Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,4,Mod(321,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.321");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.9986150218\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
321.1 | 2.00000 | − | 0.390147i | 4.00000 | −20.6447 | − | 0.780294i | −6.75415 | − | 17.2448i | 8.00000 | 26.8478 | −41.2894 | ||||||||||||||
321.2 | 2.00000 | 0.390147i | 4.00000 | −20.6447 | 0.780294i | −6.75415 | + | 17.2448i | 8.00000 | 26.8478 | −41.2894 | ||||||||||||||||
321.3 | 2.00000 | − | 8.02828i | 4.00000 | −13.1926 | − | 16.0566i | −5.12912 | + | 17.7958i | 8.00000 | −37.4533 | −26.3853 | ||||||||||||||
321.4 | 2.00000 | 8.02828i | 4.00000 | −13.1926 | 16.0566i | −5.12912 | − | 17.7958i | 8.00000 | −37.4533 | −26.3853 | ||||||||||||||||
321.5 | 2.00000 | − | 4.19347i | 4.00000 | −14.0878 | − | 8.38694i | 18.4618 | + | 1.47058i | 8.00000 | 9.41483 | −28.1757 | ||||||||||||||
321.6 | 2.00000 | 4.19347i | 4.00000 | −14.0878 | 8.38694i | 18.4618 | − | 1.47058i | 8.00000 | 9.41483 | −28.1757 | ||||||||||||||||
321.7 | 2.00000 | − | 9.03560i | 4.00000 | 8.28684 | − | 18.0712i | 3.85337 | + | 18.1150i | 8.00000 | −54.6420 | 16.5737 | ||||||||||||||
321.8 | 2.00000 | 9.03560i | 4.00000 | 8.28684 | 18.0712i | 3.85337 | − | 18.1150i | 8.00000 | −54.6420 | 16.5737 | ||||||||||||||||
321.9 | 2.00000 | − | 4.65223i | 4.00000 | 6.67343 | − | 9.30446i | 17.8812 | + | 4.82311i | 8.00000 | 5.35677 | 13.3469 | ||||||||||||||
321.10 | 2.00000 | 4.65223i | 4.00000 | 6.67343 | 9.30446i | 17.8812 | − | 4.82311i | 8.00000 | 5.35677 | 13.3469 | ||||||||||||||||
321.11 | 2.00000 | − | 2.91960i | 4.00000 | −2.84179 | − | 5.83919i | 10.3029 | − | 15.3899i | 8.00000 | 18.4760 | −5.68359 | ||||||||||||||
321.12 | 2.00000 | 2.91960i | 4.00000 | −2.84179 | 5.83919i | 10.3029 | + | 15.3899i | 8.00000 | 18.4760 | −5.68359 | ||||||||||||||||
321.13 | 2.00000 | − | 2.91960i | 4.00000 | 2.84179 | − | 5.83919i | −10.3029 | + | 15.3899i | 8.00000 | 18.4760 | 5.68359 | ||||||||||||||
321.14 | 2.00000 | 2.91960i | 4.00000 | 2.84179 | 5.83919i | −10.3029 | − | 15.3899i | 8.00000 | 18.4760 | 5.68359 | ||||||||||||||||
321.15 | 2.00000 | − | 4.65223i | 4.00000 | −6.67343 | − | 9.30446i | −17.8812 | − | 4.82311i | 8.00000 | 5.35677 | −13.3469 | ||||||||||||||
321.16 | 2.00000 | 4.65223i | 4.00000 | −6.67343 | 9.30446i | −17.8812 | + | 4.82311i | 8.00000 | 5.35677 | −13.3469 | ||||||||||||||||
321.17 | 2.00000 | − | 9.03560i | 4.00000 | −8.28684 | − | 18.0712i | −3.85337 | − | 18.1150i | 8.00000 | −54.6420 | −16.5737 | ||||||||||||||
321.18 | 2.00000 | 9.03560i | 4.00000 | −8.28684 | 18.0712i | −3.85337 | + | 18.1150i | 8.00000 | −54.6420 | −16.5737 | ||||||||||||||||
321.19 | 2.00000 | − | 4.19347i | 4.00000 | 14.0878 | − | 8.38694i | −18.4618 | − | 1.47058i | 8.00000 | 9.41483 | 28.1757 | ||||||||||||||
321.20 | 2.00000 | 4.19347i | 4.00000 | 14.0878 | 8.38694i | −18.4618 | + | 1.47058i | 8.00000 | 9.41483 | 28.1757 | ||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
23.b | odd | 2 | 1 | inner |
161.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.4.c.b | ✓ | 24 |
7.b | odd | 2 | 1 | inner | 322.4.c.b | ✓ | 24 |
23.b | odd | 2 | 1 | inner | 322.4.c.b | ✓ | 24 |
161.c | even | 2 | 1 | inner | 322.4.c.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.4.c.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
322.4.c.b | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
322.4.c.b | ✓ | 24 | 23.b | odd | 2 | 1 | inner |
322.4.c.b | ✓ | 24 | 161.c | even | 2 | 1 | inner |