\(609\) −4702.21 + 6308.20i −0.312879 + 0.419739i
\(610\) 3631.58 0.241046
\(611\) 4867.04 + 8429.97i 0.322258 + 0.558167i
\(612\) −5738.18 + 9938.81i −0.379007 + 0.656459i
\(613\) −11597.6 + 20087.7i −0.764149 + 1.32355i 0.176546 + 0.984292i \(0.443508\pi\)
−0.940695 + 0.339253i \(0.889826\pi\)
\(614\) 643.667 + 1114.86i 0.0423067 + 0.0732773i
\(615\) −19826.7 −1.29999
\(616\) −4986.33 + 6689.37i −0.326145 + 0.437536i
\(617\) −4370.58 −0.285175 −0.142588 0.989782i \(-0.545542\pi\)
−0.142588 + 0.989782i \(0.545542\pi\)
\(618\) −3084.23 5342.05i −0.200754 0.347716i
\(619\) −2877.30 + 4983.64i −0.186831 + 0.323601i −0.944192 0.329395i \(-0.893155\pi\)
0.757361 + 0.652997i \(0.226488\pi\)
\(620\) −3548.29 + 6145.81i −0.229843 + 0.398100i
\(621\) −53.6032 92.8435i −0.00346380 0.00599948i
\(622\) 10262.1 0.661531
\(623\) 9091.44 + 21111.4i 0.584656 + 1.35764i
\(624\) 7695.05 0.493668
\(625\) 1257.48 + 2178.02i 0.0804787 + 0.139393i
\(626\) 4845.93 8393.40i 0.309397 0.535891i
\(627\) −18997.6 + 32904.9i −1.21004 + 2.09584i
\(628\) 771.736 + 1336.69i 0.0490376 + 0.0849356i
\(629\) −13377.0 −0.847975
\(630\) −7325.17 860.674i −0.463241 0.0544287i
\(631\) −10487.6 −0.661658 −0.330829 0.943691i \(-0.607328\pi\)
−0.330829 + 0.943691i \(0.607328\pi\)
\(632\) −3369.27 5835.74i −0.212060 0.367299i
\(633\) −8911.83 + 15435.7i −0.559579 + 0.969219i
\(634\) 2149.07 3722.30i 0.134622 0.233172i
\(635\) 8210.33 + 14220.7i 0.513097 + 0.888711i
\(636\) −18721.7 −1.16724
\(637\) −21967.4 5234.39i −1.36637 0.325580i
\(638\) −6549.82 −0.406442
\(639\) −2258.73 3912.23i −0.139834 0.242199i
\(640\) −483.416 + 837.301i −0.0298573 + 0.0517144i
\(641\) −11321.7 + 19609.8i −0.697631 + 1.20833i 0.271654 + 0.962395i \(0.412429\pi\)
−0.969286 + 0.245938i \(0.920904\pi\)
\(642\) −4301.48 7450.38i −0.264433 0.458011i
\(643\) −8247.48 −0.505830 −0.252915 0.967488i \(-0.581389\pi\)
−0.252915 + 0.967488i \(0.581389\pi\)
\(644\) −1692.22 198.828i −0.103545 0.0121661i
\(645\) −1822.60 −0.111263
\(646\) −10052.6 17411.6i −0.612251 1.06045i
\(647\) −1679.09 + 2908.27i −0.102027 + 0.176717i −0.912520 0.409032i \(-0.865866\pi\)
0.810492 + 0.585749i \(0.199200\pi\)
\(648\) −2983.28 + 5167.20i −0.180856 + 0.313251i
\(649\) −11319.6 19606.1i −0.684642 1.18583i
\(650\) −8946.91 −0.539887
\(651\) 12568.5 + 29185.6i 0.756682 + 1.75710i
\(652\) −9589.50 −0.576003
\(653\) 5621.76 + 9737.17i 0.336901 + 0.583529i 0.983848 0.179005i \(-0.0572879\pi\)
−0.646947 + 0.762535i \(0.723955\pi\)
\(654\) −780.561 + 1351.97i −0.0466702 + 0.0808352i
\(655\) −9274.69 + 16064.2i −0.553271 + 0.958293i
\(656\) 2874.64 + 4979.03i 0.171091 + 0.296339i
\(657\) −9535.61 −0.566240
\(658\) −3272.94 + 4390.79i −0.193910 + 0.260138i
\(659\) 28375.7 1.67733 0.838664 0.544650i \(-0.183337\pi\)
0.838664 + 0.544650i \(0.183337\pi\)
\(660\) −6214.26 10763.4i −0.366499 0.634796i
\(661\) 13260.5 22967.8i 0.780292 1.35151i −0.151479 0.988460i \(-0.548404\pi\)
0.931771 0.363045i \(-0.118263\pi\)
\(662\) 733.344 1270.19i 0.0430547 0.0745729i
\(663\) −26171.5 45330.4i −1.53306 2.65533i
\(664\) 10994.3 0.642563
\(665\) 7722.21 10359.7i 0.450307 0.604106i
\(666\) 6480.36 0.377040
\(667\) −668.798 1158.39i −0.0388245 0.0672461i
\(668\) −6877.86 + 11912.8i −0.398372 + 0.690000i
\(669\) −19775.7 + 34252.5i −1.14286 + 1.97949i
\(670\) −852.665 1476.86i −0.0491661 0.0851582i
\(671\) 13537.1 0.778831
\(672\) 1712.33 + 3976.22i 0.0982954 + 0.228253i
\(673\) −11574.0 −0.662921 −0.331460 0.943469i \(-0.607541\pi\)
−0.331460 + 0.943469i \(0.607541\pi\)
\(674\) −1922.41 3329.71i −0.109864 0.190290i
\(675\) 158.354 274.278i 0.00902972 0.0156399i
\(676\) −4275.25 + 7404.96i −0.243244 + 0.421311i
\(677\) −9982.29 17289.8i −0.566692 0.981539i −0.996890 0.0788049i \(-0.974890\pi\)
0.430198 0.902735i \(-0.358444\pi\)
\(678\) 309.537 0.0175335
\(679\) −18355.2 2156.65i −1.03742 0.121892i
\(680\) 6576.55 0.370881
\(681\) 16361.3 + 28338.7i 0.920658 + 1.59463i
\(682\) −13226.7 + 22909.2i −0.742632 + 1.28628i
\(683\) −15477.8 + 26808.4i −0.867120 + 1.50190i −0.00219336 + 0.999998i \(0.500698\pi\)
−0.864927 + 0.501898i \(0.832635\pi\)
\(684\) 4869.88 + 8434.89i 0.272229 + 0.471515i
\(685\) −7714.19 −0.430283
\(686\) −2183.51 12515.9i −0.121526 0.696586i
\(687\) 26501.5 1.47175
\(688\) 264.256 + 457.705i 0.0146434 + 0.0253631i
\(689\) 21091.9 36532.2i 1.16623 2.01998i
\(690\) 1269.07 2198.09i 0.0700182 0.121275i
\(691\) 5178.01 + 8968.58i 0.285066 + 0.493750i 0.972625 0.232379i \(-0.0746510\pi\)
−0.687559 + 0.726129i \(0.741318\pi\)
\(692\) 8035.96 0.441447
\(693\) −27305.4 3208.26i −1.49675 0.175861i
\(694\) −22619.0 −1.23718
\(695\) 1582.07 + 2740.23i 0.0863472 + 0.149558i
\(696\) −1699.31 + 2943.29i −0.0925463 + 0.160295i
\(697\) 19553.8 33868.2i 1.06263 1.84053i
\(698\) 5202.37 + 9010.77i 0.282110 + 0.488628i
\(699\) 26902.1 1.45569
\(700\) −1990.90 4623.09i −0.107498 0.249623i
\(701\) −736.621 −0.0396887 −0.0198444 0.999803i \(-0.506317\pi\)
−0.0198444 + 0.999803i \(0.506317\pi\)
\(702\) −306.880 531.532i −0.0164992 0.0285775i
\(703\) −5676.41 + 9831.82i −0.304537 + 0.527474i
\(704\) −1801.99 + 3121.14i −0.0964703 + 0.167091i
\(705\) −4078.93 7064.91i −0.217903 0.377419i
\(706\) −12605.4 −0.671968
\(707\) 10478.0 14056.6i 0.557376 0.747743i
\(708\) −11747.2 −0.623568
\(709\) 16138.8 + 27953.2i 0.854873 + 1.48068i 0.876763 + 0.480923i \(0.159698\pi\)
−0.0218904 + 0.999760i \(0.506969\pi\)
\(710\) −1294.37 + 2241.91i −0.0684180 + 0.118503i
\(711\) 11102.5 19230.2i 0.585623 1.01433i
\(712\) 4964.45 + 8598.68i 0.261307 + 0.452597i
\(713\) −5402.26 −0.283754
\(714\) 17599.5 23610.5i 0.922474 1.23754i
\(715\) 28004.0 1.46474
\(716\) −8024.47 13898.8i −0.418839 0.725450i
\(717\) 4710.19 8158.29i 0.245335 0.424933i
\(718\) −12797.9 + 22166.6i −0.665199 + 1.15216i
\(719\) −17395.4 30129.6i −0.902277 1.56279i −0.824531 0.565817i \(-0.808561\pi\)
−0.0777468 0.996973i \(-0.524773\pi\)
\(720\) −3185.94 −0.164907
\(721\) 3092.81 + 7181.85i 0.159753 + 0.370966i
\(722\) −3344.92 −0.172417
\(723\) −2425.79 4201.60i −0.124780 0.216126i
\(724\) −4462.87 + 7729.92i −0.229090 + 0.396796i
\(725\) 1975.76 3422.12i 0.101211 0.175302i
\(726\) −13441.5 23281.4i −0.687137 1.19016i
\(727\) 21693.3 1.10668 0.553341 0.832955i \(-0.313353\pi\)
0.553341 + 0.832955i \(0.313353\pi\)
\(728\) −9688.03 1138.30i −0.493218 0.0579508i
\(729\) −18741.9 −0.952189
\(730\) 2732.20 + 4732.31i 0.138525 + 0.239932i
\(731\) 1797.51 3113.38i 0.0909485 0.157527i
\(732\) 3512.13 6083.18i 0.177339 0.307160i
\(733\) −9132.29 15817.6i −0.460176 0.797048i 0.538793 0.842438i \(-0.318880\pi\)
−0.998969 + 0.0453898i \(0.985547\pi\)
\(734\) 15589.5 0.783948
\(735\) 18410.2 + 4386.79i 0.923907 + 0.220149i
\(736\) −736.000 −0.0368605
\(737\) −3178.41 5505.16i −0.158858 0.275150i
\(738\) −9472.64 + 16407.1i −0.472484 + 0.818365i
\(739\) −5243.74 + 9082.42i −0.261020 + 0.452100i −0.966513 0.256617i \(-0.917392\pi\)
0.705493 + 0.708717i \(0.250726\pi\)
\(740\) −1856.79 3216.06i −0.0922392 0.159763i
\(741\) −44422.5 −2.20230
\(742\) 23570.5 + 2769.42i 1.16617 + 0.137020i
\(743\) 6519.14 0.321889 0.160945 0.986963i \(-0.448546\pi\)
0.160945 + 0.986963i \(0.448546\pi\)
\(744\) 6863.15 + 11887.3i 0.338193 + 0.585767i
\(745\) 3717.47 6438.84i 0.182815 0.316646i
\(746\) 9352.02 16198.2i 0.458983 0.794983i
\(747\) 18114.4 + 31375.1i 0.887246 + 1.53675i
\(748\) 24514.9 1.19833
\(749\) 4313.44 + 10016.3i 0.210427 + 0.488635i
\(750\) 21292.4 1.03665
\(751\) 12205.4 + 21140.4i 0.593053 + 1.02720i 0.993819 + 0.111017i \(0.0354107\pi\)
−0.400766 + 0.916180i \(0.631256\pi\)
\(752\) −1182.79 + 2048.66i −0.0573565 + 0.0993444i
\(753\) 17426.2 30183.0i 0.843353 1.46073i
\(754\) −3828.89 6631.84i −0.184934 0.320315i
\(755\) −15144.5 −0.730018
\(756\) 206.368 276.851i 0.00992794 0.0133187i
\(757\) −36222.9 −1.73916 −0.869580 0.493793i \(-0.835610\pi\)
−0.869580 + 0.493793i \(0.835610\pi\)
\(758\) −671.508 1163.09i −0.0321772 0.0557325i
\(759\) 4730.60 8193.64i 0.226232 0.391845i
\(760\) 2790.70 4833.63i 0.133196 0.230703i
\(761\) −5181.73 8975.02i −0.246830 0.427522i 0.715815 0.698290i \(-0.246056\pi\)
−0.962645 + 0.270768i \(0.912722\pi\)
\(762\) 31761.1 1.50995
\(763\) 1182.71 1586.66i 0.0561168 0.0752830i
\(764\) 522.667 0.0247505
\(765\) 10835.7 + 18767.9i 0.512110 + 0.887000i
\(766\) 5923.13 10259.2i 0.279388 0.483915i
\(767\) 13234.4 22922.6i 0.623033 1.07912i
\(768\) 935.030 + 1619.52i 0.0439323 + 0.0760930i
\(769\) −3915.55 −0.183613 −0.0918065 0.995777i \(-0.529264\pi\)
−0.0918065 + 0.995777i \(0.529264\pi\)
\(770\) 6231.53 + 14470.3i 0.291648 + 0.677240i
\(771\) 15590.8 0.728262
\(772\) 6886.64 + 11928.0i 0.321057 + 0.556086i
\(773\) −14410.1 + 24959.1i −0.670500 + 1.16134i 0.307263 + 0.951625i \(0.400587\pi\)
−0.977763 + 0.209715i \(0.932746\pi\)
\(774\) −870.787 + 1508.25i −0.0404390 + 0.0700424i
\(775\) −7979.67 13821.2i −0.369856 0.640609i
\(776\) −7983.25 −0.369307
\(777\) −16515.0 1940.43i −0.762511 0.0895915i
\(778\) 6904.91 0.318191
\(779\) −16594.9 28743.3i −0.763255 1.32200i
\(780\) 7265.45 12584.1i 0.333519 0.577672i
\(781\) −4824.91 + 8356.99i −0.221061 + 0.382889i
\(782\) 2503.20 + 4335.66i 0.114468 + 0.198265i
\(783\) 271.075 0.0123722
\(784\) −1567.63 5259.34i −0.0714115 0.239584i
\(785\) 2914.61 0.132518
\(786\) 17939.2 + 31071.7i 0.814086 + 1.41004i
\(787\) −11573.3 + 20045.5i −0.524196 + 0.907934i 0.475407 + 0.879766i \(0.342301\pi\)
−0.999603 + 0.0281681i \(0.991033\pi\)
\(788\) 5952.67 10310.3i 0.269105 0.466104i
\(789\) 24874.1 + 43083.3i 1.12236 + 1.94399i
\(790\) −12724.7 −0.573067
\(791\) −389.706 45.7887i −0.0175175 0.00205823i
\(792\) −11876.0 −0.532821
\(793\) 7913.53 + 13706.6i 0.354373 + 0.613792i
\(794\) −2462.71 + 4265.54i −0.110073 + 0.190653i
\(795\) −17676.5 + 30616.6i −0.788579 + 1.36586i
\(796\) 1805.92 + 3127.94i 0.0804134 + 0.139280i
\(797\) 8804.30 0.391298 0.195649 0.980674i \(-0.437319\pi\)
0.195649 + 0.980674i \(0.437319\pi\)
\(798\) −9885.04 22954.2i −0.438505 1.01826i
\(799\) 16091.1 0.712469
\(800\) −1087.14 1882.99i −0.0480454 0.0832171i
\(801\) −16359.1 + 28334.7i −0.721622 + 1.24989i
\(802\) −12628.0 + 21872.4i −0.555999 + 0.963019i
\(803\) 10184.6 + 17640.2i 0.447580 + 0.775231i
\(804\) −3298.47 −0.144687
\(805\) −1922.90 + 2579.66i −0.0841907 + 0.112945i
\(806\) −30928.1 −1.35161
\(807\) −24446.4 42342.4i −1.06636 1.84699i
\(808\) 3786.59 6558.57i 0.164866 0.285557i
\(809\) 8154.31 14123.7i 0.354376 0.613798i −0.632635 0.774450i \(-0.718027\pi\)
0.987011 + 0.160653i \(0.0513599\pi\)
\(810\) 5633.47 + 9757.45i 0.244370 + 0.423262i
\(811\) 8308.25 0.359731 0.179866 0.983691i \(-0.442434\pi\)
0.179866 + 0.983691i \(0.442434\pi\)
\(812\) 2574.82 3454.22i 0.111279 0.149285i
\(813\) 63124.5 2.72309
\(814\) −6921.41 11988.2i −0.298028 0.516200i
\(815\) −9054.14 + 15682.2i −0.389144 + 0.674018i
\(816\) 6360.23 11016.2i 0.272858 0.472605i
\(817\) −1525.51 2642.27i −0.0653256 0.113147i
\(818\) −19715.5 −0.842709
\(819\) −12713.8 29522.8i −0.542436 1.25960i
\(820\) 10856.6 0.462354
\(821\) −14309.4 24784.6i −0.608284 1.05358i −0.991523 0.129929i \(-0.958525\pi\)
0.383240 0.923649i \(-0.374808\pi\)
\(822\) −7460.45 + 12921.9i −0.316561 + 0.548300i
\(823\) −732.205 + 1268.22i −0.0310122 + 0.0537147i −0.881115 0.472902i \(-0.843206\pi\)
0.850103 + 0.526617i \(0.176540\pi\)
\(824\) 1688.85 + 2925.18i 0.0714004 + 0.123669i
\(825\) 27950.2 1.17952
\(826\) 14789.6 + 1737.71i 0.622999 + 0.0731996i
\(827\) −38045.8 −1.59974 −0.799869 0.600175i \(-0.795098\pi\)
−0.799869 + 0.600175i \(0.795098\pi\)
\(828\) −1212.65 2100.37i −0.0508967 0.0881556i
\(829\) −11623.7 + 20132.8i −0.486980 + 0.843475i −0.999888 0.0149692i \(-0.995235\pi\)
0.512908 + 0.858444i \(0.328568\pi\)
\(830\) 10380.5 17979.6i 0.434112 0.751904i
\(831\) −27370.0 47406.3i −1.14255 1.97895i
\(832\) −4213.62 −0.175578
\(833\) −25650.4 + 27122.1i −1.06691 + 1.12812i
\(834\) 6120.12 0.254104
\(835\) 12987.8 + 22495.5i 0.538275 + 0.932320i
\(836\) 10402.7 18017.9i 0.430363 0.745410i
\(837\) 547.407 948.137i 0.0226059 0.0391546i
\(838\) −15594.0 27009.6i −0.642824 1.11340i
\(839\) 10511.6 0.432539 0.216270 0.976334i \(-0.430611\pi\)
0.216270 + 0.976334i \(0.430611\pi\)
\(840\) 8119.26 + 953.976i 0.333501 + 0.0391849i
\(841\) −21006.8 −0.861324
\(842\) −2429.98 4208.85i −0.0994568 0.172264i
\(843\) 7219.93 12505.3i 0.294980 0.510920i
\(844\) 4879.90 8452.24i 0.199020 0.344713i
\(845\) 8073.15 + 13983.1i 0.328668 + 0.569270i
\(846\) −7795.18 −0.316790
\(847\) 13478.9 + 31299.5i 0.546800 + 1.26973i
\(848\) 10251.5 0.415141
\(849\) 22479.5 + 38935.6i 0.908709 + 1.57393i
\(850\) −7394.93 + 12808.4i −0.298405 + 0.516852i
\(851\) 1413.48 2448.22i 0.0569371 0.0986180i
\(852\) 2503.59 + 4336.34i 0.100671 + 0.174367i
\(853\) 10457.1 0.419748 0.209874 0.977728i \(-0.432695\pi\)
0.209874 + 0.977728i \(0.432695\pi\)
\(854\) −5321.61 + 7139.16i −0.213234 + 0.286062i
\(855\) 18392.0 0.735666
\(856\) 2355.39 + 4079.65i 0.0940484 + 0.162897i
\(857\) 8807.68 15255.4i 0.351067 0.608067i −0.635369 0.772208i \(-0.719152\pi\)
0.986437 + 0.164142i \(0.0524855\pi\)
\(858\) 27082.8 46908.8i 1.07761 1.86648i
\(859\) 8300.35 + 14376.6i 0.329691 + 0.571041i 0.982450 0.186524i \(-0.0597222\pi\)
−0.652760 + 0.757565i \(0.726389\pi\)
\(860\) 998.012 0.0395720
\(861\) 29053.5 38976.5i 1.14999 1.54276i
\(862\) 9080.57 0.358800
\(863\) 5506.96 + 9538.34i 0.217218 + 0.376233i 0.953956 0.299945i \(-0.0969684\pi\)
−0.736738 + 0.676178i \(0.763635\pi\)
\(864\) 74.5784 129.174i 0.00293658 0.00508631i
\(865\) 7587.33 13141.6i 0.298239 0.516565i
\(866\) −15322.6 26539.6i −0.601252 1.04140i
\(867\) −50637.5 −1.98355
\(868\) −6882.23 15981.3i −0.269122 0.624933i
\(869\) −47432.7 −1.85160
\(870\) 3208.88 + 5557.95i 0.125048 + 0.216589i
\(871\) 3716.06 6436.41i 0.144563 0.250390i
\(872\) 427.416 740.306i 0.0165988 0.0287499i
\(873\) −13153.4 22782.3i −0.509936 0.883235i
\(874\) 4248.83 0.164438
\(875\) −26807.0 3149.70i −1.03570 0.121690i
\(876\) 10569.3 0.407653
\(877\) −11038.0 19118.4i −0.425002 0.736124i 0.571419 0.820658i \(-0.306393\pi\)
−0.996421 + 0.0845341i \(0.973060\pi\)
\(878\) −5141.79 + 8905.85i −0.197639 + 0.342321i
\(879\) −6960.06 + 12055.2i −0.267073 + 0.462584i
\(880\) 3402.78 + 5893.78i 0.130350 + 0.225772i
\(881\) 9443.65 0.361140 0.180570 0.983562i \(-0.442206\pi\)
0.180570 + 0.983562i \(0.442206\pi\)
\(882\) 12426.1 13139.0i 0.474385 0.501603i
\(883\) 31677.0 1.20727 0.603633 0.797262i \(-0.293719\pi\)
0.603633 + 0.797262i \(0.293719\pi\)
\(884\) 14330.9 + 24821.8i 0.545248 + 0.944398i
\(885\) −11091.4 + 19210.8i −0.421279 + 0.729677i
\(886\) −7538.33 + 13056.8i −0.285841 + 0.495091i
\(887\) 48.2246 + 83.5275i 0.00182551 + 0.00316187i 0.866937 0.498418i \(-0.166086\pi\)
−0.865111 + 0.501580i \(0.832752\pi\)
\(888\) −7182.86 −0.271443
\(889\) −39987.0 4698.29i −1.50857 0.177250i
\(890\) 18749.2 0.706151
\(891\) 20999.4 + 36372.0i 0.789570 + 1.36758i
\(892\) 10828.7 18755.9i 0.406471 0.704028i
\(893\) 6828.12 11826.6i 0.255873 0.443184i
\(894\) −7190.38 12454.1i −0.268996 0.465914i
\(895\) −30305.9 −1.13186
\(896\) −937.629 2177.28i −0.0349598 0.0811807i
\(897\) 11061.6 0.411747
\(898\) −7253.14 12562.8i −0.269533 0.466844i
\(899\) 6829.91 11829.8i 0.253382 0.438870i
\(900\) 3582.40 6204.90i 0.132681 0.229811i
\(901\) −34866.3 60390.2i −1.28920 2.23295i
\(902\) 40469.4 1.49388
\(903\) 2670.79 3582.97i 0.0984255 0.132042i
\(904\) −169.495 −0.00623598
\(905\) 8427.44 + 14596.8i 0.309544 + 0.536146i
\(906\) −14646.3 + 25368.2i −0.537077 + 0.930244i
\(907\) 17360.7 30069.6i 0.635559 1.10082i −0.350838 0.936436i \(-0.614103\pi\)
0.986396 0.164384i \(-0.0525635\pi\)
\(908\) −8959.08 15517.6i −0.327442 0.567146i
\(909\) 24955.5 0.910584
\(910\) −11008.7 + 14768.6i −0.401027 + 0.537994i
\(911\) 23562.8 0.856938 0.428469 0.903557i \(-0.359053\pi\)
0.428469 + 0.903557i \(0.359053\pi\)
\(912\) −5397.81 9349.28i −0.195986 0.339458i
\(913\) 38694.6 67021.0i 1.40263 2.42943i
\(914\) −14113.4 + 24445.2i −0.510756 + 0.884656i
\(915\) −6632.10 11487.1i −0.239618 0.415031i
\(916\) −14511.6 −0.523445
\(917\) −17989.1 41772.8i −0.647822 1.50432i
\(918\) −1014.59 −0.0364776
\(919\) 13184.3 + 22835.9i 0.473244 + 0.819682i 0.999531 0.0306249i \(-0.00974974\pi\)
−0.526287 + 0.850307i \(0.676416\pi\)
\(920\) −694.911 + 1203.62i −0.0249027 + 0.0431328i
\(921\) 2350.97 4072.00i 0.0841120 0.145686i
\(922\) 1996.06 + 3457.28i 0.0712981 + 0.123492i
\(923\) −11282.2 −0.402337
\(924\) 30265.5 + 3556.06i 1.07756 + 0.126608i
\(925\) 8351.39 0.296856
\(926\) 8301.53 + 14378.7i 0.294606 + 0.510272i
\(927\) −5565.17 + 9639.16i −0.197178 + 0.341523i
\(928\) 930.502 1611.68i 0.0329151 0.0570106i
\(929\) 18018.1 + 31208.3i 0.636336 + 1.10217i 0.986230 + 0.165377i \(0.0528840\pi\)
−0.349895 + 0.936789i \(0.613783\pi\)
\(930\) 25920.0 0.913924
\(931\) 9049.70 + 30361.5i 0.318573 + 1.06881i
\(932\) −14730.9 −0.517734
\(933\) −18741.0 32460.3i −0.657611 1.13902i
\(934\) −4517.84 + 7825.13i −0.158274 + 0.274139i
\(935\) 23146.2 40090.5i 0.809586 1.40224i
\(936\) −6942.45 12024.7i −0.242437 0.419913i
\(937\) 13236.3 0.461483 0.230742 0.973015i \(-0.425885\pi\)
0.230742 + 0.973015i \(0.425885\pi\)
\(938\) 4152.76 + 487.930i 0.144555 + 0.0169845i
\(939\) −35399.2 −1.23025
\(940\) 2233.52 + 3868.58i 0.0774995 + 0.134233i
\(941\) 7070.96 12247.3i 0.244959 0.424282i −0.717161 0.696908i \(-0.754559\pi\)
0.962120 + 0.272626i \(0.0878921\pi\)
\(942\) 2818.74 4882.19i 0.0974940 0.168865i
\(943\) 4132.30 + 7157.36i 0.142700 + 0.247164i
\(944\) 6432.47 0.221779
\(945\) −257.902 598.879i −0.00887784 0.0206154i
\(946\) 3720.21 0.127859
\(947\) −24069.4 41689.4i −0.825923 1.43054i −0.901211 0.433380i \(-0.857321\pi\)
0.0752880 0.997162i \(-0.476012\pi\)
\(948\) −12306.1 + 21314.8i −0.421608 + 0.730246i
\(949\) −11907.4 + 20624.2i −0.407303 + 0.705470i
\(950\) 6275.94 + 10870.2i 0.214335 + 0.371239i
\(951\) −15698.8 −0.535298
\(952\) −9637.09 + 12928.5i −0.328088 + 0.440144i
\(953\) −35613.3 −1.21052 −0.605262 0.796027i \(-0.706932\pi\)
−0.605262 + 0.796027i \(0.706932\pi\)
\(954\) 16890.6 + 29255.4i 0.573223 + 0.992851i
\(955\) 493.487 854.745i 0.0167213 0.0289622i
\(956\) −2579.19 + 4467.29i −0.0872562 + 0.151132i
\(957\) 11961.5 + 20717.9i 0.404034 + 0.699807i
\(958\) 33031.3 1.11398
\(959\) 11304.2 15165.0i 0.380636 0.510639i
\(960\) 3531.32 0.118722
\(961\) −12689.0 21978.0i −0.425935 0.737741i
\(962\) 8092.22 14016.1i 0.271210 0.469749i
\(963\) −7761.56 + 13443.4i −0.259723 + 0.449853i
\(964\) 1328.31 + 2300.69i 0.0443795 + 0.0768676i
\(965\) 26008.7 0.867616
\(966\) 2461.47 + 5715.82i 0.0819840 + 0.190376i
\(967\) −19501.2 −0.648518 −0.324259 0.945968i \(-0.605115\pi\)
−0.324259 + 0.945968i \(0.605115\pi\)
\(968\) 7360.25 + 12748.3i 0.244388 + 0.423292i
\(969\) −36716.8 + 63595.3i −1.21725 + 2.10833i
\(970\) −7537.57 + 13055.4i −0.249502 + 0.432150i
\(971\) 4384.88 + 7594.84i 0.144920 + 0.251009i 0.929343 0.369217i \(-0.120374\pi\)
−0.784423 + 0.620226i \(0.787041\pi\)
\(972\) 21289.3 0.702524
\(973\) −7705.21 905.326i −0.253872 0.0298288i
\(974\) −18106.2 −0.595646
\(975\) 16339.1 + 28300.2i 0.536688 + 0.929571i
\(976\) −1923.16 + 3331.00i −0.0630724 + 0.109245i
\(977\) 2372.31 4108.95i 0.0776835 0.134552i −0.824567 0.565765i \(-0.808581\pi\)
0.902250 + 0.431213i \(0.141914\pi\)
\(978\) 17512.6 + 30332.8i 0.572590 + 0.991754i
\(979\) 69889.8 2.28160
\(980\) −10081.0 2402.10i −0.328598 0.0782983i
\(981\) 2816.88 0.0916779
\(982\) −7398.88 12815.2i −0.240436 0.416447i
\(983\) 27762.1 48085.4i 0.900787 1.56021i 0.0743119 0.997235i \(-0.476324\pi\)
0.826475 0.562974i \(-0.190343\pi\)
\(984\) 10499.5 18185.7i 0.340155 0.589166i
\(985\) −11240.7 19469.4i −0.363612 0.629795i
\(986\) −12658.8 −0.408864
\(987\) 19865.7 + 2334.13i 0.640662 + 0.0752749i
\(988\) 24324.7 0.783271
\(989\) 379.868 + 657.950i 0.0122134 + 0.0211543i
\(990\) −11213.0 + 19421.4i −0.359971 + 0.623488i
\(991\) 8384.82 14522.9i 0.268771 0.465526i −0.699773 0.714365i \(-0.746716\pi\)
0.968545 + 0.248839i \(0.0800490\pi\)
\(992\) −3758.09 6509.21i −0.120282 0.208334i
\(993\) −5357.02 −0.171198
\(994\) −2510.55 5829.78i −0.0801103 0.186025i
\(995\) 6820.39 0.217307
\(996\) −20078.1 34776.4i −0.638755 1.10636i
\(997\) −7309.70 + 12660.8i −0.232197 + 0.402177i −0.958454 0.285246i \(-0.907925\pi\)
0.726257 + 0.687423i \(0.241258\pi\)
\(998\) −717.821 + 1243.30i −0.0227678 + 0.0394349i
\(999\) 286.454 + 496.153i 0.00907207 + 0.0157133i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 322.4.e.d.277.9 yes 22
7.2 even 3 inner 322.4.e.d.93.9 22
7.3 odd 6 2254.4.a.u.1.9 11
7.4 even 3 2254.4.a.r.1.3 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.d.93.9 22 7.2 even 3 inner
322.4.e.d.277.9 yes 22 1.1 even 1 trivial
2254.4.a.r.1.3 11 7.4 even 3
2254.4.a.u.1.9 11 7.3 odd 6