Properties

Label 322.4.a.c
Level $322$
Weight $4$
Character orbit 322.a
Self dual yes
Analytic conductor $18.999$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,4,Mod(1,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9986150218\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{57})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + \beta q^{3} + 4 q^{4} + ( - 2 \beta - 8) q^{5} + 2 \beta q^{6} + 7 q^{7} + 8 q^{8} + (\beta - 13) q^{9} + ( - 4 \beta - 16) q^{10} + ( - 6 \beta - 44) q^{11} + 4 \beta q^{12} + ( - 5 \beta - 26) q^{13}+ \cdots + (28 \beta + 488) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + q^{3} + 8 q^{4} - 18 q^{5} + 2 q^{6} + 14 q^{7} + 16 q^{8} - 25 q^{9} - 36 q^{10} - 94 q^{11} + 4 q^{12} - 57 q^{13} + 28 q^{14} - 66 q^{15} + 32 q^{16} + 6 q^{17} - 50 q^{18} - 60 q^{19}+ \cdots + 1004 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.27492
4.27492
2.00000 −3.27492 4.00000 −1.45017 −6.54983 7.00000 8.00000 −16.2749 −2.90033
1.2 2.00000 4.27492 4.00000 −16.5498 8.54983 7.00000 8.00000 −8.72508 −33.0997
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 322.4.a.c 2
7.b odd 2 1 2254.4.a.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
322.4.a.c 2 1.a even 1 1 trivial
2254.4.a.g 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - T_{3} - 14 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(322))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 14 \) Copy content Toggle raw display
$5$ \( T^{2} + 18T + 24 \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 94T + 1696 \) Copy content Toggle raw display
$13$ \( T^{2} + 57T + 456 \) Copy content Toggle raw display
$17$ \( T^{2} - 6T - 2784 \) Copy content Toggle raw display
$19$ \( T^{2} + 60T - 13692 \) Copy content Toggle raw display
$23$ \( (T - 23)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 145T + 2050 \) Copy content Toggle raw display
$31$ \( T^{2} - 59T + 172 \) Copy content Toggle raw display
$37$ \( T^{2} + 352T + 3388 \) Copy content Toggle raw display
$41$ \( T^{2} + 107T - 37166 \) Copy content Toggle raw display
$43$ \( T^{2} + 272T + 3904 \) Copy content Toggle raw display
$47$ \( T^{2} + 441T - 35868 \) Copy content Toggle raw display
$53$ \( T^{2} + 312T + 5868 \) Copy content Toggle raw display
$59$ \( T^{2} - 122T - 222512 \) Copy content Toggle raw display
$61$ \( T^{2} - 522T + 20184 \) Copy content Toggle raw display
$67$ \( T^{2} + 414T - 471576 \) Copy content Toggle raw display
$71$ \( T^{2} + 457T - 163376 \) Copy content Toggle raw display
$73$ \( T^{2} - 1815 T + 814650 \) Copy content Toggle raw display
$79$ \( T^{2} + 970T - 68528 \) Copy content Toggle raw display
$83$ \( T^{2} + 250T - 25928 \) Copy content Toggle raw display
$89$ \( T^{2} + 1546T - 55064 \) Copy content Toggle raw display
$97$ \( T^{2} - 1610 T + 435928 \) Copy content Toggle raw display
show more
show less