Properties

Label 322.4.c
Level $322$
Weight $4$
Character orbit 322.c
Rep. character $\chi_{322}(321,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $2$
Sturm bound $192$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 161 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(322, [\chi])\).

Total New Old
Modular forms 148 48 100
Cusp forms 140 48 92
Eisenstein series 8 0 8

Trace form

\( 48 q + 192 q^{4} - 376 q^{9} + 768 q^{16} + 240 q^{18} - 280 q^{23} + 1848 q^{25} + 200 q^{29} + 928 q^{35} - 1504 q^{36} - 1328 q^{39} + 992 q^{46} - 152 q^{49} - 976 q^{50} - 624 q^{58} + 3072 q^{64}+ \cdots - 5312 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(322, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
322.4.c.a 322.c 161.c $24$ $18.999$ None 322.4.c.a \(-48\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
322.4.c.b 322.c 161.c $24$ $18.999$ None 322.4.c.b \(48\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(322, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(322, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 2}\)