Properties

Label 322.4.a.a.1.2
Level $322$
Weight $4$
Character 322.1
Self dual yes
Analytic conductor $18.999$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,4,Mod(1,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9986150218\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 322.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +2.24264 q^{3} +4.00000 q^{4} +3.75736 q^{5} -4.48528 q^{6} +7.00000 q^{7} -8.00000 q^{8} -21.9706 q^{9} -7.51472 q^{10} +13.0294 q^{11} +8.97056 q^{12} +33.1716 q^{13} -14.0000 q^{14} +8.42641 q^{15} +16.0000 q^{16} +89.4386 q^{17} +43.9411 q^{18} +14.2843 q^{19} +15.0294 q^{20} +15.6985 q^{21} -26.0589 q^{22} +23.0000 q^{23} -17.9411 q^{24} -110.882 q^{25} -66.3431 q^{26} -109.823 q^{27} +28.0000 q^{28} -54.5442 q^{29} -16.8528 q^{30} +217.179 q^{31} -32.0000 q^{32} +29.2203 q^{33} -178.877 q^{34} +26.3015 q^{35} -87.8823 q^{36} +190.083 q^{37} -28.5685 q^{38} +74.3919 q^{39} -30.0589 q^{40} +483.588 q^{41} -31.3970 q^{42} -141.186 q^{43} +52.1177 q^{44} -82.5513 q^{45} -46.0000 q^{46} -187.453 q^{47} +35.8823 q^{48} +49.0000 q^{49} +221.765 q^{50} +200.579 q^{51} +132.686 q^{52} +13.1817 q^{53} +219.647 q^{54} +48.9563 q^{55} -56.0000 q^{56} +32.0345 q^{57} +109.088 q^{58} +828.080 q^{59} +33.7056 q^{60} +37.6842 q^{61} -434.357 q^{62} -153.794 q^{63} +64.0000 q^{64} +124.638 q^{65} -58.4407 q^{66} +458.333 q^{67} +357.754 q^{68} +51.5807 q^{69} -52.6030 q^{70} +901.200 q^{71} +175.765 q^{72} +665.024 q^{73} -380.167 q^{74} -248.669 q^{75} +57.1371 q^{76} +91.2061 q^{77} -148.784 q^{78} -1185.76 q^{79} +60.1177 q^{80} +346.911 q^{81} -967.176 q^{82} -607.200 q^{83} +62.7939 q^{84} +336.053 q^{85} +282.372 q^{86} -122.323 q^{87} -104.235 q^{88} +1547.15 q^{89} +165.103 q^{90} +232.201 q^{91} +92.0000 q^{92} +487.054 q^{93} +374.906 q^{94} +53.6711 q^{95} -71.7645 q^{96} -408.482 q^{97} -98.0000 q^{98} -286.264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 4 q^{3} + 8 q^{4} + 16 q^{5} + 8 q^{6} + 14 q^{7} - 16 q^{8} - 10 q^{9} - 32 q^{10} + 60 q^{11} - 16 q^{12} + 72 q^{13} - 28 q^{14} - 68 q^{15} + 32 q^{16} + 12 q^{17} + 20 q^{18} - 28 q^{19}+ \cdots + 276 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 2.24264 0.431596 0.215798 0.976438i \(-0.430765\pi\)
0.215798 + 0.976438i \(0.430765\pi\)
\(4\) 4.00000 0.500000
\(5\) 3.75736 0.336068 0.168034 0.985781i \(-0.446258\pi\)
0.168034 + 0.985781i \(0.446258\pi\)
\(6\) −4.48528 −0.305185
\(7\) 7.00000 0.377964
\(8\) −8.00000 −0.353553
\(9\) −21.9706 −0.813725
\(10\) −7.51472 −0.237636
\(11\) 13.0294 0.357138 0.178569 0.983927i \(-0.442853\pi\)
0.178569 + 0.983927i \(0.442853\pi\)
\(12\) 8.97056 0.215798
\(13\) 33.1716 0.707703 0.353851 0.935302i \(-0.384872\pi\)
0.353851 + 0.935302i \(0.384872\pi\)
\(14\) −14.0000 −0.267261
\(15\) 8.42641 0.145046
\(16\) 16.0000 0.250000
\(17\) 89.4386 1.27600 0.638001 0.770035i \(-0.279761\pi\)
0.638001 + 0.770035i \(0.279761\pi\)
\(18\) 43.9411 0.575390
\(19\) 14.2843 0.172476 0.0862378 0.996275i \(-0.472516\pi\)
0.0862378 + 0.996275i \(0.472516\pi\)
\(20\) 15.0294 0.168034
\(21\) 15.6985 0.163128
\(22\) −26.0589 −0.252535
\(23\) 23.0000 0.208514
\(24\) −17.9411 −0.152592
\(25\) −110.882 −0.887058
\(26\) −66.3431 −0.500422
\(27\) −109.823 −0.782797
\(28\) 28.0000 0.188982
\(29\) −54.5442 −0.349262 −0.174631 0.984634i \(-0.555873\pi\)
−0.174631 + 0.984634i \(0.555873\pi\)
\(30\) −16.8528 −0.102563
\(31\) 217.179 1.25827 0.629136 0.777295i \(-0.283409\pi\)
0.629136 + 0.777295i \(0.283409\pi\)
\(32\) −32.0000 −0.176777
\(33\) 29.2203 0.154140
\(34\) −178.877 −0.902270
\(35\) 26.3015 0.127022
\(36\) −87.8823 −0.406862
\(37\) 190.083 0.844581 0.422290 0.906461i \(-0.361226\pi\)
0.422290 + 0.906461i \(0.361226\pi\)
\(38\) −28.5685 −0.121959
\(39\) 74.3919 0.305442
\(40\) −30.0589 −0.118818
\(41\) 483.588 1.84204 0.921021 0.389512i \(-0.127356\pi\)
0.921021 + 0.389512i \(0.127356\pi\)
\(42\) −31.3970 −0.115349
\(43\) −141.186 −0.500713 −0.250356 0.968154i \(-0.580548\pi\)
−0.250356 + 0.968154i \(0.580548\pi\)
\(44\) 52.1177 0.178569
\(45\) −82.5513 −0.273467
\(46\) −46.0000 −0.147442
\(47\) −187.453 −0.581762 −0.290881 0.956759i \(-0.593948\pi\)
−0.290881 + 0.956759i \(0.593948\pi\)
\(48\) 35.8823 0.107899
\(49\) 49.0000 0.142857
\(50\) 221.765 0.627245
\(51\) 200.579 0.550718
\(52\) 132.686 0.353851
\(53\) 13.1817 0.0341631 0.0170815 0.999854i \(-0.494563\pi\)
0.0170815 + 0.999854i \(0.494563\pi\)
\(54\) 219.647 0.553521
\(55\) 48.9563 0.120023
\(56\) −56.0000 −0.133631
\(57\) 32.0345 0.0744399
\(58\) 109.088 0.246965
\(59\) 828.080 1.82724 0.913618 0.406575i \(-0.133277\pi\)
0.913618 + 0.406575i \(0.133277\pi\)
\(60\) 33.7056 0.0725230
\(61\) 37.6842 0.0790978 0.0395489 0.999218i \(-0.487408\pi\)
0.0395489 + 0.999218i \(0.487408\pi\)
\(62\) −434.357 −0.889733
\(63\) −153.794 −0.307559
\(64\) 64.0000 0.125000
\(65\) 124.638 0.237837
\(66\) −58.4407 −0.108993
\(67\) 458.333 0.835736 0.417868 0.908508i \(-0.362778\pi\)
0.417868 + 0.908508i \(0.362778\pi\)
\(68\) 357.754 0.638001
\(69\) 51.5807 0.0899941
\(70\) −52.6030 −0.0898181
\(71\) 901.200 1.50638 0.753189 0.657805i \(-0.228515\pi\)
0.753189 + 0.657805i \(0.228515\pi\)
\(72\) 175.765 0.287695
\(73\) 665.024 1.06623 0.533117 0.846041i \(-0.321020\pi\)
0.533117 + 0.846041i \(0.321020\pi\)
\(74\) −380.167 −0.597209
\(75\) −248.669 −0.382851
\(76\) 57.1371 0.0862378
\(77\) 91.2061 0.134986
\(78\) −148.784 −0.215980
\(79\) −1185.76 −1.68871 −0.844356 0.535782i \(-0.820017\pi\)
−0.844356 + 0.535782i \(0.820017\pi\)
\(80\) 60.1177 0.0840171
\(81\) 346.911 0.475872
\(82\) −967.176 −1.30252
\(83\) −607.200 −0.802998 −0.401499 0.915859i \(-0.631511\pi\)
−0.401499 + 0.915859i \(0.631511\pi\)
\(84\) 62.7939 0.0815641
\(85\) 336.053 0.428824
\(86\) 282.372 0.354057
\(87\) −122.323 −0.150740
\(88\) −104.235 −0.126268
\(89\) 1547.15 1.84267 0.921336 0.388767i \(-0.127099\pi\)
0.921336 + 0.388767i \(0.127099\pi\)
\(90\) 165.103 0.193370
\(91\) 232.201 0.267487
\(92\) 92.0000 0.104257
\(93\) 487.054 0.543066
\(94\) 374.906 0.411368
\(95\) 53.6711 0.0579636
\(96\) −71.7645 −0.0762962
\(97\) −408.482 −0.427578 −0.213789 0.976880i \(-0.568581\pi\)
−0.213789 + 0.976880i \(0.568581\pi\)
\(98\) −98.0000 −0.101015
\(99\) −286.264 −0.290612
\(100\) −443.529 −0.443529
\(101\) −193.367 −0.190502 −0.0952510 0.995453i \(-0.530365\pi\)
−0.0952510 + 0.995453i \(0.530365\pi\)
\(102\) −401.157 −0.389417
\(103\) 144.402 0.138139 0.0690697 0.997612i \(-0.477997\pi\)
0.0690697 + 0.997612i \(0.477997\pi\)
\(104\) −265.373 −0.250211
\(105\) 58.9848 0.0548222
\(106\) −26.3633 −0.0241569
\(107\) 1713.82 1.54843 0.774213 0.632925i \(-0.218146\pi\)
0.774213 + 0.632925i \(0.218146\pi\)
\(108\) −439.294 −0.391398
\(109\) −308.599 −0.271178 −0.135589 0.990765i \(-0.543293\pi\)
−0.135589 + 0.990765i \(0.543293\pi\)
\(110\) −97.9126 −0.0848691
\(111\) 426.288 0.364518
\(112\) 112.000 0.0944911
\(113\) −2160.23 −1.79838 −0.899191 0.437557i \(-0.855844\pi\)
−0.899191 + 0.437557i \(0.855844\pi\)
\(114\) −64.0690 −0.0526369
\(115\) 86.4193 0.0700751
\(116\) −218.177 −0.174631
\(117\) −728.798 −0.575875
\(118\) −1656.16 −1.29205
\(119\) 626.070 0.482284
\(120\) −67.4113 −0.0512815
\(121\) −1161.23 −0.872452
\(122\) −75.3684 −0.0559306
\(123\) 1084.51 0.795019
\(124\) 868.715 0.629136
\(125\) −886.294 −0.634181
\(126\) 307.588 0.217477
\(127\) 71.2304 0.0497691 0.0248846 0.999690i \(-0.492078\pi\)
0.0248846 + 0.999690i \(0.492078\pi\)
\(128\) −128.000 −0.0883883
\(129\) −316.629 −0.216106
\(130\) −249.275 −0.168176
\(131\) −1137.93 −0.758944 −0.379472 0.925203i \(-0.623894\pi\)
−0.379472 + 0.925203i \(0.623894\pi\)
\(132\) 116.881 0.0770698
\(133\) 99.9899 0.0651897
\(134\) −916.666 −0.590954
\(135\) −412.646 −0.263073
\(136\) −715.509 −0.451135
\(137\) −2528.87 −1.57705 −0.788524 0.615004i \(-0.789154\pi\)
−0.788524 + 0.615004i \(0.789154\pi\)
\(138\) −103.161 −0.0636354
\(139\) −1289.58 −0.786915 −0.393457 0.919343i \(-0.628721\pi\)
−0.393457 + 0.919343i \(0.628721\pi\)
\(140\) 105.206 0.0635110
\(141\) −420.389 −0.251086
\(142\) −1802.40 −1.06517
\(143\) 432.207 0.252748
\(144\) −351.529 −0.203431
\(145\) −204.942 −0.117376
\(146\) −1330.05 −0.753942
\(147\) 109.889 0.0616566
\(148\) 760.333 0.422290
\(149\) −445.870 −0.245149 −0.122574 0.992459i \(-0.539115\pi\)
−0.122574 + 0.992459i \(0.539115\pi\)
\(150\) 497.338 0.270717
\(151\) −2442.35 −1.31626 −0.658132 0.752902i \(-0.728653\pi\)
−0.658132 + 0.752902i \(0.728653\pi\)
\(152\) −114.274 −0.0609793
\(153\) −1965.02 −1.03831
\(154\) −182.412 −0.0954493
\(155\) 816.018 0.422866
\(156\) 297.568 0.152721
\(157\) 1091.42 0.554808 0.277404 0.960753i \(-0.410526\pi\)
0.277404 + 0.960753i \(0.410526\pi\)
\(158\) 2371.52 1.19410
\(159\) 29.5618 0.0147447
\(160\) −120.235 −0.0594091
\(161\) 161.000 0.0788110
\(162\) −693.822 −0.336492
\(163\) 2681.74 1.28865 0.644325 0.764751i \(-0.277138\pi\)
0.644325 + 0.764751i \(0.277138\pi\)
\(164\) 1934.35 0.921021
\(165\) 109.791 0.0518015
\(166\) 1214.40 0.567806
\(167\) −848.332 −0.393089 −0.196545 0.980495i \(-0.562972\pi\)
−0.196545 + 0.980495i \(0.562972\pi\)
\(168\) −125.588 −0.0576745
\(169\) −1096.65 −0.499156
\(170\) −672.106 −0.303225
\(171\) −313.833 −0.140348
\(172\) −564.743 −0.250356
\(173\) 2662.58 1.17013 0.585064 0.810987i \(-0.301069\pi\)
0.585064 + 0.810987i \(0.301069\pi\)
\(174\) 244.646 0.106589
\(175\) −776.176 −0.335276
\(176\) 208.471 0.0892846
\(177\) 1857.09 0.788628
\(178\) −3094.31 −1.30297
\(179\) −1472.38 −0.614809 −0.307404 0.951579i \(-0.599460\pi\)
−0.307404 + 0.951579i \(0.599460\pi\)
\(180\) −330.205 −0.136734
\(181\) −1917.05 −0.787256 −0.393628 0.919270i \(-0.628780\pi\)
−0.393628 + 0.919270i \(0.628780\pi\)
\(182\) −464.402 −0.189142
\(183\) 84.5121 0.0341383
\(184\) −184.000 −0.0737210
\(185\) 714.211 0.283837
\(186\) −974.108 −0.384006
\(187\) 1165.33 0.455710
\(188\) −749.812 −0.290881
\(189\) −768.764 −0.295869
\(190\) −107.342 −0.0409865
\(191\) 4397.54 1.66594 0.832970 0.553318i \(-0.186639\pi\)
0.832970 + 0.553318i \(0.186639\pi\)
\(192\) 143.529 0.0539496
\(193\) −3290.01 −1.22705 −0.613523 0.789677i \(-0.710248\pi\)
−0.613523 + 0.789677i \(0.710248\pi\)
\(194\) 816.965 0.302344
\(195\) 279.517 0.102649
\(196\) 196.000 0.0714286
\(197\) −785.712 −0.284161 −0.142080 0.989855i \(-0.545379\pi\)
−0.142080 + 0.989855i \(0.545379\pi\)
\(198\) 572.528 0.205494
\(199\) −3667.09 −1.30630 −0.653149 0.757229i \(-0.726553\pi\)
−0.653149 + 0.757229i \(0.726553\pi\)
\(200\) 887.058 0.313622
\(201\) 1027.88 0.360701
\(202\) 386.733 0.134705
\(203\) −381.809 −0.132009
\(204\) 802.315 0.275359
\(205\) 1817.01 0.619052
\(206\) −288.804 −0.0976793
\(207\) −505.323 −0.169673
\(208\) 530.745 0.176926
\(209\) 186.116 0.0615977
\(210\) −117.970 −0.0387652
\(211\) −2814.18 −0.918182 −0.459091 0.888389i \(-0.651825\pi\)
−0.459091 + 0.888389i \(0.651825\pi\)
\(212\) 52.7267 0.0170815
\(213\) 2021.07 0.650147
\(214\) −3427.65 −1.09490
\(215\) −530.486 −0.168274
\(216\) 878.587 0.276761
\(217\) 1520.25 0.475582
\(218\) 617.198 0.191752
\(219\) 1491.41 0.460183
\(220\) 195.825 0.0600115
\(221\) 2966.82 0.903031
\(222\) −852.577 −0.257753
\(223\) 623.289 0.187168 0.0935841 0.995611i \(-0.470168\pi\)
0.0935841 + 0.995611i \(0.470168\pi\)
\(224\) −224.000 −0.0668153
\(225\) 2436.15 0.721821
\(226\) 4320.46 1.27165
\(227\) 3802.36 1.11177 0.555884 0.831260i \(-0.312380\pi\)
0.555884 + 0.831260i \(0.312380\pi\)
\(228\) 128.138 0.0372199
\(229\) −3973.52 −1.14663 −0.573313 0.819336i \(-0.694342\pi\)
−0.573313 + 0.819336i \(0.694342\pi\)
\(230\) −172.839 −0.0495506
\(231\) 204.542 0.0582593
\(232\) 436.353 0.123483
\(233\) −3225.41 −0.906881 −0.453441 0.891286i \(-0.649804\pi\)
−0.453441 + 0.891286i \(0.649804\pi\)
\(234\) 1457.60 0.407205
\(235\) −704.328 −0.195512
\(236\) 3312.32 0.913618
\(237\) −2659.23 −0.728842
\(238\) −1252.14 −0.341026
\(239\) 4119.96 1.11505 0.557527 0.830159i \(-0.311750\pi\)
0.557527 + 0.830159i \(0.311750\pi\)
\(240\) 134.823 0.0362615
\(241\) 1742.43 0.465726 0.232863 0.972510i \(-0.425191\pi\)
0.232863 + 0.972510i \(0.425191\pi\)
\(242\) 2322.47 0.616917
\(243\) 3743.23 0.988182
\(244\) 150.737 0.0395489
\(245\) 184.111 0.0480098
\(246\) −2169.03 −0.562163
\(247\) 473.832 0.122062
\(248\) −1737.43 −0.444867
\(249\) −1361.73 −0.346571
\(250\) 1772.59 0.448433
\(251\) −4923.16 −1.23804 −0.619018 0.785377i \(-0.712469\pi\)
−0.619018 + 0.785377i \(0.712469\pi\)
\(252\) −615.176 −0.153779
\(253\) 299.677 0.0744685
\(254\) −142.461 −0.0351921
\(255\) 753.646 0.185079
\(256\) 256.000 0.0625000
\(257\) 4717.28 1.14496 0.572482 0.819917i \(-0.305980\pi\)
0.572482 + 0.819917i \(0.305980\pi\)
\(258\) 633.258 0.152810
\(259\) 1330.58 0.319222
\(260\) 498.550 0.118918
\(261\) 1198.37 0.284203
\(262\) 2275.86 0.536654
\(263\) 1811.49 0.424719 0.212360 0.977192i \(-0.431885\pi\)
0.212360 + 0.977192i \(0.431885\pi\)
\(264\) −233.763 −0.0544966
\(265\) 49.5283 0.0114811
\(266\) −199.980 −0.0460960
\(267\) 3469.71 0.795291
\(268\) 1833.33 0.417868
\(269\) 3173.02 0.719190 0.359595 0.933108i \(-0.382915\pi\)
0.359595 + 0.933108i \(0.382915\pi\)
\(270\) 825.292 0.186021
\(271\) −3316.92 −0.743499 −0.371750 0.928333i \(-0.621242\pi\)
−0.371750 + 0.928333i \(0.621242\pi\)
\(272\) 1431.02 0.319001
\(273\) 520.743 0.115446
\(274\) 5057.73 1.11514
\(275\) −1444.73 −0.316803
\(276\) 206.323 0.0449970
\(277\) −6461.12 −1.40148 −0.700742 0.713415i \(-0.747148\pi\)
−0.700742 + 0.713415i \(0.747148\pi\)
\(278\) 2579.17 0.556433
\(279\) −4771.54 −1.02389
\(280\) −210.412 −0.0449090
\(281\) −495.920 −0.105281 −0.0526407 0.998614i \(-0.516764\pi\)
−0.0526407 + 0.998614i \(0.516764\pi\)
\(282\) 840.779 0.177545
\(283\) 714.309 0.150040 0.0750199 0.997182i \(-0.476098\pi\)
0.0750199 + 0.997182i \(0.476098\pi\)
\(284\) 3604.80 0.753189
\(285\) 120.365 0.0250169
\(286\) −864.414 −0.178720
\(287\) 3385.12 0.696227
\(288\) 703.058 0.143848
\(289\) 3086.26 0.628183
\(290\) 409.884 0.0829973
\(291\) −916.079 −0.184541
\(292\) 2660.09 0.533117
\(293\) −9322.33 −1.85876 −0.929380 0.369125i \(-0.879658\pi\)
−0.929380 + 0.369125i \(0.879658\pi\)
\(294\) −219.779 −0.0435978
\(295\) 3111.40 0.614076
\(296\) −1520.67 −0.298604
\(297\) −1430.94 −0.279567
\(298\) 891.741 0.173346
\(299\) 762.946 0.147566
\(300\) −994.676 −0.191426
\(301\) −988.301 −0.189252
\(302\) 4884.71 0.930740
\(303\) −433.652 −0.0822200
\(304\) 228.548 0.0431189
\(305\) 141.593 0.0265823
\(306\) 3930.03 0.734199
\(307\) 6636.06 1.23368 0.616840 0.787088i \(-0.288412\pi\)
0.616840 + 0.787088i \(0.288412\pi\)
\(308\) 364.824 0.0674928
\(309\) 323.842 0.0596204
\(310\) −1632.04 −0.299011
\(311\) −3975.74 −0.724899 −0.362449 0.932003i \(-0.618059\pi\)
−0.362449 + 0.932003i \(0.618059\pi\)
\(312\) −595.135 −0.107990
\(313\) −4431.10 −0.800193 −0.400097 0.916473i \(-0.631023\pi\)
−0.400097 + 0.916473i \(0.631023\pi\)
\(314\) −2182.84 −0.392309
\(315\) −577.859 −0.103361
\(316\) −4743.03 −0.844356
\(317\) 5435.63 0.963077 0.481539 0.876425i \(-0.340078\pi\)
0.481539 + 0.876425i \(0.340078\pi\)
\(318\) −59.1235 −0.0104260
\(319\) −710.680 −0.124735
\(320\) 240.471 0.0420086
\(321\) 3843.49 0.668295
\(322\) −322.000 −0.0557278
\(323\) 1277.57 0.220079
\(324\) 1387.64 0.237936
\(325\) −3678.14 −0.627774
\(326\) −5363.48 −0.911214
\(327\) −692.076 −0.117039
\(328\) −3868.70 −0.651260
\(329\) −1312.17 −0.219885
\(330\) −219.583 −0.0366292
\(331\) −5587.24 −0.927801 −0.463901 0.885887i \(-0.653551\pi\)
−0.463901 + 0.885887i \(0.653551\pi\)
\(332\) −2428.80 −0.401499
\(333\) −4176.24 −0.687256
\(334\) 1696.66 0.277956
\(335\) 1722.12 0.280864
\(336\) 251.176 0.0407820
\(337\) 633.663 0.102427 0.0512134 0.998688i \(-0.483691\pi\)
0.0512134 + 0.998688i \(0.483691\pi\)
\(338\) 2193.29 0.352957
\(339\) −4844.61 −0.776175
\(340\) 1344.21 0.214412
\(341\) 2829.72 0.449378
\(342\) 627.667 0.0992408
\(343\) 343.000 0.0539949
\(344\) 1129.49 0.177029
\(345\) 193.807 0.0302442
\(346\) −5325.16 −0.827405
\(347\) 8745.82 1.35303 0.676513 0.736431i \(-0.263490\pi\)
0.676513 + 0.736431i \(0.263490\pi\)
\(348\) −489.292 −0.0753701
\(349\) −10932.9 −1.67687 −0.838434 0.545002i \(-0.816529\pi\)
−0.838434 + 0.545002i \(0.816529\pi\)
\(350\) 1552.35 0.237076
\(351\) −3643.01 −0.553988
\(352\) −416.942 −0.0631338
\(353\) −7386.27 −1.11369 −0.556843 0.830618i \(-0.687988\pi\)
−0.556843 + 0.830618i \(0.687988\pi\)
\(354\) −3714.17 −0.557644
\(355\) 3386.13 0.506246
\(356\) 6188.61 0.921336
\(357\) 1404.05 0.208152
\(358\) 2944.76 0.434735
\(359\) 9258.66 1.36115 0.680576 0.732678i \(-0.261730\pi\)
0.680576 + 0.732678i \(0.261730\pi\)
\(360\) 660.410 0.0966852
\(361\) −6654.96 −0.970252
\(362\) 3834.11 0.556674
\(363\) −2604.23 −0.376547
\(364\) 928.804 0.133743
\(365\) 2498.73 0.358328
\(366\) −169.024 −0.0241394
\(367\) 1466.51 0.208586 0.104293 0.994547i \(-0.466742\pi\)
0.104293 + 0.994547i \(0.466742\pi\)
\(368\) 368.000 0.0521286
\(369\) −10624.7 −1.49892
\(370\) −1428.42 −0.200703
\(371\) 92.2717 0.0129124
\(372\) 1948.22 0.271533
\(373\) 595.179 0.0826198 0.0413099 0.999146i \(-0.486847\pi\)
0.0413099 + 0.999146i \(0.486847\pi\)
\(374\) −2330.67 −0.322235
\(375\) −1987.64 −0.273710
\(376\) 1499.62 0.205684
\(377\) −1809.32 −0.247174
\(378\) 1537.53 0.209211
\(379\) 14050.6 1.90431 0.952154 0.305620i \(-0.0988636\pi\)
0.952154 + 0.305620i \(0.0988636\pi\)
\(380\) 214.685 0.0289818
\(381\) 159.744 0.0214802
\(382\) −8795.07 −1.17800
\(383\) −538.612 −0.0718584 −0.0359292 0.999354i \(-0.511439\pi\)
−0.0359292 + 0.999354i \(0.511439\pi\)
\(384\) −287.058 −0.0381481
\(385\) 342.694 0.0453644
\(386\) 6580.02 0.867653
\(387\) 3101.93 0.407442
\(388\) −1633.93 −0.213789
\(389\) −3807.18 −0.496226 −0.248113 0.968731i \(-0.579810\pi\)
−0.248113 + 0.968731i \(0.579810\pi\)
\(390\) −559.034 −0.0725841
\(391\) 2057.09 0.266065
\(392\) −392.000 −0.0505076
\(393\) −2551.97 −0.327557
\(394\) 1571.42 0.200932
\(395\) −4455.32 −0.567523
\(396\) −1145.06 −0.145306
\(397\) −4457.42 −0.563505 −0.281752 0.959487i \(-0.590916\pi\)
−0.281752 + 0.959487i \(0.590916\pi\)
\(398\) 7334.19 0.923693
\(399\) 224.241 0.0281356
\(400\) −1774.12 −0.221765
\(401\) 5948.99 0.740844 0.370422 0.928864i \(-0.379213\pi\)
0.370422 + 0.928864i \(0.379213\pi\)
\(402\) −2055.75 −0.255054
\(403\) 7204.16 0.890483
\(404\) −773.467 −0.0952510
\(405\) 1303.47 0.159926
\(406\) 763.618 0.0933442
\(407\) 2476.68 0.301632
\(408\) −1604.63 −0.194708
\(409\) −10366.4 −1.25327 −0.626634 0.779314i \(-0.715568\pi\)
−0.626634 + 0.779314i \(0.715568\pi\)
\(410\) −3634.03 −0.437736
\(411\) −5671.34 −0.680648
\(412\) 577.608 0.0690697
\(413\) 5796.56 0.690630
\(414\) 1010.65 0.119977
\(415\) −2281.47 −0.269862
\(416\) −1061.49 −0.125105
\(417\) −2892.08 −0.339630
\(418\) −372.232 −0.0435561
\(419\) −12122.8 −1.41346 −0.706729 0.707485i \(-0.749830\pi\)
−0.706729 + 0.707485i \(0.749830\pi\)
\(420\) 235.939 0.0274111
\(421\) −757.168 −0.0876535 −0.0438268 0.999039i \(-0.513955\pi\)
−0.0438268 + 0.999039i \(0.513955\pi\)
\(422\) 5628.37 0.649253
\(423\) 4118.45 0.473394
\(424\) −105.453 −0.0120785
\(425\) −9917.15 −1.13189
\(426\) −4042.14 −0.459723
\(427\) 263.789 0.0298962
\(428\) 6855.29 0.774213
\(429\) 969.285 0.109085
\(430\) 1060.97 0.118987
\(431\) 13485.2 1.50710 0.753548 0.657393i \(-0.228341\pi\)
0.753548 + 0.657393i \(0.228341\pi\)
\(432\) −1757.17 −0.195699
\(433\) −2790.51 −0.309708 −0.154854 0.987937i \(-0.549491\pi\)
−0.154854 + 0.987937i \(0.549491\pi\)
\(434\) −3040.50 −0.336287
\(435\) −459.611 −0.0506590
\(436\) −1234.40 −0.135589
\(437\) 328.538 0.0359637
\(438\) −2982.82 −0.325398
\(439\) 9806.47 1.06614 0.533072 0.846070i \(-0.321037\pi\)
0.533072 + 0.846070i \(0.321037\pi\)
\(440\) −391.650 −0.0424345
\(441\) −1076.56 −0.116246
\(442\) −5933.64 −0.638539
\(443\) 420.068 0.0450519 0.0225260 0.999746i \(-0.492829\pi\)
0.0225260 + 0.999746i \(0.492829\pi\)
\(444\) 1705.15 0.182259
\(445\) 5813.21 0.619264
\(446\) −1246.58 −0.132348
\(447\) −999.927 −0.105805
\(448\) 448.000 0.0472456
\(449\) −2320.84 −0.243936 −0.121968 0.992534i \(-0.538920\pi\)
−0.121968 + 0.992534i \(0.538920\pi\)
\(450\) −4872.29 −0.510404
\(451\) 6300.88 0.657864
\(452\) −8640.91 −0.899191
\(453\) −5477.32 −0.568095
\(454\) −7604.72 −0.786139
\(455\) 872.463 0.0898938
\(456\) −256.276 −0.0263185
\(457\) 5158.96 0.528066 0.264033 0.964514i \(-0.414947\pi\)
0.264033 + 0.964514i \(0.414947\pi\)
\(458\) 7947.03 0.810787
\(459\) −9822.45 −0.998851
\(460\) 345.677 0.0350376
\(461\) −5040.74 −0.509263 −0.254632 0.967038i \(-0.581954\pi\)
−0.254632 + 0.967038i \(0.581954\pi\)
\(462\) −409.085 −0.0411956
\(463\) −17474.3 −1.75399 −0.876996 0.480498i \(-0.840456\pi\)
−0.876996 + 0.480498i \(0.840456\pi\)
\(464\) −872.706 −0.0873155
\(465\) 1830.04 0.182507
\(466\) 6450.81 0.641262
\(467\) −3438.75 −0.340742 −0.170371 0.985380i \(-0.554497\pi\)
−0.170371 + 0.985380i \(0.554497\pi\)
\(468\) −2915.19 −0.287938
\(469\) 3208.33 0.315878
\(470\) 1408.66 0.138248
\(471\) 2447.66 0.239453
\(472\) −6624.64 −0.646025
\(473\) −1839.57 −0.178824
\(474\) 5318.46 0.515369
\(475\) −1583.87 −0.152996
\(476\) 2504.28 0.241142
\(477\) −289.609 −0.0277993
\(478\) −8239.92 −0.788462
\(479\) 13432.4 1.28130 0.640648 0.767835i \(-0.278666\pi\)
0.640648 + 0.767835i \(0.278666\pi\)
\(480\) −269.645 −0.0256407
\(481\) 6305.36 0.597712
\(482\) −3484.87 −0.329318
\(483\) 361.065 0.0340146
\(484\) −4644.94 −0.436226
\(485\) −1534.81 −0.143696
\(486\) −7486.45 −0.698750
\(487\) 10444.4 0.971832 0.485916 0.874006i \(-0.338486\pi\)
0.485916 + 0.874006i \(0.338486\pi\)
\(488\) −301.474 −0.0279653
\(489\) 6014.18 0.556177
\(490\) −368.221 −0.0339480
\(491\) 6996.55 0.643075 0.321537 0.946897i \(-0.395800\pi\)
0.321537 + 0.946897i \(0.395800\pi\)
\(492\) 4338.06 0.397509
\(493\) −4878.35 −0.445659
\(494\) −947.663 −0.0863105
\(495\) −1075.60 −0.0976656
\(496\) 3474.86 0.314568
\(497\) 6308.40 0.569357
\(498\) 2723.46 0.245063
\(499\) −9779.42 −0.877329 −0.438664 0.898651i \(-0.644548\pi\)
−0.438664 + 0.898651i \(0.644548\pi\)
\(500\) −3545.18 −0.317090
\(501\) −1902.50 −0.169656
\(502\) 9846.31 0.875423
\(503\) 11581.1 1.02660 0.513298 0.858210i \(-0.328424\pi\)
0.513298 + 0.858210i \(0.328424\pi\)
\(504\) 1230.35 0.108739
\(505\) −726.548 −0.0640217
\(506\) −599.354 −0.0526572
\(507\) −2459.38 −0.215434
\(508\) 284.922 0.0248846
\(509\) −15876.4 −1.38253 −0.691265 0.722601i \(-0.742946\pi\)
−0.691265 + 0.722601i \(0.742946\pi\)
\(510\) −1507.29 −0.130871
\(511\) 4655.16 0.402999
\(512\) −512.000 −0.0441942
\(513\) −1568.75 −0.135013
\(514\) −9434.56 −0.809612
\(515\) 542.570 0.0464243
\(516\) −1266.52 −0.108053
\(517\) −2442.41 −0.207770
\(518\) −2661.17 −0.225724
\(519\) 5971.21 0.505023
\(520\) −997.100 −0.0840879
\(521\) −17634.3 −1.48286 −0.741431 0.671029i \(-0.765852\pi\)
−0.741431 + 0.671029i \(0.765852\pi\)
\(522\) −2396.73 −0.200962
\(523\) −4964.31 −0.415056 −0.207528 0.978229i \(-0.566542\pi\)
−0.207528 + 0.978229i \(0.566542\pi\)
\(524\) −4551.73 −0.379472
\(525\) −1740.68 −0.144704
\(526\) −3622.98 −0.300322
\(527\) 19424.2 1.60556
\(528\) 467.526 0.0385349
\(529\) 529.000 0.0434783
\(530\) −99.0566 −0.00811838
\(531\) −18193.4 −1.48687
\(532\) 399.960 0.0325948
\(533\) 16041.4 1.30362
\(534\) −6939.41 −0.562356
\(535\) 6439.45 0.520377
\(536\) −3666.66 −0.295477
\(537\) −3302.02 −0.265349
\(538\) −6346.03 −0.508544
\(539\) 638.442 0.0510198
\(540\) −1650.58 −0.131537
\(541\) 18581.1 1.47664 0.738320 0.674451i \(-0.235619\pi\)
0.738320 + 0.674451i \(0.235619\pi\)
\(542\) 6633.83 0.525734
\(543\) −4299.26 −0.339777
\(544\) −2862.04 −0.225568
\(545\) −1159.52 −0.0911344
\(546\) −1041.49 −0.0816328
\(547\) −2158.56 −0.168727 −0.0843633 0.996435i \(-0.526886\pi\)
−0.0843633 + 0.996435i \(0.526886\pi\)
\(548\) −10115.5 −0.788524
\(549\) −827.943 −0.0643638
\(550\) 2889.47 0.224013
\(551\) −779.124 −0.0602392
\(552\) −412.646 −0.0318177
\(553\) −8300.31 −0.638273
\(554\) 12922.2 0.990999
\(555\) 1601.72 0.122503
\(556\) −5158.34 −0.393457
\(557\) 13879.0 1.05578 0.527891 0.849312i \(-0.322983\pi\)
0.527891 + 0.849312i \(0.322983\pi\)
\(558\) 9543.08 0.723998
\(559\) −4683.36 −0.354356
\(560\) 420.824 0.0317555
\(561\) 2613.43 0.196683
\(562\) 991.840 0.0744453
\(563\) 2234.36 0.167259 0.0836297 0.996497i \(-0.473349\pi\)
0.0836297 + 0.996497i \(0.473349\pi\)
\(564\) −1681.56 −0.125543
\(565\) −8116.75 −0.604379
\(566\) −1428.62 −0.106094
\(567\) 2428.38 0.179863
\(568\) −7209.60 −0.532585
\(569\) −18285.7 −1.34724 −0.673619 0.739079i \(-0.735261\pi\)
−0.673619 + 0.739079i \(0.735261\pi\)
\(570\) −240.730 −0.0176896
\(571\) 26177.7 1.91857 0.959285 0.282441i \(-0.0911442\pi\)
0.959285 + 0.282441i \(0.0911442\pi\)
\(572\) 1728.83 0.126374
\(573\) 9862.09 0.719014
\(574\) −6770.23 −0.492307
\(575\) −2550.29 −0.184964
\(576\) −1406.12 −0.101716
\(577\) 16737.7 1.20763 0.603814 0.797125i \(-0.293647\pi\)
0.603814 + 0.797125i \(0.293647\pi\)
\(578\) −6172.53 −0.444192
\(579\) −7378.31 −0.529589
\(580\) −819.768 −0.0586880
\(581\) −4250.40 −0.303505
\(582\) 1832.16 0.130490
\(583\) 171.750 0.0122009
\(584\) −5320.19 −0.376971
\(585\) −2738.36 −0.193534
\(586\) 18644.7 1.31434
\(587\) 1162.62 0.0817484 0.0408742 0.999164i \(-0.486986\pi\)
0.0408742 + 0.999164i \(0.486986\pi\)
\(588\) 439.558 0.0308283
\(589\) 3102.24 0.217021
\(590\) −6222.79 −0.434217
\(591\) −1762.07 −0.122643
\(592\) 3041.33 0.211145
\(593\) 14361.5 0.994527 0.497263 0.867600i \(-0.334338\pi\)
0.497263 + 0.867600i \(0.334338\pi\)
\(594\) 2861.87 0.197684
\(595\) 2352.37 0.162080
\(596\) −1783.48 −0.122574
\(597\) −8223.98 −0.563794
\(598\) −1525.89 −0.104345
\(599\) −176.151 −0.0120156 −0.00600780 0.999982i \(-0.501912\pi\)
−0.00600780 + 0.999982i \(0.501912\pi\)
\(600\) 1989.35 0.135358
\(601\) −6123.65 −0.415622 −0.207811 0.978169i \(-0.566634\pi\)
−0.207811 + 0.978169i \(0.566634\pi\)
\(602\) 1976.60 0.133821
\(603\) −10069.8 −0.680059
\(604\) −9769.42 −0.658132
\(605\) −4363.17 −0.293204
\(606\) 867.304 0.0581383
\(607\) 17923.7 1.19852 0.599258 0.800556i \(-0.295462\pi\)
0.599258 + 0.800556i \(0.295462\pi\)
\(608\) −457.097 −0.0304897
\(609\) −856.261 −0.0569744
\(610\) −283.186 −0.0187965
\(611\) −6218.11 −0.411715
\(612\) −7860.07 −0.519157
\(613\) −16185.7 −1.06645 −0.533225 0.845974i \(-0.679020\pi\)
−0.533225 + 0.845974i \(0.679020\pi\)
\(614\) −13272.1 −0.872344
\(615\) 4074.91 0.267181
\(616\) −729.648 −0.0477246
\(617\) −13212.3 −0.862087 −0.431044 0.902331i \(-0.641854\pi\)
−0.431044 + 0.902331i \(0.641854\pi\)
\(618\) −647.684 −0.0421580
\(619\) −12509.8 −0.812296 −0.406148 0.913807i \(-0.633128\pi\)
−0.406148 + 0.913807i \(0.633128\pi\)
\(620\) 3264.07 0.211433
\(621\) −2525.94 −0.163224
\(622\) 7951.48 0.512581
\(623\) 10830.1 0.696465
\(624\) 1190.27 0.0763605
\(625\) 10530.2 0.673930
\(626\) 8862.20 0.565822
\(627\) 417.391 0.0265853
\(628\) 4365.68 0.277404
\(629\) 17000.8 1.07769
\(630\) 1155.72 0.0730872
\(631\) 10569.8 0.666840 0.333420 0.942778i \(-0.391797\pi\)
0.333420 + 0.942778i \(0.391797\pi\)
\(632\) 9486.07 0.597050
\(633\) −6311.21 −0.396284
\(634\) −10871.3 −0.680998
\(635\) 267.638 0.0167258
\(636\) 118.247 0.00737233
\(637\) 1625.41 0.101100
\(638\) 1421.36 0.0882009
\(639\) −19799.9 −1.22578
\(640\) −480.942 −0.0297045
\(641\) 6255.30 0.385444 0.192722 0.981253i \(-0.438268\pi\)
0.192722 + 0.981253i \(0.438268\pi\)
\(642\) −7686.98 −0.472556
\(643\) 16065.9 0.985347 0.492673 0.870214i \(-0.336020\pi\)
0.492673 + 0.870214i \(0.336020\pi\)
\(644\) 644.000 0.0394055
\(645\) −1189.69 −0.0726263
\(646\) −2555.13 −0.155620
\(647\) −6775.52 −0.411705 −0.205853 0.978583i \(-0.565997\pi\)
−0.205853 + 0.978583i \(0.565997\pi\)
\(648\) −2775.29 −0.168246
\(649\) 10789.4 0.652576
\(650\) 7356.28 0.443903
\(651\) 3409.38 0.205260
\(652\) 10727.0 0.644325
\(653\) 27296.8 1.63584 0.817922 0.575329i \(-0.195126\pi\)
0.817922 + 0.575329i \(0.195126\pi\)
\(654\) 1384.15 0.0827594
\(655\) −4275.62 −0.255057
\(656\) 7737.41 0.460511
\(657\) −14610.9 −0.867621
\(658\) 2624.34 0.155482
\(659\) −30855.2 −1.82390 −0.911948 0.410307i \(-0.865422\pi\)
−0.911948 + 0.410307i \(0.865422\pi\)
\(660\) 439.165 0.0259007
\(661\) 20147.1 1.18552 0.592762 0.805378i \(-0.298038\pi\)
0.592762 + 0.805378i \(0.298038\pi\)
\(662\) 11174.5 0.656055
\(663\) 6653.51 0.389745
\(664\) 4857.60 0.283903
\(665\) 375.698 0.0219082
\(666\) 8352.47 0.485964
\(667\) −1254.52 −0.0728261
\(668\) −3393.33 −0.196545
\(669\) 1397.81 0.0807811
\(670\) −3444.24 −0.198601
\(671\) 491.004 0.0282489
\(672\) −502.352 −0.0288372
\(673\) −7360.51 −0.421585 −0.210792 0.977531i \(-0.567604\pi\)
−0.210792 + 0.977531i \(0.567604\pi\)
\(674\) −1267.33 −0.0724267
\(675\) 12177.5 0.694386
\(676\) −4386.59 −0.249578
\(677\) −26322.8 −1.49434 −0.747169 0.664634i \(-0.768588\pi\)
−0.747169 + 0.664634i \(0.768588\pi\)
\(678\) 9689.23 0.548839
\(679\) −2859.38 −0.161609
\(680\) −2688.42 −0.151612
\(681\) 8527.32 0.479835
\(682\) −5659.43 −0.317758
\(683\) −1139.72 −0.0638509 −0.0319255 0.999490i \(-0.510164\pi\)
−0.0319255 + 0.999490i \(0.510164\pi\)
\(684\) −1255.33 −0.0701738
\(685\) −9501.86 −0.529996
\(686\) −686.000 −0.0381802
\(687\) −8911.17 −0.494880
\(688\) −2258.97 −0.125178
\(689\) 437.257 0.0241773
\(690\) −387.615 −0.0213859
\(691\) 5132.22 0.282545 0.141273 0.989971i \(-0.454881\pi\)
0.141273 + 0.989971i \(0.454881\pi\)
\(692\) 10650.3 0.585064
\(693\) −2003.85 −0.109841
\(694\) −17491.6 −0.956734
\(695\) −4845.43 −0.264457
\(696\) 978.584 0.0532947
\(697\) 43251.4 2.35045
\(698\) 21865.9 1.18573
\(699\) −7233.43 −0.391407
\(700\) −3104.70 −0.167638
\(701\) 18308.7 0.986462 0.493231 0.869898i \(-0.335816\pi\)
0.493231 + 0.869898i \(0.335816\pi\)
\(702\) 7286.03 0.391729
\(703\) 2715.20 0.145670
\(704\) 833.884 0.0446423
\(705\) −1579.55 −0.0843822
\(706\) 14772.5 0.787495
\(707\) −1353.57 −0.0720030
\(708\) 7428.35 0.394314
\(709\) 6698.80 0.354836 0.177418 0.984136i \(-0.443226\pi\)
0.177418 + 0.984136i \(0.443226\pi\)
\(710\) −6772.27 −0.357970
\(711\) 26051.8 1.37415
\(712\) −12377.2 −0.651483
\(713\) 4995.11 0.262368
\(714\) −2808.10 −0.147186
\(715\) 1623.96 0.0849406
\(716\) −5889.51 −0.307404
\(717\) 9239.59 0.481253
\(718\) −18517.3 −0.962479
\(719\) −5195.31 −0.269475 −0.134737 0.990881i \(-0.543019\pi\)
−0.134737 + 0.990881i \(0.543019\pi\)
\(720\) −1320.82 −0.0683668
\(721\) 1010.81 0.0522118
\(722\) 13309.9 0.686072
\(723\) 3907.65 0.201006
\(724\) −7668.21 −0.393628
\(725\) 6047.98 0.309816
\(726\) 5208.46 0.266259
\(727\) 20053.2 1.02302 0.511509 0.859278i \(-0.329087\pi\)
0.511509 + 0.859278i \(0.329087\pi\)
\(728\) −1857.61 −0.0945708
\(729\) −971.878 −0.0493765
\(730\) −4997.46 −0.253376
\(731\) −12627.5 −0.638911
\(732\) 338.048 0.0170692
\(733\) −1125.01 −0.0566893 −0.0283446 0.999598i \(-0.509024\pi\)
−0.0283446 + 0.999598i \(0.509024\pi\)
\(734\) −2933.02 −0.147493
\(735\) 412.894 0.0207208
\(736\) −736.000 −0.0368605
\(737\) 5971.82 0.298473
\(738\) 21249.4 1.05989
\(739\) 5866.92 0.292041 0.146020 0.989282i \(-0.453353\pi\)
0.146020 + 0.989282i \(0.453353\pi\)
\(740\) 2856.84 0.141919
\(741\) 1062.63 0.0526813
\(742\) −184.543 −0.00913046
\(743\) −194.632 −0.00961019 −0.00480510 0.999988i \(-0.501530\pi\)
−0.00480510 + 0.999988i \(0.501530\pi\)
\(744\) −3896.43 −0.192003
\(745\) −1675.30 −0.0823867
\(746\) −1190.36 −0.0584210
\(747\) 13340.5 0.653420
\(748\) 4661.34 0.227855
\(749\) 11996.8 0.585250
\(750\) 3975.28 0.193542
\(751\) −16766.6 −0.814675 −0.407338 0.913278i \(-0.633543\pi\)
−0.407338 + 0.913278i \(0.633543\pi\)
\(752\) −2999.25 −0.145440
\(753\) −11040.9 −0.534332
\(754\) 3618.63 0.174778
\(755\) −9176.80 −0.442355
\(756\) −3075.05 −0.147935
\(757\) 30799.2 1.47875 0.739376 0.673293i \(-0.235121\pi\)
0.739376 + 0.673293i \(0.235121\pi\)
\(758\) −28101.3 −1.34655
\(759\) 672.068 0.0321403
\(760\) −429.369 −0.0204932
\(761\) 16533.7 0.787575 0.393787 0.919202i \(-0.371165\pi\)
0.393787 + 0.919202i \(0.371165\pi\)
\(762\) −319.489 −0.0151888
\(763\) −2160.19 −0.102496
\(764\) 17590.1 0.832970
\(765\) −7383.27 −0.348945
\(766\) 1077.22 0.0508116
\(767\) 27468.7 1.29314
\(768\) 574.116 0.0269748
\(769\) −11711.7 −0.549198 −0.274599 0.961559i \(-0.588545\pi\)
−0.274599 + 0.961559i \(0.588545\pi\)
\(770\) −685.388 −0.0320775
\(771\) 10579.2 0.494163
\(772\) −13160.0 −0.613523
\(773\) 34203.9 1.59150 0.795750 0.605625i \(-0.207077\pi\)
0.795750 + 0.605625i \(0.207077\pi\)
\(774\) −6203.87 −0.288105
\(775\) −24081.3 −1.11616
\(776\) 3267.86 0.151172
\(777\) 2984.02 0.137775
\(778\) 7614.36 0.350885
\(779\) 6907.70 0.317707
\(780\) 1118.07 0.0513247
\(781\) 11742.1 0.537985
\(782\) −4114.18 −0.188136
\(783\) 5990.22 0.273401
\(784\) 784.000 0.0357143
\(785\) 4100.86 0.186453
\(786\) 5103.95 0.231618
\(787\) 11099.7 0.502746 0.251373 0.967890i \(-0.419118\pi\)
0.251373 + 0.967890i \(0.419118\pi\)
\(788\) −3142.85 −0.142080
\(789\) 4062.52 0.183307
\(790\) 8910.64 0.401299
\(791\) −15121.6 −0.679724
\(792\) 2290.11 0.102747
\(793\) 1250.04 0.0559778
\(794\) 8914.84 0.398458
\(795\) 111.074 0.00495521
\(796\) −14668.4 −0.653149
\(797\) −37944.9 −1.68642 −0.843211 0.537583i \(-0.819337\pi\)
−0.843211 + 0.537583i \(0.819337\pi\)
\(798\) −448.483 −0.0198949
\(799\) −16765.5 −0.742330
\(800\) 3548.23 0.156811
\(801\) −33991.8 −1.49943
\(802\) −11898.0 −0.523856
\(803\) 8664.88 0.380793
\(804\) 4111.51 0.180350
\(805\) 604.935 0.0264859
\(806\) −14408.3 −0.629667
\(807\) 7115.93 0.310400
\(808\) 1546.93 0.0673526
\(809\) −6105.90 −0.265355 −0.132677 0.991159i \(-0.542357\pi\)
−0.132677 + 0.991159i \(0.542357\pi\)
\(810\) −2606.94 −0.113084
\(811\) 346.069 0.0149841 0.00749207 0.999972i \(-0.497615\pi\)
0.00749207 + 0.999972i \(0.497615\pi\)
\(812\) −1527.24 −0.0660043
\(813\) −7438.65 −0.320892
\(814\) −4953.36 −0.213286
\(815\) 10076.3 0.433075
\(816\) 3209.26 0.137680
\(817\) −2016.74 −0.0863607
\(818\) 20732.8 0.886194
\(819\) −5101.59 −0.217660
\(820\) 7268.05 0.309526
\(821\) −27513.2 −1.16957 −0.584786 0.811188i \(-0.698821\pi\)
−0.584786 + 0.811188i \(0.698821\pi\)
\(822\) 11342.7 0.481291
\(823\) 130.449 0.00552510 0.00276255 0.999996i \(-0.499121\pi\)
0.00276255 + 0.999996i \(0.499121\pi\)
\(824\) −1155.22 −0.0488396
\(825\) −3240.02 −0.136731
\(826\) −11593.1 −0.488349
\(827\) −25203.0 −1.05973 −0.529863 0.848083i \(-0.677757\pi\)
−0.529863 + 0.848083i \(0.677757\pi\)
\(828\) −2021.29 −0.0848366
\(829\) −22862.7 −0.957848 −0.478924 0.877857i \(-0.658973\pi\)
−0.478924 + 0.877857i \(0.658973\pi\)
\(830\) 4562.94 0.190822
\(831\) −14490.0 −0.604875
\(832\) 2122.98 0.0884629
\(833\) 4382.49 0.182286
\(834\) 5784.15 0.240154
\(835\) −3187.49 −0.132105
\(836\) 744.464 0.0307988
\(837\) −23851.3 −0.984972
\(838\) 24245.6 0.999465
\(839\) −10880.7 −0.447727 −0.223863 0.974621i \(-0.571867\pi\)
−0.223863 + 0.974621i \(0.571867\pi\)
\(840\) −471.879 −0.0193826
\(841\) −21413.9 −0.878016
\(842\) 1514.34 0.0619804
\(843\) −1112.17 −0.0454391
\(844\) −11256.7 −0.459091
\(845\) −4120.50 −0.167751
\(846\) −8236.89 −0.334740
\(847\) −8128.64 −0.329756
\(848\) 210.907 0.00854077
\(849\) 1601.94 0.0647567
\(850\) 19834.3 0.800366
\(851\) 4371.92 0.176107
\(852\) 8084.27 0.325073
\(853\) 42963.5 1.72455 0.862275 0.506440i \(-0.169039\pi\)
0.862275 + 0.506440i \(0.169039\pi\)
\(854\) −527.579 −0.0211398
\(855\) −1179.19 −0.0471664
\(856\) −13710.6 −0.547451
\(857\) 17543.8 0.699284 0.349642 0.936883i \(-0.386303\pi\)
0.349642 + 0.936883i \(0.386303\pi\)
\(858\) −1938.57 −0.0771348
\(859\) −34293.4 −1.36214 −0.681068 0.732220i \(-0.738484\pi\)
−0.681068 + 0.732220i \(0.738484\pi\)
\(860\) −2121.94 −0.0841368
\(861\) 7591.60 0.300489
\(862\) −26970.4 −1.06568
\(863\) 5445.15 0.214780 0.107390 0.994217i \(-0.465751\pi\)
0.107390 + 0.994217i \(0.465751\pi\)
\(864\) 3514.35 0.138380
\(865\) 10004.3 0.393243
\(866\) 5581.02 0.218996
\(867\) 6921.38 0.271122
\(868\) 6081.00 0.237791
\(869\) −15449.8 −0.603104
\(870\) 919.222 0.0358213
\(871\) 15203.6 0.591453
\(872\) 2468.79 0.0958759
\(873\) 8974.59 0.347931
\(874\) −657.076 −0.0254301
\(875\) −6204.06 −0.239698
\(876\) 5965.64 0.230091
\(877\) −36247.6 −1.39566 −0.697830 0.716264i \(-0.745851\pi\)
−0.697830 + 0.716264i \(0.745851\pi\)
\(878\) −19612.9 −0.753878
\(879\) −20906.6 −0.802234
\(880\) 783.300 0.0300057
\(881\) 17847.1 0.682503 0.341251 0.939972i \(-0.389149\pi\)
0.341251 + 0.939972i \(0.389149\pi\)
\(882\) 2153.12 0.0821986
\(883\) −27180.9 −1.03591 −0.517956 0.855407i \(-0.673307\pi\)
−0.517956 + 0.855407i \(0.673307\pi\)
\(884\) 11867.3 0.451515
\(885\) 6977.74 0.265033
\(886\) −840.135 −0.0318565
\(887\) −16712.3 −0.632631 −0.316315 0.948654i \(-0.602446\pi\)
−0.316315 + 0.948654i \(0.602446\pi\)
\(888\) −3410.31 −0.128877
\(889\) 498.613 0.0188110
\(890\) −11626.4 −0.437886
\(891\) 4520.05 0.169952
\(892\) 2493.16 0.0935841
\(893\) −2677.63 −0.100340
\(894\) 1999.85 0.0748156
\(895\) −5532.25 −0.206618
\(896\) −896.000 −0.0334077
\(897\) 1711.01 0.0636891
\(898\) 4641.68 0.172489
\(899\) −11845.8 −0.439467
\(900\) 9744.58 0.360910
\(901\) 1178.95 0.0435922
\(902\) −12601.8 −0.465180
\(903\) −2216.40 −0.0816803
\(904\) 17281.8 0.635824
\(905\) −7203.06 −0.264572
\(906\) 10954.6 0.401704
\(907\) −52905.3 −1.93681 −0.968407 0.249373i \(-0.919775\pi\)
−0.968407 + 0.249373i \(0.919775\pi\)
\(908\) 15209.4 0.555884
\(909\) 4248.37 0.155016
\(910\) −1744.93 −0.0635645
\(911\) 16730.8 0.608469 0.304234 0.952597i \(-0.401599\pi\)
0.304234 + 0.952597i \(0.401599\pi\)
\(912\) 512.552 0.0186100
\(913\) −7911.48 −0.286782
\(914\) −10317.9 −0.373399
\(915\) 317.542 0.0114728
\(916\) −15894.1 −0.573313
\(917\) −7965.53 −0.286854
\(918\) 19644.9 0.706294
\(919\) −2823.14 −0.101335 −0.0506674 0.998716i \(-0.516135\pi\)
−0.0506674 + 0.998716i \(0.516135\pi\)
\(920\) −691.354 −0.0247753
\(921\) 14882.3 0.532452
\(922\) 10081.5 0.360104
\(923\) 29894.2 1.06607
\(924\) 818.170 0.0291297
\(925\) −21076.9 −0.749192
\(926\) 34948.5 1.24026
\(927\) −3172.59 −0.112407
\(928\) 1745.41 0.0617414
\(929\) −37470.3 −1.32332 −0.661659 0.749805i \(-0.730147\pi\)
−0.661659 + 0.749805i \(0.730147\pi\)
\(930\) −3660.07 −0.129052
\(931\) 699.929 0.0246394
\(932\) −12901.6 −0.453441
\(933\) −8916.15 −0.312864
\(934\) 6877.50 0.240941
\(935\) 4378.58 0.153150
\(936\) 5830.38 0.203603
\(937\) 3006.81 0.104833 0.0524164 0.998625i \(-0.483308\pi\)
0.0524164 + 0.998625i \(0.483308\pi\)
\(938\) −6416.66 −0.223360
\(939\) −9937.36 −0.345361
\(940\) −2817.31 −0.0977559
\(941\) 20759.1 0.719159 0.359580 0.933114i \(-0.382920\pi\)
0.359580 + 0.933114i \(0.382920\pi\)
\(942\) −4895.33 −0.169319
\(943\) 11122.5 0.384092
\(944\) 13249.3 0.456809
\(945\) −2888.52 −0.0994324
\(946\) 3679.14 0.126447
\(947\) −43409.2 −1.48955 −0.744777 0.667313i \(-0.767444\pi\)
−0.744777 + 0.667313i \(0.767444\pi\)
\(948\) −10636.9 −0.364421
\(949\) 22059.9 0.754577
\(950\) 3167.74 0.108184
\(951\) 12190.2 0.415661
\(952\) −5008.56 −0.170513
\(953\) −15885.0 −0.539941 −0.269971 0.962869i \(-0.587014\pi\)
−0.269971 + 0.962869i \(0.587014\pi\)
\(954\) 579.218 0.0196571
\(955\) 16523.1 0.559870
\(956\) 16479.8 0.557527
\(957\) −1593.80 −0.0538351
\(958\) −26864.8 −0.906013
\(959\) −17702.1 −0.596068
\(960\) 539.290 0.0181307
\(961\) 17375.6 0.583250
\(962\) −12610.7 −0.422647
\(963\) −37653.7 −1.25999
\(964\) 6969.74 0.232863
\(965\) −12361.7 −0.412372
\(966\) −722.130 −0.0240519
\(967\) −22766.1 −0.757094 −0.378547 0.925582i \(-0.623576\pi\)
−0.378547 + 0.925582i \(0.623576\pi\)
\(968\) 9289.87 0.308458
\(969\) 2865.12 0.0949855
\(970\) 3069.63 0.101608
\(971\) −18733.2 −0.619131 −0.309566 0.950878i \(-0.600184\pi\)
−0.309566 + 0.950878i \(0.600184\pi\)
\(972\) 14972.9 0.494091
\(973\) −9027.09 −0.297426
\(974\) −20888.9 −0.687189
\(975\) −8248.74 −0.270945
\(976\) 602.947 0.0197745
\(977\) −867.359 −0.0284025 −0.0142013 0.999899i \(-0.504521\pi\)
−0.0142013 + 0.999899i \(0.504521\pi\)
\(978\) −12028.4 −0.393277
\(979\) 20158.5 0.658089
\(980\) 736.442 0.0240049
\(981\) 6780.09 0.220664
\(982\) −13993.1 −0.454723
\(983\) −15279.8 −0.495780 −0.247890 0.968788i \(-0.579737\pi\)
−0.247890 + 0.968788i \(0.579737\pi\)
\(984\) −8676.11 −0.281082
\(985\) −2952.20 −0.0954975
\(986\) 9756.71 0.315129
\(987\) −2942.73 −0.0949017
\(988\) 1895.33 0.0610308
\(989\) −3247.27 −0.104406
\(990\) 2151.19 0.0690600
\(991\) −763.971 −0.0244887 −0.0122444 0.999925i \(-0.503898\pi\)
−0.0122444 + 0.999925i \(0.503898\pi\)
\(992\) −6949.72 −0.222433
\(993\) −12530.2 −0.400436
\(994\) −12616.8 −0.402596
\(995\) −13778.6 −0.439006
\(996\) −5446.93 −0.173286
\(997\) 45215.8 1.43631 0.718154 0.695884i \(-0.244987\pi\)
0.718154 + 0.695884i \(0.244987\pi\)
\(998\) 19558.8 0.620365
\(999\) −20875.6 −0.661135
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 322.4.a.a.1.2 2
7.6 odd 2 2254.4.a.e.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.a.a.1.2 2 1.1 even 1 trivial
2254.4.a.e.1.1 2 7.6 odd 2