Properties

Label 322.4.a.h
Level $322$
Weight $4$
Character orbit 322.a
Self dual yes
Analytic conductor $18.999$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,4,Mod(1,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9986150218\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 92x^{3} - 28x^{2} + 1593x - 1782 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - \beta_1 + 1) q^{3} + 4 q^{4} + ( - \beta_{4} - \beta_1 + 4) q^{5} + ( - 2 \beta_1 + 2) q^{6} - 7 q^{7} + 8 q^{8} + (\beta_{3} + \beta_{2} - 2 \beta_1 + 11) q^{9} + ( - 2 \beta_{4} - 2 \beta_1 + 8) q^{10}+ \cdots + (60 \beta_{4} + 24 \beta_{3} + \cdots - 489) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 10 q^{2} + 5 q^{3} + 20 q^{4} + 22 q^{5} + 10 q^{6} - 35 q^{7} + 40 q^{8} + 54 q^{9} + 44 q^{10} + 42 q^{11} + 20 q^{12} + 107 q^{13} - 70 q^{14} + 122 q^{15} + 80 q^{16} + 218 q^{17} + 108 q^{18}+ \cdots - 2616 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 92x^{3} - 28x^{2} + 1593x - 1782 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{4} + 18\nu^{3} + 361\nu^{2} - 544\nu - 2997 ) / 171 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 5\nu^{4} - 18\nu^{3} - 190\nu^{2} + 544\nu - 3330 ) / 171 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{4} - 27\nu^{3} + 247\nu^{2} + 1595\nu - 4482 ) / 171 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + 37 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -5\beta_{4} + 3\beta_{3} + 5\beta_{2} + 53\beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -18\beta_{4} + 83\beta_{3} + 56\beta_{2} + 82\beta _1 + 2126 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.78488
3.52502
1.26012
−6.17693
−7.39309
2.00000 −7.78488 4.00000 4.71723 −15.5698 −7.00000 8.00000 33.6044 9.43446
1.2 2.00000 −2.52502 4.00000 −15.4206 −5.05004 −7.00000 8.00000 −20.6243 −30.8412
1.3 2.00000 −0.260120 4.00000 15.2484 −0.520240 −7.00000 8.00000 −26.9323 30.4969
1.4 2.00000 7.17693 4.00000 18.7050 14.3539 −7.00000 8.00000 24.5083 37.4099
1.5 2.00000 8.39309 4.00000 −1.25007 16.7862 −7.00000 8.00000 43.4440 −2.50013
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 322.4.a.h 5
7.b odd 2 1 2254.4.a.l 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
322.4.a.h 5 1.a even 1 1 trivial
2254.4.a.l 5 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{5} - 5T_{3}^{4} - 82T_{3}^{3} + 294T_{3}^{2} + 1266T_{3} + 308 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(322))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 5 T^{4} + \cdots + 308 \) Copy content Toggle raw display
$5$ \( T^{5} - 22 T^{4} + \cdots - 25936 \) Copy content Toggle raw display
$7$ \( (T + 7)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} - 42 T^{4} + \cdots - 45699552 \) Copy content Toggle raw display
$13$ \( T^{5} - 107 T^{4} + \cdots + 12193328 \) Copy content Toggle raw display
$17$ \( T^{5} - 218 T^{4} + \cdots + 397516032 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 1463912448 \) Copy content Toggle raw display
$23$ \( (T - 23)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 7111896936 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 2926575828 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 397708480224 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 106493094736 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 21785240064 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 462685828948 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 19250018178336 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 508399233312 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 26399711613344 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 3215830804704 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 11314691334144 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 50769080496 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 126397213520256 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 152986734123776 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 7266574196256 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 32250389900736 \) Copy content Toggle raw display
show more
show less