Properties

Label 322.4.a.b
Level $322$
Weight $4$
Character orbit 322.a
Self dual yes
Analytic conductor $18.999$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,4,Mod(1,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9986150218\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{73}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{73})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + ( - \beta + 5) q^{3} + 4 q^{4} + ( - 4 \beta - 2) q^{5} + (2 \beta - 10) q^{6} + 7 q^{7} - 8 q^{8} + ( - 9 \beta + 16) q^{9} + (8 \beta + 4) q^{10} + (4 \beta + 2) q^{11} + ( - 4 \beta + 20) q^{12}+ \cdots + (10 \beta - 616) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 9 q^{3} + 8 q^{4} - 8 q^{5} - 18 q^{6} + 14 q^{7} - 16 q^{8} + 23 q^{9} + 16 q^{10} + 8 q^{11} + 36 q^{12} - 57 q^{13} - 28 q^{14} + 110 q^{15} + 32 q^{16} + 78 q^{17} - 46 q^{18} - 90 q^{19}+ \cdots - 1222 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.77200
−3.77200
−2.00000 0.227998 4.00000 −21.0880 −0.455996 7.00000 −8.00000 −26.9480 42.1760
1.2 −2.00000 8.77200 4.00000 13.0880 −17.5440 7.00000 −8.00000 49.9480 −26.1760
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 322.4.a.b 2
7.b odd 2 1 2254.4.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
322.4.a.b 2 1.a even 1 1 trivial
2254.4.a.c 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 9T_{3} + 2 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(322))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 9T + 2 \) Copy content Toggle raw display
$5$ \( T^{2} + 8T - 276 \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 8T - 276 \) Copy content Toggle raw display
$13$ \( T^{2} + 57T - 1396 \) Copy content Toggle raw display
$17$ \( T^{2} - 78T + 864 \) Copy content Toggle raw display
$19$ \( T^{2} + 90T - 1552 \) Copy content Toggle raw display
$23$ \( (T - 23)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 283T + 19566 \) Copy content Toggle raw display
$31$ \( T^{2} + 153T + 2768 \) Copy content Toggle raw display
$37$ \( T^{2} + 490T + 47688 \) Copy content Toggle raw display
$41$ \( T^{2} + 279T - 52974 \) Copy content Toggle raw display
$43$ \( T^{2} - 190T - 23168 \) Copy content Toggle raw display
$47$ \( T^{2} - 151T - 45564 \) Copy content Toggle raw display
$53$ \( T^{2} - 630T + 19728 \) Copy content Toggle raw display
$59$ \( T^{2} - 46T - 204528 \) Copy content Toggle raw display
$61$ \( T^{2} - 292T - 73292 \) Copy content Toggle raw display
$67$ \( T^{2} + 1080 T + 291308 \) Copy content Toggle raw display
$71$ \( T^{2} - 619T - 246744 \) Copy content Toggle raw display
$73$ \( T^{2} - 1283 T + 260394 \) Copy content Toggle raw display
$79$ \( T^{2} - 2210 T + 1219200 \) Copy content Toggle raw display
$83$ \( T^{2} - 1932 T + 804384 \) Copy content Toggle raw display
$89$ \( T^{2} + 1042 T - 415416 \) Copy content Toggle raw display
$97$ \( T^{2} + 1422 T + 370544 \) Copy content Toggle raw display
show more
show less