Properties

Label 322.4.a.i
Level $322$
Weight $4$
Character orbit 322.a
Self dual yes
Analytic conductor $18.999$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,4,Mod(1,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9986150218\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 126x^{4} + 262x^{3} + 3854x^{2} - 12552x + 9792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + (\beta_1 + 2) q^{3} + 4 q^{4} + ( - \beta_{2} - \beta_1 + 2) q^{5} + (2 \beta_1 + 4) q^{6} + 7 q^{7} + 8 q^{8} + (\beta_{3} + \beta_{2} + 3 \beta_1 + 20) q^{9} + ( - 2 \beta_{2} - 2 \beta_1 + 4) q^{10}+ \cdots + ( - \beta_{5} + 12 \beta_{4} + \cdots + 366) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{2} + 13 q^{3} + 24 q^{4} + 12 q^{5} + 26 q^{6} + 42 q^{7} + 48 q^{8} + 119 q^{9} + 24 q^{10} + 58 q^{11} + 52 q^{12} + 33 q^{13} + 84 q^{14} - 120 q^{15} + 96 q^{16} + 220 q^{17} + 238 q^{18}+ \cdots + 2168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 126x^{4} + 262x^{3} + 3854x^{2} - 12552x + 9792 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 64\nu + 78 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 3\nu^{2} + 67\nu - 207 ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} + 5\nu^{4} + 130\nu^{3} - 434\nu^{2} - 3906\nu + 7452 ) / 36 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} - \nu^{4} + 124\nu^{3} - 32\nu^{2} - 3900\nu + 5904 ) / 18 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} - \beta _1 + 43 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} + 64\beta _1 - 78 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -3\beta_{5} + 6\beta_{4} + 67\beta_{3} + 64\beta_{2} - 130\beta _1 + 2701 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -15\beta_{5} - 6\beta_{4} - 99\beta_{3} + 276\beta_{2} + 4198\beta _1 - 7845 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.71266
−8.09966
1.40643
1.87764
6.79154
7.73671
2.00000 −6.71266 4.00000 19.3030 −13.4253 7.00000 8.00000 18.0598 38.6060
1.2 2.00000 −6.09966 4.00000 −11.5685 −12.1993 7.00000 8.00000 10.2058 −23.1371
1.3 2.00000 3.40643 4.00000 3.67006 6.81286 7.00000 8.00000 −15.3962 7.34011
1.4 2.00000 3.87764 4.00000 11.9721 7.75528 7.00000 8.00000 −11.9639 23.9442
1.5 2.00000 8.79154 4.00000 9.67477 17.5831 7.00000 8.00000 50.2911 19.3495
1.6 2.00000 9.73671 4.00000 −21.0514 19.4734 7.00000 8.00000 67.8035 −42.1028
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 322.4.a.i 6
7.b odd 2 1 2254.4.a.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
322.4.a.i 6 1.a even 1 1 trivial
2254.4.a.m 6 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 13T_{3}^{5} - 56T_{3}^{4} + 1070T_{3}^{3} - 422T_{3}^{2} - 21064T_{3} + 46296 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(322))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 13 T^{5} + \cdots + 46296 \) Copy content Toggle raw display
$5$ \( T^{6} - 12 T^{5} + \cdots + 1998336 \) Copy content Toggle raw display
$7$ \( (T - 7)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 58 T^{5} + \cdots - 8433408 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 7073110016 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 32215087104 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 26652016640 \) Copy content Toggle raw display
$23$ \( (T + 23)^{6} \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 7731205376112 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 3085301866896 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 254726498944 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 12264071508576 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 244907309621248 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 536861089431216 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 3868373919744 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 12\!\cdots\!28 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 62\!\cdots\!28 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 452876890817536 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 50\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 6143805807072 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 11\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 13\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 40\!\cdots\!52 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 10\!\cdots\!12 \) Copy content Toggle raw display
show more
show less