Properties

Label 322.4.a.e
Level $322$
Weight $4$
Character orbit 322.a
Self dual yes
Analytic conductor $18.999$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,4,Mod(1,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9986150218\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3368.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 15x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - \beta_{2} - 2) q^{3} + 4 q^{4} + (\beta_{2} + \beta_1 - 3) q^{5} + ( - 2 \beta_{2} - 4) q^{6} - 7 q^{7} + 8 q^{8} + (6 \beta_{2} - 3 \beta_1 - 2) q^{9} + (2 \beta_{2} + 2 \beta_1 - 6) q^{10}+ \cdots + (234 \beta_{2} + 34 \beta_1 + 1126) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} - 7 q^{3} + 12 q^{4} - 8 q^{5} - 14 q^{6} - 21 q^{7} + 24 q^{8} - 16 q^{10} + 18 q^{11} - 28 q^{12} - 63 q^{13} - 42 q^{14} - 52 q^{15} + 48 q^{16} - 112 q^{17} - 128 q^{19} - 32 q^{20} + 49 q^{21}+ \cdots + 3612 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 15x + 11 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + 2\nu - 11 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 2\nu - 9 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.76300
4.03932
0.723686
2.00000 −8.34310 4.00000 1.16019 −16.6862 −7.00000 8.00000 42.6073 2.32039
1.2 2.00000 −1.61873 4.00000 3.31608 −3.23745 −7.00000 8.00000 −24.3797 6.63217
1.3 2.00000 2.96183 4.00000 −12.4763 5.92365 −7.00000 8.00000 −18.2276 −24.9526
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 322.4.a.e 3
7.b odd 2 1 2254.4.a.i 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
322.4.a.e 3 1.a even 1 1 trivial
2254.4.a.i 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 7T_{3}^{2} - 16T_{3} - 40 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(322))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 7 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$5$ \( T^{3} + 8 T^{2} + \cdots + 48 \) Copy content Toggle raw display
$7$ \( (T + 7)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 18 T^{2} + \cdots + 31936 \) Copy content Toggle raw display
$13$ \( T^{3} + 63 T^{2} + \cdots - 49392 \) Copy content Toggle raw display
$17$ \( T^{3} + 112 T^{2} + \cdots + 1024 \) Copy content Toggle raw display
$19$ \( T^{3} + 128 T^{2} + \cdots - 60720 \) Copy content Toggle raw display
$23$ \( (T + 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 103 T^{2} + \cdots - 4980 \) Copy content Toggle raw display
$31$ \( T^{3} + 347 T^{2} + \cdots + 1015524 \) Copy content Toggle raw display
$37$ \( T^{3} + 152 T^{2} + \cdots + 2206896 \) Copy content Toggle raw display
$41$ \( T^{3} + 387 T^{2} + \cdots - 125700 \) Copy content Toggle raw display
$43$ \( T^{3} - 100 T^{2} + \cdots - 2497344 \) Copy content Toggle raw display
$47$ \( T^{3} + 403 T^{2} + \cdots - 27319676 \) Copy content Toggle raw display
$53$ \( T^{3} - 44 T^{2} + \cdots - 370688 \) Copy content Toggle raw display
$59$ \( T^{3} - 156 T^{2} + \cdots + 7954272 \) Copy content Toggle raw display
$61$ \( T^{3} + 682 T^{2} + \cdots - 68522744 \) Copy content Toggle raw display
$67$ \( T^{3} + 104 T^{2} + \cdots + 41876480 \) Copy content Toggle raw display
$71$ \( T^{3} - 207 T^{2} + \cdots + 9533808 \) Copy content Toggle raw display
$73$ \( T^{3} + 1249 T^{2} + \cdots + 59609428 \) Copy content Toggle raw display
$79$ \( T^{3} - 512 T^{2} + \cdots + 14557696 \) Copy content Toggle raw display
$83$ \( T^{3} + 156 T^{2} + \cdots + 578259232 \) Copy content Toggle raw display
$89$ \( T^{3} + 4 T^{2} + \cdots + 177485408 \) Copy content Toggle raw display
$97$ \( T^{3} - 390 T^{2} + \cdots + 27861584 \) Copy content Toggle raw display
show more
show less