Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,4,Mod(321,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.321");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.9986150218\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
321.1 | −2.00000 | − | 9.73722i | 4.00000 | −21.7256 | 19.4744i | −16.2551 | + | 8.87534i | −8.00000 | −67.8134 | 43.4512 | |||||||||||||||
321.2 | −2.00000 | 9.73722i | 4.00000 | −21.7256 | − | 19.4744i | −16.2551 | − | 8.87534i | −8.00000 | −67.8134 | 43.4512 | |||||||||||||||
321.3 | −2.00000 | − | 4.75737i | 4.00000 | 18.5380 | 9.51474i | −17.0849 | + | 7.14893i | −8.00000 | 4.36741 | −37.0761 | |||||||||||||||
321.4 | −2.00000 | 4.75737i | 4.00000 | 18.5380 | − | 9.51474i | −17.0849 | − | 7.14893i | −8.00000 | 4.36741 | −37.0761 | |||||||||||||||
321.5 | −2.00000 | − | 0.772667i | 4.00000 | 10.8187 | 1.54533i | −5.13301 | − | 17.7947i | −8.00000 | 26.4030 | −21.6374 | |||||||||||||||
321.6 | −2.00000 | 0.772667i | 4.00000 | 10.8187 | − | 1.54533i | −5.13301 | + | 17.7947i | −8.00000 | 26.4030 | −21.6374 | |||||||||||||||
321.7 | −2.00000 | − | 0.0141321i | 4.00000 | 10.4228 | 0.0282642i | 17.6918 | + | 5.47725i | −8.00000 | 26.9998 | −20.8455 | |||||||||||||||
321.8 | −2.00000 | 0.0141321i | 4.00000 | 10.4228 | − | 0.0282642i | 17.6918 | − | 5.47725i | −8.00000 | 26.9998 | −20.8455 | |||||||||||||||
321.9 | −2.00000 | − | 6.74897i | 4.00000 | −0.725649 | 13.4979i | −5.05190 | − | 17.8179i | −8.00000 | −18.5486 | 1.45130 | |||||||||||||||
321.10 | −2.00000 | 6.74897i | 4.00000 | −0.725649 | − | 13.4979i | −5.05190 | + | 17.8179i | −8.00000 | −18.5486 | 1.45130 | |||||||||||||||
321.11 | −2.00000 | − | 7.77227i | 4.00000 | 0.366637 | 15.5445i | −16.2638 | − | 8.85948i | −8.00000 | −33.4082 | −0.733274 | |||||||||||||||
321.12 | −2.00000 | 7.77227i | 4.00000 | 0.366637 | − | 15.5445i | −16.2638 | + | 8.85948i | −8.00000 | −33.4082 | −0.733274 | |||||||||||||||
321.13 | −2.00000 | − | 7.77227i | 4.00000 | −0.366637 | 15.5445i | 16.2638 | + | 8.85948i | −8.00000 | −33.4082 | 0.733274 | |||||||||||||||
321.14 | −2.00000 | 7.77227i | 4.00000 | −0.366637 | − | 15.5445i | 16.2638 | − | 8.85948i | −8.00000 | −33.4082 | 0.733274 | |||||||||||||||
321.15 | −2.00000 | − | 6.74897i | 4.00000 | 0.725649 | 13.4979i | 5.05190 | + | 17.8179i | −8.00000 | −18.5486 | −1.45130 | |||||||||||||||
321.16 | −2.00000 | 6.74897i | 4.00000 | 0.725649 | − | 13.4979i | 5.05190 | − | 17.8179i | −8.00000 | −18.5486 | −1.45130 | |||||||||||||||
321.17 | −2.00000 | − | 0.0141321i | 4.00000 | −10.4228 | 0.0282642i | −17.6918 | − | 5.47725i | −8.00000 | 26.9998 | 20.8455 | |||||||||||||||
321.18 | −2.00000 | 0.0141321i | 4.00000 | −10.4228 | − | 0.0282642i | −17.6918 | + | 5.47725i | −8.00000 | 26.9998 | 20.8455 | |||||||||||||||
321.19 | −2.00000 | − | 0.772667i | 4.00000 | −10.8187 | 1.54533i | 5.13301 | + | 17.7947i | −8.00000 | 26.4030 | 21.6374 | |||||||||||||||
321.20 | −2.00000 | 0.772667i | 4.00000 | −10.8187 | − | 1.54533i | 5.13301 | − | 17.7947i | −8.00000 | 26.4030 | 21.6374 | |||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
23.b | odd | 2 | 1 | inner |
161.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.4.c.a | ✓ | 24 |
7.b | odd | 2 | 1 | inner | 322.4.c.a | ✓ | 24 |
23.b | odd | 2 | 1 | inner | 322.4.c.a | ✓ | 24 |
161.c | even | 2 | 1 | inner | 322.4.c.a | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.4.c.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
322.4.c.a | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
322.4.c.a | ✓ | 24 | 23.b | odd | 2 | 1 | inner |
322.4.c.a | ✓ | 24 | 161.c | even | 2 | 1 | inner |