Properties

Label 322.4.a.f.1.1
Level $322$
Weight $4$
Character 322.1
Self dual yes
Analytic conductor $18.999$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,4,Mod(1,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9986150218\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 42x^{2} + 26x + 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(6.60395\) of defining polynomial
Character \(\chi\) \(=\) 322.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -6.60395 q^{3} +4.00000 q^{4} -12.4950 q^{5} +13.2079 q^{6} +7.00000 q^{7} -8.00000 q^{8} +16.6122 q^{9} +24.9900 q^{10} -4.54973 q^{11} -26.4158 q^{12} +69.5312 q^{13} -14.0000 q^{14} +82.5162 q^{15} +16.0000 q^{16} +37.6339 q^{17} -33.2243 q^{18} -8.54171 q^{19} -49.9799 q^{20} -46.2277 q^{21} +9.09945 q^{22} -23.0000 q^{23} +52.8316 q^{24} +31.1246 q^{25} -139.062 q^{26} +68.6008 q^{27} +28.0000 q^{28} +83.9781 q^{29} -165.032 q^{30} +158.085 q^{31} -32.0000 q^{32} +30.0462 q^{33} -75.2679 q^{34} -87.4649 q^{35} +66.4486 q^{36} -107.560 q^{37} +17.0834 q^{38} -459.180 q^{39} +99.9599 q^{40} -311.205 q^{41} +92.4553 q^{42} -67.0402 q^{43} -18.1989 q^{44} -207.569 q^{45} +46.0000 q^{46} -527.877 q^{47} -105.663 q^{48} +49.0000 q^{49} -62.2491 q^{50} -248.533 q^{51} +278.125 q^{52} -279.451 q^{53} -137.202 q^{54} +56.8487 q^{55} -56.0000 q^{56} +56.4090 q^{57} -167.956 q^{58} -72.9596 q^{59} +330.065 q^{60} +439.464 q^{61} -316.169 q^{62} +116.285 q^{63} +64.0000 q^{64} -868.790 q^{65} -60.0923 q^{66} -290.182 q^{67} +150.536 q^{68} +151.891 q^{69} +174.930 q^{70} +18.6115 q^{71} -132.897 q^{72} -456.805 q^{73} +215.120 q^{74} -205.545 q^{75} -34.1669 q^{76} -31.8481 q^{77} +918.361 q^{78} -838.364 q^{79} -199.920 q^{80} -901.564 q^{81} +622.410 q^{82} +65.0265 q^{83} -184.911 q^{84} -470.235 q^{85} +134.080 q^{86} -554.587 q^{87} +36.3978 q^{88} +128.271 q^{89} +415.137 q^{90} +486.718 q^{91} -92.0000 q^{92} -1043.98 q^{93} +1055.75 q^{94} +106.729 q^{95} +211.326 q^{96} +903.996 q^{97} -98.0000 q^{98} -75.5808 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - q^{3} + 16 q^{4} - 2 q^{5} + 2 q^{6} + 28 q^{7} - 32 q^{8} - 23 q^{9} + 4 q^{10} - 66 q^{11} - 4 q^{12} - 25 q^{13} - 56 q^{14} - 4 q^{15} + 64 q^{16} - 56 q^{17} + 46 q^{18} + 4 q^{19}+ \cdots - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −6.60395 −1.27093 −0.635465 0.772129i \(-0.719192\pi\)
−0.635465 + 0.772129i \(0.719192\pi\)
\(4\) 4.00000 0.500000
\(5\) −12.4950 −1.11759 −0.558793 0.829307i \(-0.688735\pi\)
−0.558793 + 0.829307i \(0.688735\pi\)
\(6\) 13.2079 0.898684
\(7\) 7.00000 0.377964
\(8\) −8.00000 −0.353553
\(9\) 16.6122 0.615265
\(10\) 24.9900 0.790252
\(11\) −4.54973 −0.124709 −0.0623543 0.998054i \(-0.519861\pi\)
−0.0623543 + 0.998054i \(0.519861\pi\)
\(12\) −26.4158 −0.635465
\(13\) 69.5312 1.48342 0.741710 0.670720i \(-0.234015\pi\)
0.741710 + 0.670720i \(0.234015\pi\)
\(14\) −14.0000 −0.267261
\(15\) 82.5162 1.42037
\(16\) 16.0000 0.250000
\(17\) 37.6339 0.536916 0.268458 0.963291i \(-0.413486\pi\)
0.268458 + 0.963291i \(0.413486\pi\)
\(18\) −33.2243 −0.435058
\(19\) −8.54171 −0.103137 −0.0515685 0.998669i \(-0.516422\pi\)
−0.0515685 + 0.998669i \(0.516422\pi\)
\(20\) −49.9799 −0.558793
\(21\) −46.2277 −0.480367
\(22\) 9.09945 0.0881823
\(23\) −23.0000 −0.208514
\(24\) 52.8316 0.449342
\(25\) 31.1246 0.248996
\(26\) −139.062 −1.04894
\(27\) 68.6008 0.488971
\(28\) 28.0000 0.188982
\(29\) 83.9781 0.537736 0.268868 0.963177i \(-0.413351\pi\)
0.268868 + 0.963177i \(0.413351\pi\)
\(30\) −165.032 −1.00436
\(31\) 158.085 0.915898 0.457949 0.888978i \(-0.348584\pi\)
0.457949 + 0.888978i \(0.348584\pi\)
\(32\) −32.0000 −0.176777
\(33\) 30.0462 0.158496
\(34\) −75.2679 −0.379657
\(35\) −87.4649 −0.422407
\(36\) 66.4486 0.307633
\(37\) −107.560 −0.477912 −0.238956 0.971030i \(-0.576805\pi\)
−0.238956 + 0.971030i \(0.576805\pi\)
\(38\) 17.0834 0.0729289
\(39\) −459.180 −1.88533
\(40\) 99.9599 0.395126
\(41\) −311.205 −1.18542 −0.592708 0.805417i \(-0.701941\pi\)
−0.592708 + 0.805417i \(0.701941\pi\)
\(42\) 92.4553 0.339671
\(43\) −67.0402 −0.237757 −0.118878 0.992909i \(-0.537930\pi\)
−0.118878 + 0.992909i \(0.537930\pi\)
\(44\) −18.1989 −0.0623543
\(45\) −207.569 −0.687611
\(46\) 46.0000 0.147442
\(47\) −527.877 −1.63827 −0.819136 0.573600i \(-0.805546\pi\)
−0.819136 + 0.573600i \(0.805546\pi\)
\(48\) −105.663 −0.317733
\(49\) 49.0000 0.142857
\(50\) −62.2491 −0.176067
\(51\) −248.533 −0.682383
\(52\) 278.125 0.741710
\(53\) −279.451 −0.724255 −0.362127 0.932129i \(-0.617949\pi\)
−0.362127 + 0.932129i \(0.617949\pi\)
\(54\) −137.202 −0.345755
\(55\) 56.8487 0.139372
\(56\) −56.0000 −0.133631
\(57\) 56.4090 0.131080
\(58\) −167.956 −0.380237
\(59\) −72.9596 −0.160992 −0.0804960 0.996755i \(-0.525650\pi\)
−0.0804960 + 0.996755i \(0.525650\pi\)
\(60\) 330.065 0.710187
\(61\) 439.464 0.922419 0.461209 0.887291i \(-0.347416\pi\)
0.461209 + 0.887291i \(0.347416\pi\)
\(62\) −316.169 −0.647638
\(63\) 116.285 0.232548
\(64\) 64.0000 0.125000
\(65\) −868.790 −1.65785
\(66\) −60.0923 −0.112074
\(67\) −290.182 −0.529126 −0.264563 0.964368i \(-0.585228\pi\)
−0.264563 + 0.964368i \(0.585228\pi\)
\(68\) 150.536 0.268458
\(69\) 151.891 0.265007
\(70\) 174.930 0.298687
\(71\) 18.6115 0.0311095 0.0155548 0.999879i \(-0.495049\pi\)
0.0155548 + 0.999879i \(0.495049\pi\)
\(72\) −132.897 −0.217529
\(73\) −456.805 −0.732397 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(74\) 215.120 0.337935
\(75\) −205.545 −0.316457
\(76\) −34.1669 −0.0515685
\(77\) −31.8481 −0.0471354
\(78\) 918.361 1.33313
\(79\) −838.364 −1.19397 −0.596983 0.802254i \(-0.703634\pi\)
−0.596983 + 0.802254i \(0.703634\pi\)
\(80\) −199.920 −0.279396
\(81\) −901.564 −1.23671
\(82\) 622.410 0.838216
\(83\) 65.0265 0.0859950 0.0429975 0.999075i \(-0.486309\pi\)
0.0429975 + 0.999075i \(0.486309\pi\)
\(84\) −184.911 −0.240183
\(85\) −470.235 −0.600049
\(86\) 134.080 0.168119
\(87\) −554.587 −0.683425
\(88\) 36.3978 0.0440911
\(89\) 128.271 0.152772 0.0763861 0.997078i \(-0.475662\pi\)
0.0763861 + 0.997078i \(0.475662\pi\)
\(90\) 415.137 0.486215
\(91\) 486.718 0.560680
\(92\) −92.0000 −0.104257
\(93\) −1043.98 −1.16404
\(94\) 1055.75 1.15843
\(95\) 106.729 0.115264
\(96\) 211.326 0.224671
\(97\) 903.996 0.946256 0.473128 0.880994i \(-0.343125\pi\)
0.473128 + 0.880994i \(0.343125\pi\)
\(98\) −98.0000 −0.101015
\(99\) −75.5808 −0.0767288
\(100\) 124.498 0.124498
\(101\) 1157.64 1.14049 0.570245 0.821474i \(-0.306848\pi\)
0.570245 + 0.821474i \(0.306848\pi\)
\(102\) 497.065 0.482518
\(103\) 392.047 0.375044 0.187522 0.982260i \(-0.439954\pi\)
0.187522 + 0.982260i \(0.439954\pi\)
\(104\) −556.249 −0.524469
\(105\) 577.614 0.536851
\(106\) 558.901 0.512125
\(107\) −1169.19 −1.05635 −0.528175 0.849135i \(-0.677124\pi\)
−0.528175 + 0.849135i \(0.677124\pi\)
\(108\) 274.403 0.244486
\(109\) 1001.00 0.879619 0.439809 0.898091i \(-0.355046\pi\)
0.439809 + 0.898091i \(0.355046\pi\)
\(110\) −113.697 −0.0985512
\(111\) 710.321 0.607393
\(112\) 112.000 0.0944911
\(113\) −1055.42 −0.878636 −0.439318 0.898332i \(-0.644780\pi\)
−0.439318 + 0.898332i \(0.644780\pi\)
\(114\) −112.818 −0.0926876
\(115\) 287.385 0.233033
\(116\) 335.912 0.268868
\(117\) 1155.06 0.912697
\(118\) 145.919 0.113839
\(119\) 263.438 0.202935
\(120\) −660.130 −0.502178
\(121\) −1310.30 −0.984448
\(122\) −878.927 −0.652249
\(123\) 2055.18 1.50658
\(124\) 632.339 0.457949
\(125\) 1172.97 0.839310
\(126\) −232.570 −0.164437
\(127\) −1801.28 −1.25857 −0.629283 0.777176i \(-0.716652\pi\)
−0.629283 + 0.777176i \(0.716652\pi\)
\(128\) −128.000 −0.0883883
\(129\) 442.730 0.302172
\(130\) 1737.58 1.17228
\(131\) −522.855 −0.348718 −0.174359 0.984682i \(-0.555785\pi\)
−0.174359 + 0.984682i \(0.555785\pi\)
\(132\) 120.185 0.0792480
\(133\) −59.7920 −0.0389821
\(134\) 580.365 0.374148
\(135\) −857.165 −0.546467
\(136\) −301.072 −0.189828
\(137\) 659.840 0.411489 0.205744 0.978606i \(-0.434038\pi\)
0.205744 + 0.978606i \(0.434038\pi\)
\(138\) −303.782 −0.187389
\(139\) 1486.78 0.907244 0.453622 0.891194i \(-0.350132\pi\)
0.453622 + 0.891194i \(0.350132\pi\)
\(140\) −349.859 −0.211204
\(141\) 3486.07 2.08213
\(142\) −37.2230 −0.0219978
\(143\) −316.348 −0.184995
\(144\) 265.795 0.153816
\(145\) −1049.30 −0.600965
\(146\) 913.610 0.517883
\(147\) −323.594 −0.181562
\(148\) −430.240 −0.238956
\(149\) 1290.59 0.709594 0.354797 0.934943i \(-0.384550\pi\)
0.354797 + 0.934943i \(0.384550\pi\)
\(150\) 411.090 0.223769
\(151\) 1644.17 0.886098 0.443049 0.896497i \(-0.353897\pi\)
0.443049 + 0.896497i \(0.353897\pi\)
\(152\) 68.3337 0.0364644
\(153\) 625.181 0.330346
\(154\) 63.6962 0.0333298
\(155\) −1975.27 −1.02359
\(156\) −1836.72 −0.942663
\(157\) 1164.70 0.592057 0.296029 0.955179i \(-0.404338\pi\)
0.296029 + 0.955179i \(0.404338\pi\)
\(158\) 1676.73 0.844262
\(159\) 1845.48 0.920478
\(160\) 399.839 0.197563
\(161\) −161.000 −0.0788110
\(162\) 1803.13 0.874489
\(163\) −3256.16 −1.56468 −0.782339 0.622853i \(-0.785974\pi\)
−0.782339 + 0.622853i \(0.785974\pi\)
\(164\) −1244.82 −0.592708
\(165\) −375.426 −0.177133
\(166\) −130.053 −0.0608076
\(167\) 51.0032 0.0236332 0.0118166 0.999930i \(-0.496239\pi\)
0.0118166 + 0.999930i \(0.496239\pi\)
\(168\) 369.821 0.169835
\(169\) 2637.58 1.20054
\(170\) 940.471 0.424299
\(171\) −141.896 −0.0634566
\(172\) −268.161 −0.118878
\(173\) −1654.30 −0.727017 −0.363509 0.931591i \(-0.618421\pi\)
−0.363509 + 0.931591i \(0.618421\pi\)
\(174\) 1109.17 0.483254
\(175\) 217.872 0.0941118
\(176\) −72.7956 −0.0311771
\(177\) 481.822 0.204610
\(178\) −256.542 −0.108026
\(179\) −2361.53 −0.986086 −0.493043 0.870005i \(-0.664115\pi\)
−0.493043 + 0.870005i \(0.664115\pi\)
\(180\) −830.275 −0.343806
\(181\) 2.78442 0.00114345 0.000571724 1.00000i \(-0.499818\pi\)
0.000571724 1.00000i \(0.499818\pi\)
\(182\) −973.436 −0.396461
\(183\) −2902.20 −1.17233
\(184\) 184.000 0.0737210
\(185\) 1343.96 0.534108
\(186\) 2087.97 0.823103
\(187\) −171.224 −0.0669580
\(188\) −2111.51 −0.819136
\(189\) 480.205 0.184814
\(190\) −213.457 −0.0815042
\(191\) −4766.45 −1.80570 −0.902849 0.429958i \(-0.858528\pi\)
−0.902849 + 0.429958i \(0.858528\pi\)
\(192\) −422.653 −0.158866
\(193\) −1845.15 −0.688169 −0.344084 0.938939i \(-0.611811\pi\)
−0.344084 + 0.938939i \(0.611811\pi\)
\(194\) −1807.99 −0.669104
\(195\) 5737.45 2.10701
\(196\) 196.000 0.0714286
\(197\) −252.367 −0.0912710 −0.0456355 0.998958i \(-0.514531\pi\)
−0.0456355 + 0.998958i \(0.514531\pi\)
\(198\) 151.162 0.0542555
\(199\) −2685.75 −0.956722 −0.478361 0.878163i \(-0.658769\pi\)
−0.478361 + 0.878163i \(0.658769\pi\)
\(200\) −248.996 −0.0880335
\(201\) 1916.35 0.672482
\(202\) −2315.28 −0.806449
\(203\) 587.846 0.203245
\(204\) −994.131 −0.341192
\(205\) 3888.50 1.32480
\(206\) −784.093 −0.265196
\(207\) −382.080 −0.128292
\(208\) 1112.50 0.370855
\(209\) 38.8625 0.0128621
\(210\) −1155.23 −0.379611
\(211\) −3654.66 −1.19240 −0.596202 0.802834i \(-0.703324\pi\)
−0.596202 + 0.802834i \(0.703324\pi\)
\(212\) −1117.80 −0.362127
\(213\) −122.909 −0.0395381
\(214\) 2338.37 0.746952
\(215\) 837.666 0.265713
\(216\) −548.806 −0.172877
\(217\) 1106.59 0.346177
\(218\) −2002.00 −0.621984
\(219\) 3016.72 0.930825
\(220\) 227.395 0.0696862
\(221\) 2616.73 0.796472
\(222\) −1420.64 −0.429492
\(223\) −6181.45 −1.85623 −0.928117 0.372288i \(-0.878573\pi\)
−0.928117 + 0.372288i \(0.878573\pi\)
\(224\) −224.000 −0.0668153
\(225\) 517.046 0.153199
\(226\) 2110.85 0.621289
\(227\) −6442.43 −1.88370 −0.941848 0.336038i \(-0.890913\pi\)
−0.941848 + 0.336038i \(0.890913\pi\)
\(228\) 225.636 0.0655400
\(229\) 2241.04 0.646691 0.323346 0.946281i \(-0.395192\pi\)
0.323346 + 0.946281i \(0.395192\pi\)
\(230\) −574.769 −0.164779
\(231\) 210.323 0.0599058
\(232\) −671.824 −0.190118
\(233\) 2393.50 0.672976 0.336488 0.941688i \(-0.390761\pi\)
0.336488 + 0.941688i \(0.390761\pi\)
\(234\) −2310.13 −0.645374
\(235\) 6595.81 1.83091
\(236\) −291.838 −0.0804960
\(237\) 5536.51 1.51745
\(238\) −526.875 −0.143497
\(239\) −1340.72 −0.362863 −0.181431 0.983404i \(-0.558073\pi\)
−0.181431 + 0.983404i \(0.558073\pi\)
\(240\) 1320.26 0.355093
\(241\) 4849.48 1.29619 0.648096 0.761558i \(-0.275565\pi\)
0.648096 + 0.761558i \(0.275565\pi\)
\(242\) 2620.60 0.696110
\(243\) 4101.67 1.08281
\(244\) 1757.85 0.461209
\(245\) −612.254 −0.159655
\(246\) −4110.37 −1.06531
\(247\) −593.915 −0.152996
\(248\) −1264.68 −0.323819
\(249\) −429.432 −0.109294
\(250\) −2345.94 −0.593482
\(251\) 5121.56 1.28793 0.643964 0.765056i \(-0.277289\pi\)
0.643964 + 0.765056i \(0.277289\pi\)
\(252\) 465.141 0.116274
\(253\) 104.644 0.0260035
\(254\) 3602.57 0.889941
\(255\) 3105.41 0.762621
\(256\) 256.000 0.0625000
\(257\) −6432.43 −1.56126 −0.780631 0.624992i \(-0.785102\pi\)
−0.780631 + 0.624992i \(0.785102\pi\)
\(258\) −885.460 −0.213668
\(259\) −752.920 −0.180634
\(260\) −3475.16 −0.828925
\(261\) 1395.06 0.330850
\(262\) 1045.71 0.246581
\(263\) −4259.92 −0.998776 −0.499388 0.866378i \(-0.666442\pi\)
−0.499388 + 0.866378i \(0.666442\pi\)
\(264\) −240.369 −0.0560368
\(265\) 3491.73 0.809416
\(266\) 119.584 0.0275645
\(267\) −847.097 −0.194163
\(268\) −1160.73 −0.264563
\(269\) −5682.64 −1.28802 −0.644009 0.765018i \(-0.722730\pi\)
−0.644009 + 0.765018i \(0.722730\pi\)
\(270\) 1714.33 0.386411
\(271\) −3835.26 −0.859688 −0.429844 0.902903i \(-0.641431\pi\)
−0.429844 + 0.902903i \(0.641431\pi\)
\(272\) 602.143 0.134229
\(273\) −3214.26 −0.712586
\(274\) −1319.68 −0.290966
\(275\) −141.608 −0.0310520
\(276\) 607.563 0.132504
\(277\) 3210.70 0.696433 0.348217 0.937414i \(-0.386787\pi\)
0.348217 + 0.937414i \(0.386787\pi\)
\(278\) −2973.56 −0.641518
\(279\) 2626.13 0.563520
\(280\) 699.719 0.149344
\(281\) 7147.06 1.51729 0.758644 0.651505i \(-0.225862\pi\)
0.758644 + 0.651505i \(0.225862\pi\)
\(282\) −6972.14 −1.47229
\(283\) −9010.23 −1.89259 −0.946294 0.323306i \(-0.895206\pi\)
−0.946294 + 0.323306i \(0.895206\pi\)
\(284\) 74.4459 0.0155548
\(285\) −704.830 −0.146493
\(286\) 632.695 0.130811
\(287\) −2178.44 −0.448045
\(288\) −531.589 −0.108765
\(289\) −3496.69 −0.711721
\(290\) 2098.61 0.424947
\(291\) −5969.94 −1.20263
\(292\) −1827.22 −0.366198
\(293\) −5420.30 −1.08074 −0.540371 0.841427i \(-0.681716\pi\)
−0.540371 + 0.841427i \(0.681716\pi\)
\(294\) 647.187 0.128383
\(295\) 911.629 0.179922
\(296\) 860.480 0.168967
\(297\) −312.115 −0.0609789
\(298\) −2581.19 −0.501759
\(299\) −1599.22 −0.309315
\(300\) −822.180 −0.158229
\(301\) −469.281 −0.0898635
\(302\) −3288.34 −0.626566
\(303\) −7645.00 −1.44948
\(304\) −136.667 −0.0257843
\(305\) −5491.09 −1.03088
\(306\) −1250.36 −0.233590
\(307\) 1585.49 0.294751 0.147376 0.989081i \(-0.452917\pi\)
0.147376 + 0.989081i \(0.452917\pi\)
\(308\) −127.392 −0.0235677
\(309\) −2589.06 −0.476655
\(310\) 3950.53 0.723790
\(311\) 5198.07 0.947766 0.473883 0.880588i \(-0.342852\pi\)
0.473883 + 0.880588i \(0.342852\pi\)
\(312\) 3673.44 0.666563
\(313\) −9254.83 −1.67129 −0.835645 0.549269i \(-0.814906\pi\)
−0.835645 + 0.549269i \(0.814906\pi\)
\(314\) −2329.40 −0.418648
\(315\) −1452.98 −0.259893
\(316\) −3353.46 −0.596983
\(317\) −2329.84 −0.412798 −0.206399 0.978468i \(-0.566174\pi\)
−0.206399 + 0.978468i \(0.566174\pi\)
\(318\) −3690.96 −0.650876
\(319\) −382.077 −0.0670602
\(320\) −799.679 −0.139698
\(321\) 7721.25 1.34255
\(322\) 322.000 0.0557278
\(323\) −321.458 −0.0553759
\(324\) −3606.26 −0.618357
\(325\) 2164.13 0.369367
\(326\) 6512.33 1.10639
\(327\) −6610.56 −1.11793
\(328\) 2489.64 0.419108
\(329\) −3695.14 −0.619208
\(330\) 750.853 0.125252
\(331\) −4025.17 −0.668408 −0.334204 0.942501i \(-0.608467\pi\)
−0.334204 + 0.942501i \(0.608467\pi\)
\(332\) 260.106 0.0429975
\(333\) −1786.80 −0.294043
\(334\) −102.006 −0.0167112
\(335\) 3625.82 0.591343
\(336\) −739.642 −0.120092
\(337\) 466.579 0.0754189 0.0377095 0.999289i \(-0.487994\pi\)
0.0377095 + 0.999289i \(0.487994\pi\)
\(338\) −5275.16 −0.848908
\(339\) 6969.96 1.11669
\(340\) −1880.94 −0.300025
\(341\) −719.242 −0.114220
\(342\) 283.793 0.0448706
\(343\) 343.000 0.0539949
\(344\) 536.321 0.0840596
\(345\) −1897.87 −0.296168
\(346\) 3308.60 0.514079
\(347\) 11083.8 1.71473 0.857363 0.514711i \(-0.172101\pi\)
0.857363 + 0.514711i \(0.172101\pi\)
\(348\) −2218.35 −0.341712
\(349\) 4958.34 0.760499 0.380249 0.924884i \(-0.375838\pi\)
0.380249 + 0.924884i \(0.375838\pi\)
\(350\) −435.744 −0.0665471
\(351\) 4769.89 0.725350
\(352\) 145.591 0.0220456
\(353\) −2135.45 −0.321979 −0.160990 0.986956i \(-0.551469\pi\)
−0.160990 + 0.986956i \(0.551469\pi\)
\(354\) −963.643 −0.144681
\(355\) −232.550 −0.0347675
\(356\) 513.085 0.0763861
\(357\) −1739.73 −0.257917
\(358\) 4723.07 0.697268
\(359\) 4260.14 0.626299 0.313150 0.949704i \(-0.398616\pi\)
0.313150 + 0.949704i \(0.398616\pi\)
\(360\) 1660.55 0.243107
\(361\) −6786.04 −0.989363
\(362\) −5.56883 −0.000808540 0
\(363\) 8653.16 1.25117
\(364\) 1946.87 0.280340
\(365\) 5707.77 0.818516
\(366\) 5804.39 0.828963
\(367\) 213.711 0.0303968 0.0151984 0.999884i \(-0.495162\pi\)
0.0151984 + 0.999884i \(0.495162\pi\)
\(368\) −368.000 −0.0521286
\(369\) −5169.79 −0.729345
\(370\) −2687.92 −0.377671
\(371\) −1956.15 −0.273743
\(372\) −4175.93 −0.582022
\(373\) 6927.85 0.961691 0.480845 0.876805i \(-0.340330\pi\)
0.480845 + 0.876805i \(0.340330\pi\)
\(374\) 342.448 0.0473465
\(375\) −7746.25 −1.06671
\(376\) 4223.01 0.579216
\(377\) 5839.09 0.797688
\(378\) −960.411 −0.130683
\(379\) 9270.50 1.25645 0.628224 0.778033i \(-0.283782\pi\)
0.628224 + 0.778033i \(0.283782\pi\)
\(380\) 426.914 0.0576322
\(381\) 11895.6 1.59955
\(382\) 9532.90 1.27682
\(383\) −6499.04 −0.867064 −0.433532 0.901138i \(-0.642733\pi\)
−0.433532 + 0.901138i \(0.642733\pi\)
\(384\) 845.306 0.112335
\(385\) 397.941 0.0526778
\(386\) 3690.29 0.486609
\(387\) −1113.68 −0.146283
\(388\) 3615.98 0.473128
\(389\) −3776.36 −0.492208 −0.246104 0.969243i \(-0.579150\pi\)
−0.246104 + 0.969243i \(0.579150\pi\)
\(390\) −11474.9 −1.48988
\(391\) −865.581 −0.111955
\(392\) −392.000 −0.0505076
\(393\) 3452.91 0.443196
\(394\) 504.734 0.0645384
\(395\) 10475.3 1.33436
\(396\) −302.323 −0.0383644
\(397\) 11250.4 1.42227 0.711137 0.703053i \(-0.248180\pi\)
0.711137 + 0.703053i \(0.248180\pi\)
\(398\) 5371.50 0.676505
\(399\) 394.863 0.0495436
\(400\) 497.993 0.0622491
\(401\) −10381.8 −1.29288 −0.646438 0.762966i \(-0.723742\pi\)
−0.646438 + 0.762966i \(0.723742\pi\)
\(402\) −3832.70 −0.475517
\(403\) 10991.8 1.35866
\(404\) 4630.56 0.570245
\(405\) 11265.0 1.38213
\(406\) −1175.69 −0.143716
\(407\) 489.368 0.0595997
\(408\) 1988.26 0.241259
\(409\) −25.0944 −0.00303384 −0.00151692 0.999999i \(-0.500483\pi\)
−0.00151692 + 0.999999i \(0.500483\pi\)
\(410\) −7777.00 −0.936778
\(411\) −4357.55 −0.522974
\(412\) 1568.19 0.187522
\(413\) −510.717 −0.0608493
\(414\) 764.159 0.0907159
\(415\) −812.505 −0.0961067
\(416\) −2225.00 −0.262234
\(417\) −9818.61 −1.15304
\(418\) −77.7249 −0.00909486
\(419\) −281.528 −0.0328247 −0.0164123 0.999865i \(-0.505224\pi\)
−0.0164123 + 0.999865i \(0.505224\pi\)
\(420\) 2310.45 0.268425
\(421\) −4136.42 −0.478853 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(422\) 7309.32 0.843157
\(423\) −8769.17 −1.00797
\(424\) 2235.61 0.256063
\(425\) 1171.34 0.133690
\(426\) 245.819 0.0279576
\(427\) 3076.25 0.348642
\(428\) −4676.74 −0.528175
\(429\) 2089.14 0.235116
\(430\) −1675.33 −0.187888
\(431\) 1488.64 0.166369 0.0831846 0.996534i \(-0.473491\pi\)
0.0831846 + 0.996534i \(0.473491\pi\)
\(432\) 1097.61 0.122243
\(433\) 14018.0 1.55580 0.777902 0.628385i \(-0.216284\pi\)
0.777902 + 0.628385i \(0.216284\pi\)
\(434\) −2213.19 −0.244784
\(435\) 6929.55 0.763785
\(436\) 4004.00 0.439809
\(437\) 196.459 0.0215056
\(438\) −6033.43 −0.658193
\(439\) 16037.7 1.74359 0.871795 0.489871i \(-0.162956\pi\)
0.871795 + 0.489871i \(0.162956\pi\)
\(440\) −454.790 −0.0492756
\(441\) 813.996 0.0878950
\(442\) −5233.46 −0.563191
\(443\) 7819.36 0.838621 0.419311 0.907843i \(-0.362272\pi\)
0.419311 + 0.907843i \(0.362272\pi\)
\(444\) 2841.28 0.303697
\(445\) −1602.75 −0.170736
\(446\) 12362.9 1.31256
\(447\) −8523.02 −0.901845
\(448\) 448.000 0.0472456
\(449\) 5908.45 0.621017 0.310509 0.950571i \(-0.399501\pi\)
0.310509 + 0.950571i \(0.399501\pi\)
\(450\) −1034.09 −0.108328
\(451\) 1415.90 0.147832
\(452\) −4221.69 −0.439318
\(453\) −10858.0 −1.12617
\(454\) 12884.9 1.33197
\(455\) −6081.53 −0.626608
\(456\) −451.272 −0.0463438
\(457\) 2558.51 0.261886 0.130943 0.991390i \(-0.458199\pi\)
0.130943 + 0.991390i \(0.458199\pi\)
\(458\) −4482.09 −0.457280
\(459\) 2581.72 0.262536
\(460\) 1149.54 0.116516
\(461\) −6595.33 −0.666323 −0.333162 0.942870i \(-0.608115\pi\)
−0.333162 + 0.942870i \(0.608115\pi\)
\(462\) −420.646 −0.0423598
\(463\) −12883.6 −1.29320 −0.646601 0.762829i \(-0.723810\pi\)
−0.646601 + 0.762829i \(0.723810\pi\)
\(464\) 1343.65 0.134434
\(465\) 13044.6 1.30092
\(466\) −4787.00 −0.475866
\(467\) 7779.89 0.770901 0.385450 0.922729i \(-0.374046\pi\)
0.385450 + 0.922729i \(0.374046\pi\)
\(468\) 4620.25 0.456349
\(469\) −2031.28 −0.199991
\(470\) −13191.6 −1.29465
\(471\) −7691.61 −0.752464
\(472\) 583.677 0.0569193
\(473\) 305.014 0.0296503
\(474\) −11073.0 −1.07300
\(475\) −265.857 −0.0256808
\(476\) 1053.75 0.101468
\(477\) −4642.28 −0.445609
\(478\) 2681.45 0.256583
\(479\) 2432.92 0.232073 0.116036 0.993245i \(-0.462981\pi\)
0.116036 + 0.993245i \(0.462981\pi\)
\(480\) −2640.52 −0.251089
\(481\) −7478.77 −0.708945
\(482\) −9698.96 −0.916546
\(483\) 1063.24 0.100163
\(484\) −5241.20 −0.492224
\(485\) −11295.4 −1.05752
\(486\) −8203.33 −0.765660
\(487\) −612.347 −0.0569776 −0.0284888 0.999594i \(-0.509069\pi\)
−0.0284888 + 0.999594i \(0.509069\pi\)
\(488\) −3515.71 −0.326124
\(489\) 21503.6 1.98860
\(490\) 1224.51 0.112893
\(491\) −9410.64 −0.864962 −0.432481 0.901643i \(-0.642362\pi\)
−0.432481 + 0.901643i \(0.642362\pi\)
\(492\) 8220.73 0.753291
\(493\) 3160.42 0.288719
\(494\) 1187.83 0.108184
\(495\) 944.380 0.0857510
\(496\) 2529.35 0.228975
\(497\) 130.280 0.0117583
\(498\) 858.863 0.0772823
\(499\) 2349.14 0.210745 0.105373 0.994433i \(-0.466396\pi\)
0.105373 + 0.994433i \(0.466396\pi\)
\(500\) 4691.89 0.419655
\(501\) −336.823 −0.0300362
\(502\) −10243.1 −0.910703
\(503\) −16551.1 −1.46715 −0.733577 0.679607i \(-0.762150\pi\)
−0.733577 + 0.679607i \(0.762150\pi\)
\(504\) −930.281 −0.0822183
\(505\) −14464.7 −1.27460
\(506\) −209.287 −0.0183873
\(507\) −17418.5 −1.52580
\(508\) −7205.13 −0.629283
\(509\) 11312.1 0.985068 0.492534 0.870293i \(-0.336071\pi\)
0.492534 + 0.870293i \(0.336071\pi\)
\(510\) −6210.82 −0.539255
\(511\) −3197.63 −0.276820
\(512\) −512.000 −0.0441942
\(513\) −585.968 −0.0504310
\(514\) 12864.9 1.10398
\(515\) −4898.61 −0.419143
\(516\) 1770.92 0.151086
\(517\) 2401.69 0.204306
\(518\) 1505.84 0.127727
\(519\) 10924.9 0.923989
\(520\) 6950.32 0.586138
\(521\) −11666.9 −0.981067 −0.490533 0.871422i \(-0.663198\pi\)
−0.490533 + 0.871422i \(0.663198\pi\)
\(522\) −2790.11 −0.233946
\(523\) 9668.20 0.808338 0.404169 0.914684i \(-0.367561\pi\)
0.404169 + 0.914684i \(0.367561\pi\)
\(524\) −2091.42 −0.174359
\(525\) −1438.82 −0.119610
\(526\) 8519.85 0.706241
\(527\) 5949.35 0.491760
\(528\) 480.739 0.0396240
\(529\) 529.000 0.0434783
\(530\) −6983.46 −0.572344
\(531\) −1212.02 −0.0990528
\(532\) −239.168 −0.0194911
\(533\) −21638.4 −1.75847
\(534\) 1694.19 0.137294
\(535\) 14609.0 1.18056
\(536\) 2321.46 0.187074
\(537\) 15595.5 1.25325
\(538\) 11365.3 0.910766
\(539\) −222.937 −0.0178155
\(540\) −3428.66 −0.273234
\(541\) 10017.7 0.796105 0.398052 0.917363i \(-0.369686\pi\)
0.398052 + 0.917363i \(0.369686\pi\)
\(542\) 7670.52 0.607891
\(543\) −18.3882 −0.00145324
\(544\) −1204.29 −0.0949142
\(545\) −12507.5 −0.983049
\(546\) 6428.52 0.503874
\(547\) −14202.0 −1.11012 −0.555059 0.831811i \(-0.687304\pi\)
−0.555059 + 0.831811i \(0.687304\pi\)
\(548\) 2639.36 0.205744
\(549\) 7300.44 0.567532
\(550\) 283.216 0.0219571
\(551\) −717.316 −0.0554604
\(552\) −1215.13 −0.0936943
\(553\) −5868.55 −0.451277
\(554\) −6421.39 −0.492453
\(555\) −8875.45 −0.678814
\(556\) 5947.11 0.453622
\(557\) 13660.8 1.03919 0.519593 0.854414i \(-0.326083\pi\)
0.519593 + 0.854414i \(0.326083\pi\)
\(558\) −5252.26 −0.398469
\(559\) −4661.38 −0.352693
\(560\) −1399.44 −0.105602
\(561\) 1130.76 0.0850990
\(562\) −14294.1 −1.07288
\(563\) 12003.8 0.898581 0.449290 0.893386i \(-0.351677\pi\)
0.449290 + 0.893386i \(0.351677\pi\)
\(564\) 13944.3 1.04106
\(565\) 13187.5 0.981950
\(566\) 18020.5 1.33826
\(567\) −6310.95 −0.467434
\(568\) −148.892 −0.0109989
\(569\) −24889.7 −1.83379 −0.916897 0.399124i \(-0.869314\pi\)
−0.916897 + 0.399124i \(0.869314\pi\)
\(570\) 1409.66 0.103586
\(571\) −477.361 −0.0349858 −0.0174929 0.999847i \(-0.505568\pi\)
−0.0174929 + 0.999847i \(0.505568\pi\)
\(572\) −1265.39 −0.0924976
\(573\) 31477.4 2.29492
\(574\) 4356.87 0.316816
\(575\) −715.865 −0.0519194
\(576\) 1063.18 0.0769082
\(577\) −26449.3 −1.90831 −0.954157 0.299306i \(-0.903245\pi\)
−0.954157 + 0.299306i \(0.903245\pi\)
\(578\) 6993.37 0.503263
\(579\) 12185.3 0.874615
\(580\) −4197.22 −0.300483
\(581\) 455.185 0.0325031
\(582\) 11939.9 0.850385
\(583\) 1271.42 0.0903208
\(584\) 3654.44 0.258941
\(585\) −14432.5 −1.02002
\(586\) 10840.6 0.764200
\(587\) −17676.4 −1.24290 −0.621450 0.783454i \(-0.713456\pi\)
−0.621450 + 0.783454i \(0.713456\pi\)
\(588\) −1294.37 −0.0907808
\(589\) −1350.31 −0.0944630
\(590\) −1823.26 −0.127224
\(591\) 1666.62 0.115999
\(592\) −1720.96 −0.119478
\(593\) 19732.4 1.36646 0.683230 0.730203i \(-0.260574\pi\)
0.683230 + 0.730203i \(0.260574\pi\)
\(594\) 624.229 0.0431186
\(595\) −3291.65 −0.226797
\(596\) 5162.37 0.354797
\(597\) 17736.6 1.21593
\(598\) 3198.43 0.218718
\(599\) 5194.44 0.354322 0.177161 0.984182i \(-0.443309\pi\)
0.177161 + 0.984182i \(0.443309\pi\)
\(600\) 1644.36 0.111885
\(601\) −5279.89 −0.358355 −0.179177 0.983817i \(-0.557344\pi\)
−0.179177 + 0.983817i \(0.557344\pi\)
\(602\) 938.562 0.0635431
\(603\) −4820.56 −0.325553
\(604\) 6576.69 0.443049
\(605\) 16372.2 1.10020
\(606\) 15290.0 1.02494
\(607\) 23328.5 1.55993 0.779964 0.625825i \(-0.215238\pi\)
0.779964 + 0.625825i \(0.215238\pi\)
\(608\) 273.335 0.0182322
\(609\) −3882.11 −0.258310
\(610\) 10982.2 0.728943
\(611\) −36703.9 −2.43025
\(612\) 2500.72 0.165173
\(613\) −5023.54 −0.330993 −0.165497 0.986210i \(-0.552923\pi\)
−0.165497 + 0.986210i \(0.552923\pi\)
\(614\) −3170.98 −0.208421
\(615\) −25679.5 −1.68373
\(616\) 254.785 0.0166649
\(617\) −10234.1 −0.667762 −0.333881 0.942615i \(-0.608358\pi\)
−0.333881 + 0.942615i \(0.608358\pi\)
\(618\) 5178.11 0.337046
\(619\) −23782.3 −1.54425 −0.772125 0.635471i \(-0.780806\pi\)
−0.772125 + 0.635471i \(0.780806\pi\)
\(620\) −7901.06 −0.511797
\(621\) −1577.82 −0.101958
\(622\) −10396.1 −0.670172
\(623\) 897.899 0.0577425
\(624\) −7346.88 −0.471331
\(625\) −18546.8 −1.18700
\(626\) 18509.7 1.18178
\(627\) −256.646 −0.0163468
\(628\) 4658.79 0.296029
\(629\) −4047.91 −0.256599
\(630\) 2905.96 0.183772
\(631\) −5629.02 −0.355131 −0.177565 0.984109i \(-0.556822\pi\)
−0.177565 + 0.984109i \(0.556822\pi\)
\(632\) 6706.91 0.422131
\(633\) 24135.2 1.51546
\(634\) 4659.68 0.291892
\(635\) 22507.0 1.40656
\(636\) 7381.91 0.460239
\(637\) 3407.03 0.211917
\(638\) 764.154 0.0474187
\(639\) 309.177 0.0191406
\(640\) 1599.36 0.0987815
\(641\) −8450.03 −0.520680 −0.260340 0.965517i \(-0.583835\pi\)
−0.260340 + 0.965517i \(0.583835\pi\)
\(642\) −15442.5 −0.949325
\(643\) −25034.8 −1.53542 −0.767712 0.640795i \(-0.778605\pi\)
−0.767712 + 0.640795i \(0.778605\pi\)
\(644\) −644.000 −0.0394055
\(645\) −5531.90 −0.337703
\(646\) 642.917 0.0391567
\(647\) −12594.1 −0.765262 −0.382631 0.923901i \(-0.624982\pi\)
−0.382631 + 0.923901i \(0.624982\pi\)
\(648\) 7212.52 0.437244
\(649\) 331.946 0.0200771
\(650\) −4328.25 −0.261182
\(651\) −7307.88 −0.439967
\(652\) −13024.7 −0.782339
\(653\) −26759.9 −1.60367 −0.801834 0.597547i \(-0.796142\pi\)
−0.801834 + 0.597547i \(0.796142\pi\)
\(654\) 13221.1 0.790499
\(655\) 6533.06 0.389722
\(656\) −4979.28 −0.296354
\(657\) −7588.51 −0.450618
\(658\) 7390.28 0.437846
\(659\) 4901.36 0.289727 0.144863 0.989452i \(-0.453726\pi\)
0.144863 + 0.989452i \(0.453726\pi\)
\(660\) −1501.71 −0.0885664
\(661\) −29815.6 −1.75445 −0.877226 0.480077i \(-0.840609\pi\)
−0.877226 + 0.480077i \(0.840609\pi\)
\(662\) 8050.33 0.472636
\(663\) −17280.8 −1.01226
\(664\) −520.212 −0.0304038
\(665\) 747.100 0.0435658
\(666\) 3573.61 0.207920
\(667\) −1931.50 −0.112126
\(668\) 204.013 0.0118166
\(669\) 40822.0 2.35915
\(670\) −7251.65 −0.418143
\(671\) −1999.44 −0.115034
\(672\) 1479.28 0.0849176
\(673\) 26068.9 1.49314 0.746571 0.665306i \(-0.231699\pi\)
0.746571 + 0.665306i \(0.231699\pi\)
\(674\) −933.158 −0.0533292
\(675\) 2135.17 0.121752
\(676\) 10550.3 0.600269
\(677\) 395.976 0.0224795 0.0112397 0.999937i \(-0.496422\pi\)
0.0112397 + 0.999937i \(0.496422\pi\)
\(678\) −13939.9 −0.789616
\(679\) 6327.97 0.357651
\(680\) 3761.88 0.212149
\(681\) 42545.5 2.39405
\(682\) 1438.48 0.0807660
\(683\) 20914.9 1.17172 0.585861 0.810411i \(-0.300756\pi\)
0.585861 + 0.810411i \(0.300756\pi\)
\(684\) −567.585 −0.0317283
\(685\) −8244.69 −0.459874
\(686\) −686.000 −0.0381802
\(687\) −14799.7 −0.821900
\(688\) −1072.64 −0.0594391
\(689\) −19430.5 −1.07437
\(690\) 3795.75 0.209423
\(691\) 11800.8 0.649674 0.324837 0.945770i \(-0.394691\pi\)
0.324837 + 0.945770i \(0.394691\pi\)
\(692\) −6617.19 −0.363509
\(693\) −529.065 −0.0290008
\(694\) −22167.6 −1.21250
\(695\) −18577.3 −1.01392
\(696\) 4436.70 0.241627
\(697\) −11711.9 −0.636469
\(698\) −9916.69 −0.537754
\(699\) −15806.6 −0.855307
\(700\) 871.488 0.0470559
\(701\) 18463.5 0.994803 0.497402 0.867520i \(-0.334288\pi\)
0.497402 + 0.867520i \(0.334288\pi\)
\(702\) −9539.78 −0.512900
\(703\) 918.746 0.0492904
\(704\) −291.182 −0.0155886
\(705\) −43558.4 −2.32696
\(706\) 4270.90 0.227674
\(707\) 8103.49 0.431065
\(708\) 1927.29 0.102305
\(709\) 14466.1 0.766271 0.383135 0.923692i \(-0.374844\pi\)
0.383135 + 0.923692i \(0.374844\pi\)
\(710\) 465.100 0.0245844
\(711\) −13927.0 −0.734606
\(712\) −1026.17 −0.0540131
\(713\) −3635.95 −0.190978
\(714\) 3479.46 0.182375
\(715\) 3952.76 0.206748
\(716\) −9446.14 −0.493043
\(717\) 8854.07 0.461174
\(718\) −8520.27 −0.442860
\(719\) 22849.5 1.18518 0.592589 0.805505i \(-0.298106\pi\)
0.592589 + 0.805505i \(0.298106\pi\)
\(720\) −3321.10 −0.171903
\(721\) 2744.33 0.141753
\(722\) 13572.1 0.699585
\(723\) −32025.7 −1.64737
\(724\) 11.1377 0.000571724 0
\(725\) 2613.78 0.133894
\(726\) −17306.3 −0.884707
\(727\) −20393.5 −1.04038 −0.520188 0.854051i \(-0.674138\pi\)
−0.520188 + 0.854051i \(0.674138\pi\)
\(728\) −3893.74 −0.198230
\(729\) −2744.96 −0.139458
\(730\) −11415.5 −0.578778
\(731\) −2522.99 −0.127655
\(732\) −11608.8 −0.586165
\(733\) −6878.47 −0.346606 −0.173303 0.984869i \(-0.555444\pi\)
−0.173303 + 0.984869i \(0.555444\pi\)
\(734\) −427.423 −0.0214938
\(735\) 4043.30 0.202910
\(736\) 736.000 0.0368605
\(737\) 1320.25 0.0659865
\(738\) 10339.6 0.515725
\(739\) 2479.80 0.123438 0.0617192 0.998094i \(-0.480342\pi\)
0.0617192 + 0.998094i \(0.480342\pi\)
\(740\) 5375.84 0.267054
\(741\) 3922.19 0.194447
\(742\) 3912.31 0.193565
\(743\) 13453.0 0.664259 0.332129 0.943234i \(-0.392233\pi\)
0.332129 + 0.943234i \(0.392233\pi\)
\(744\) 8351.87 0.411551
\(745\) −16125.9 −0.793032
\(746\) −13855.7 −0.680018
\(747\) 1080.23 0.0529097
\(748\) −684.896 −0.0334790
\(749\) −8184.30 −0.399263
\(750\) 15492.5 0.754275
\(751\) −14526.4 −0.705829 −0.352915 0.935656i \(-0.614809\pi\)
−0.352915 + 0.935656i \(0.614809\pi\)
\(752\) −8446.03 −0.409568
\(753\) −33822.5 −1.63687
\(754\) −11678.2 −0.564051
\(755\) −20543.9 −0.990290
\(756\) 1920.82 0.0924069
\(757\) −8492.68 −0.407756 −0.203878 0.978996i \(-0.565355\pi\)
−0.203878 + 0.978996i \(0.565355\pi\)
\(758\) −18541.0 −0.888443
\(759\) −691.062 −0.0330487
\(760\) −853.828 −0.0407521
\(761\) 24953.2 1.18864 0.594320 0.804229i \(-0.297421\pi\)
0.594320 + 0.804229i \(0.297421\pi\)
\(762\) −23791.2 −1.13105
\(763\) 7007.00 0.332465
\(764\) −19065.8 −0.902849
\(765\) −7811.63 −0.369189
\(766\) 12998.1 0.613107
\(767\) −5072.97 −0.238819
\(768\) −1690.61 −0.0794332
\(769\) 29111.4 1.36513 0.682565 0.730825i \(-0.260865\pi\)
0.682565 + 0.730825i \(0.260865\pi\)
\(770\) −795.882 −0.0372488
\(771\) 42479.5 1.98426
\(772\) −7380.59 −0.344084
\(773\) 22408.1 1.04264 0.521322 0.853360i \(-0.325439\pi\)
0.521322 + 0.853360i \(0.325439\pi\)
\(774\) 2227.36 0.103438
\(775\) 4920.32 0.228055
\(776\) −7231.97 −0.334552
\(777\) 4972.25 0.229573
\(778\) 7552.71 0.348043
\(779\) 2658.22 0.122260
\(780\) 22949.8 1.05351
\(781\) −84.6771 −0.00387962
\(782\) 1731.16 0.0791639
\(783\) 5760.96 0.262937
\(784\) 784.000 0.0357143
\(785\) −14552.9 −0.661675
\(786\) −6905.82 −0.313387
\(787\) −10072.6 −0.456225 −0.228112 0.973635i \(-0.573255\pi\)
−0.228112 + 0.973635i \(0.573255\pi\)
\(788\) −1009.47 −0.0456355
\(789\) 28132.3 1.26938
\(790\) −20950.7 −0.943534
\(791\) −7387.96 −0.332093
\(792\) 604.646 0.0271277
\(793\) 30556.4 1.36834
\(794\) −22500.9 −1.00570
\(795\) −23059.2 −1.02871
\(796\) −10743.0 −0.478361
\(797\) 3266.57 0.145179 0.0725897 0.997362i \(-0.476874\pi\)
0.0725897 + 0.997362i \(0.476874\pi\)
\(798\) −789.727 −0.0350326
\(799\) −19866.1 −0.879614
\(800\) −995.986 −0.0440168
\(801\) 2130.86 0.0939954
\(802\) 20763.7 0.914202
\(803\) 2078.34 0.0913361
\(804\) 7665.40 0.336241
\(805\) 2011.69 0.0880780
\(806\) −21983.6 −0.960720
\(807\) 37527.9 1.63698
\(808\) −9261.13 −0.403224
\(809\) 1038.67 0.0451391 0.0225696 0.999745i \(-0.492815\pi\)
0.0225696 + 0.999745i \(0.492815\pi\)
\(810\) −22530.1 −0.977316
\(811\) −43445.1 −1.88109 −0.940544 0.339672i \(-0.889684\pi\)
−0.940544 + 0.339672i \(0.889684\pi\)
\(812\) 2351.39 0.101622
\(813\) 25327.9 1.09260
\(814\) −978.737 −0.0421434
\(815\) 40685.7 1.74866
\(816\) −3976.52 −0.170596
\(817\) 572.638 0.0245215
\(818\) 50.1888 0.00214525
\(819\) 8085.44 0.344967
\(820\) 15554.0 0.662402
\(821\) 20499.6 0.871428 0.435714 0.900085i \(-0.356496\pi\)
0.435714 + 0.900085i \(0.356496\pi\)
\(822\) 8715.10 0.369798
\(823\) −4443.50 −0.188203 −0.0941013 0.995563i \(-0.529998\pi\)
−0.0941013 + 0.995563i \(0.529998\pi\)
\(824\) −3136.37 −0.132598
\(825\) 935.174 0.0394649
\(826\) 1021.43 0.0430269
\(827\) 20075.8 0.844139 0.422070 0.906563i \(-0.361304\pi\)
0.422070 + 0.906563i \(0.361304\pi\)
\(828\) −1528.32 −0.0641458
\(829\) −40501.1 −1.69682 −0.848408 0.529342i \(-0.822439\pi\)
−0.848408 + 0.529342i \(0.822439\pi\)
\(830\) 1625.01 0.0679577
\(831\) −21203.3 −0.885119
\(832\) 4449.99 0.185428
\(833\) 1844.06 0.0767023
\(834\) 19637.2 0.815325
\(835\) −637.284 −0.0264121
\(836\) 155.450 0.00643103
\(837\) 10844.7 0.447848
\(838\) 563.056 0.0232106
\(839\) 18290.7 0.752639 0.376319 0.926490i \(-0.377190\pi\)
0.376319 + 0.926490i \(0.377190\pi\)
\(840\) −4620.91 −0.189805
\(841\) −17336.7 −0.710840
\(842\) 8272.85 0.338600
\(843\) −47198.8 −1.92837
\(844\) −14618.6 −0.596202
\(845\) −32956.5 −1.34170
\(846\) 17538.3 0.712743
\(847\) −9172.10 −0.372086
\(848\) −4471.21 −0.181064
\(849\) 59503.1 2.40535
\(850\) −2342.68 −0.0945332
\(851\) 2473.88 0.0996516
\(852\) −491.637 −0.0197690
\(853\) −7534.66 −0.302440 −0.151220 0.988500i \(-0.548320\pi\)
−0.151220 + 0.988500i \(0.548320\pi\)
\(854\) −6152.49 −0.246527
\(855\) 1772.99 0.0709182
\(856\) 9353.49 0.373476
\(857\) −2592.92 −0.103352 −0.0516758 0.998664i \(-0.516456\pi\)
−0.0516758 + 0.998664i \(0.516456\pi\)
\(858\) −4178.29 −0.166252
\(859\) 12781.5 0.507682 0.253841 0.967246i \(-0.418306\pi\)
0.253841 + 0.967246i \(0.418306\pi\)
\(860\) 3350.66 0.132857
\(861\) 14386.3 0.569435
\(862\) −2977.27 −0.117641
\(863\) −24270.2 −0.957321 −0.478660 0.878000i \(-0.658877\pi\)
−0.478660 + 0.878000i \(0.658877\pi\)
\(864\) −2195.22 −0.0864387
\(865\) 20670.4 0.812504
\(866\) −28036.1 −1.10012
\(867\) 23091.9 0.904549
\(868\) 4426.37 0.173089
\(869\) 3814.33 0.148898
\(870\) −13859.1 −0.540078
\(871\) −20176.7 −0.784916
\(872\) −8008.00 −0.310992
\(873\) 15017.3 0.582199
\(874\) −392.919 −0.0152067
\(875\) 8210.80 0.317229
\(876\) 12066.9 0.465413
\(877\) 15375.5 0.592012 0.296006 0.955186i \(-0.404345\pi\)
0.296006 + 0.955186i \(0.404345\pi\)
\(878\) −32075.3 −1.23290
\(879\) 35795.4 1.37355
\(880\) 909.580 0.0348431
\(881\) 7494.59 0.286605 0.143303 0.989679i \(-0.454228\pi\)
0.143303 + 0.989679i \(0.454228\pi\)
\(882\) −1627.99 −0.0621512
\(883\) −35896.0 −1.36806 −0.684029 0.729455i \(-0.739774\pi\)
−0.684029 + 0.729455i \(0.739774\pi\)
\(884\) 10466.9 0.398236
\(885\) −6020.35 −0.228669
\(886\) −15638.7 −0.592995
\(887\) −4210.74 −0.159395 −0.0796973 0.996819i \(-0.525395\pi\)
−0.0796973 + 0.996819i \(0.525395\pi\)
\(888\) −5682.57 −0.214746
\(889\) −12609.0 −0.475694
\(890\) 3205.49 0.120729
\(891\) 4101.87 0.154229
\(892\) −24725.8 −0.928117
\(893\) 4508.97 0.168966
\(894\) 17046.0 0.637701
\(895\) 29507.3 1.10203
\(896\) −896.000 −0.0334077
\(897\) 10561.1 0.393118
\(898\) −11816.9 −0.439126
\(899\) 13275.6 0.492511
\(900\) 2068.18 0.0765994
\(901\) −10516.8 −0.388864
\(902\) −2831.80 −0.104533
\(903\) 3099.11 0.114210
\(904\) 8443.38 0.310645
\(905\) −34.7912 −0.00127790
\(906\) 21716.1 0.796322
\(907\) 9560.33 0.349995 0.174998 0.984569i \(-0.444008\pi\)
0.174998 + 0.984569i \(0.444008\pi\)
\(908\) −25769.7 −0.941848
\(909\) 19230.9 0.701704
\(910\) 12163.1 0.443079
\(911\) −31138.7 −1.13246 −0.566231 0.824247i \(-0.691599\pi\)
−0.566231 + 0.824247i \(0.691599\pi\)
\(912\) 902.545 0.0327700
\(913\) −295.853 −0.0107243
\(914\) −5117.02 −0.185181
\(915\) 36262.9 1.31018
\(916\) 8964.17 0.323346
\(917\) −3659.98 −0.131803
\(918\) −5163.43 −0.185641
\(919\) 14589.4 0.523677 0.261839 0.965112i \(-0.415671\pi\)
0.261839 + 0.965112i \(0.415671\pi\)
\(920\) −2299.08 −0.0823895
\(921\) −10470.5 −0.374609
\(922\) 13190.7 0.471162
\(923\) 1294.08 0.0461485
\(924\) 841.293 0.0299529
\(925\) −3347.76 −0.118998
\(926\) 25767.2 0.914431
\(927\) 6512.74 0.230751
\(928\) −2687.30 −0.0950591
\(929\) 13340.9 0.471153 0.235577 0.971856i \(-0.424302\pi\)
0.235577 + 0.971856i \(0.424302\pi\)
\(930\) −26089.1 −0.919888
\(931\) −418.544 −0.0147339
\(932\) 9574.01 0.336488
\(933\) −34327.8 −1.20455
\(934\) −15559.8 −0.545109
\(935\) 2139.44 0.0748313
\(936\) −9240.50 −0.322687
\(937\) −16885.0 −0.588697 −0.294349 0.955698i \(-0.595103\pi\)
−0.294349 + 0.955698i \(0.595103\pi\)
\(938\) 4062.55 0.141415
\(939\) 61118.5 2.12410
\(940\) 26383.2 0.915454
\(941\) −14688.4 −0.508852 −0.254426 0.967092i \(-0.581887\pi\)
−0.254426 + 0.967092i \(0.581887\pi\)
\(942\) 15383.2 0.532072
\(943\) 7157.72 0.247176
\(944\) −1167.35 −0.0402480
\(945\) −6000.16 −0.206545
\(946\) −610.029 −0.0209659
\(947\) 43778.4 1.50223 0.751113 0.660173i \(-0.229517\pi\)
0.751113 + 0.660173i \(0.229517\pi\)
\(948\) 22146.1 0.758724
\(949\) −31762.2 −1.08645
\(950\) 531.714 0.0181590
\(951\) 15386.2 0.524638
\(952\) −2107.50 −0.0717484
\(953\) 54902.3 1.86617 0.933085 0.359656i \(-0.117106\pi\)
0.933085 + 0.359656i \(0.117106\pi\)
\(954\) 9284.56 0.315093
\(955\) 59556.7 2.01802
\(956\) −5362.90 −0.181431
\(957\) 2523.22 0.0852289
\(958\) −4865.84 −0.164100
\(959\) 4618.88 0.155528
\(960\) 5281.04 0.177547
\(961\) −4800.24 −0.161130
\(962\) 14957.5 0.501300
\(963\) −19422.7 −0.649936
\(964\) 19397.9 0.648096
\(965\) 23055.1 0.769087
\(966\) −2126.47 −0.0708262
\(967\) 3286.84 0.109305 0.0546523 0.998505i \(-0.482595\pi\)
0.0546523 + 0.998505i \(0.482595\pi\)
\(968\) 10482.4 0.348055
\(969\) 2122.89 0.0703789
\(970\) 22590.8 0.747781
\(971\) 49862.4 1.64795 0.823975 0.566626i \(-0.191751\pi\)
0.823975 + 0.566626i \(0.191751\pi\)
\(972\) 16406.7 0.541403
\(973\) 10407.4 0.342906
\(974\) 1224.69 0.0402892
\(975\) −14291.8 −0.469439
\(976\) 7031.42 0.230605
\(977\) −6244.06 −0.204468 −0.102234 0.994760i \(-0.532599\pi\)
−0.102234 + 0.994760i \(0.532599\pi\)
\(978\) −43007.1 −1.40615
\(979\) −583.599 −0.0190520
\(980\) −2449.02 −0.0798275
\(981\) 16628.8 0.541199
\(982\) 18821.3 0.611620
\(983\) 59620.5 1.93449 0.967243 0.253854i \(-0.0816982\pi\)
0.967243 + 0.253854i \(0.0816982\pi\)
\(984\) −16441.5 −0.532657
\(985\) 3153.32 0.102003
\(986\) −6320.85 −0.204155
\(987\) 24402.5 0.786971
\(988\) −2375.66 −0.0764978
\(989\) 1541.92 0.0495757
\(990\) −1888.76 −0.0606351
\(991\) 45346.5 1.45356 0.726781 0.686869i \(-0.241016\pi\)
0.726781 + 0.686869i \(0.241016\pi\)
\(992\) −5058.71 −0.161909
\(993\) 26582.0 0.849501
\(994\) −260.561 −0.00831437
\(995\) 33558.4 1.06922
\(996\) −1717.73 −0.0546468
\(997\) −41002.8 −1.30248 −0.651240 0.758872i \(-0.725751\pi\)
−0.651240 + 0.758872i \(0.725751\pi\)
\(998\) −4698.28 −0.149019
\(999\) −7378.70 −0.233685
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 322.4.a.f.1.1 4
7.6 odd 2 2254.4.a.j.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.a.f.1.1 4 1.1 even 1 trivial
2254.4.a.j.1.4 4 7.6 odd 2