Properties

Label 322.4.a.a.1.1
Level $322$
Weight $4$
Character 322.1
Self dual yes
Analytic conductor $18.999$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,4,Mod(1,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9986150218\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 322.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -6.24264 q^{3} +4.00000 q^{4} +12.2426 q^{5} +12.4853 q^{6} +7.00000 q^{7} -8.00000 q^{8} +11.9706 q^{9} -24.4853 q^{10} +46.9706 q^{11} -24.9706 q^{12} +38.8284 q^{13} -14.0000 q^{14} -76.4264 q^{15} +16.0000 q^{16} -77.4386 q^{17} -23.9411 q^{18} -42.2843 q^{19} +48.9706 q^{20} -43.6985 q^{21} -93.9411 q^{22} +23.0000 q^{23} +49.9411 q^{24} +24.8823 q^{25} -77.6569 q^{26} +93.8234 q^{27} +28.0000 q^{28} -105.456 q^{29} +152.853 q^{30} -57.1787 q^{31} -32.0000 q^{32} -293.220 q^{33} +154.877 q^{34} +85.6985 q^{35} +47.8823 q^{36} +93.9167 q^{37} +84.5685 q^{38} -242.392 q^{39} -97.9411 q^{40} +8.41212 q^{41} +87.3970 q^{42} +413.186 q^{43} +187.882 q^{44} +146.551 q^{45} -46.0000 q^{46} +539.453 q^{47} -99.8823 q^{48} +49.0000 q^{49} -49.7645 q^{50} +483.421 q^{51} +155.314 q^{52} +414.818 q^{53} -187.647 q^{54} +575.044 q^{55} -56.0000 q^{56} +263.966 q^{57} +210.912 q^{58} +55.9197 q^{59} -305.706 q^{60} +538.316 q^{61} +114.357 q^{62} +83.7939 q^{63} +64.0000 q^{64} +475.362 q^{65} +586.441 q^{66} +73.6670 q^{67} -309.754 q^{68} -143.581 q^{69} -171.397 q^{70} -213.200 q^{71} -95.7645 q^{72} -653.024 q^{73} -187.833 q^{74} -155.331 q^{75} -169.137 q^{76} +328.794 q^{77} +484.784 q^{78} +437.759 q^{79} +195.882 q^{80} -908.911 q^{81} -16.8242 q^{82} +507.200 q^{83} -174.794 q^{84} -948.053 q^{85} -826.372 q^{86} +658.323 q^{87} -375.765 q^{88} -871.153 q^{89} -293.103 q^{90} +271.799 q^{91} +92.0000 q^{92} +356.946 q^{93} -1078.91 q^{94} -517.671 q^{95} +199.765 q^{96} +284.482 q^{97} -98.0000 q^{98} +562.264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 4 q^{3} + 8 q^{4} + 16 q^{5} + 8 q^{6} + 14 q^{7} - 16 q^{8} - 10 q^{9} - 32 q^{10} + 60 q^{11} - 16 q^{12} + 72 q^{13} - 28 q^{14} - 68 q^{15} + 32 q^{16} + 12 q^{17} + 20 q^{18} - 28 q^{19}+ \cdots + 276 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −6.24264 −1.20140 −0.600698 0.799476i \(-0.705111\pi\)
−0.600698 + 0.799476i \(0.705111\pi\)
\(4\) 4.00000 0.500000
\(5\) 12.2426 1.09502 0.547508 0.836801i \(-0.315577\pi\)
0.547508 + 0.836801i \(0.315577\pi\)
\(6\) 12.4853 0.849516
\(7\) 7.00000 0.377964
\(8\) −8.00000 −0.353553
\(9\) 11.9706 0.443354
\(10\) −24.4853 −0.774293
\(11\) 46.9706 1.28747 0.643734 0.765249i \(-0.277384\pi\)
0.643734 + 0.765249i \(0.277384\pi\)
\(12\) −24.9706 −0.600698
\(13\) 38.8284 0.828390 0.414195 0.910188i \(-0.364063\pi\)
0.414195 + 0.910188i \(0.364063\pi\)
\(14\) −14.0000 −0.267261
\(15\) −76.4264 −1.31555
\(16\) 16.0000 0.250000
\(17\) −77.4386 −1.10480 −0.552401 0.833579i \(-0.686288\pi\)
−0.552401 + 0.833579i \(0.686288\pi\)
\(18\) −23.9411 −0.313499
\(19\) −42.2843 −0.510562 −0.255281 0.966867i \(-0.582168\pi\)
−0.255281 + 0.966867i \(0.582168\pi\)
\(20\) 48.9706 0.547508
\(21\) −43.6985 −0.454085
\(22\) −93.9411 −0.910378
\(23\) 23.0000 0.208514
\(24\) 49.9411 0.424758
\(25\) 24.8823 0.199058
\(26\) −77.6569 −0.585760
\(27\) 93.8234 0.668752
\(28\) 28.0000 0.188982
\(29\) −105.456 −0.675264 −0.337632 0.941278i \(-0.609626\pi\)
−0.337632 + 0.941278i \(0.609626\pi\)
\(30\) 152.853 0.930233
\(31\) −57.1787 −0.331277 −0.165639 0.986187i \(-0.552969\pi\)
−0.165639 + 0.986187i \(0.552969\pi\)
\(32\) −32.0000 −0.176777
\(33\) −293.220 −1.54676
\(34\) 154.877 0.781212
\(35\) 85.6985 0.413877
\(36\) 47.8823 0.221677
\(37\) 93.9167 0.417292 0.208646 0.977991i \(-0.433094\pi\)
0.208646 + 0.977991i \(0.433094\pi\)
\(38\) 84.5685 0.361022
\(39\) −242.392 −0.995225
\(40\) −97.9411 −0.387146
\(41\) 8.41212 0.0320427 0.0160214 0.999872i \(-0.494900\pi\)
0.0160214 + 0.999872i \(0.494900\pi\)
\(42\) 87.3970 0.321087
\(43\) 413.186 1.46535 0.732677 0.680576i \(-0.238270\pi\)
0.732677 + 0.680576i \(0.238270\pi\)
\(44\) 187.882 0.643734
\(45\) 146.551 0.485480
\(46\) −46.0000 −0.147442
\(47\) 539.453 1.67420 0.837099 0.547052i \(-0.184250\pi\)
0.837099 + 0.547052i \(0.184250\pi\)
\(48\) −99.8823 −0.300349
\(49\) 49.0000 0.142857
\(50\) −49.7645 −0.140755
\(51\) 483.421 1.32730
\(52\) 155.314 0.414195
\(53\) 414.818 1.07509 0.537544 0.843236i \(-0.319352\pi\)
0.537544 + 0.843236i \(0.319352\pi\)
\(54\) −187.647 −0.472879
\(55\) 575.044 1.40980
\(56\) −56.0000 −0.133631
\(57\) 263.966 0.613387
\(58\) 210.912 0.477484
\(59\) 55.9197 0.123392 0.0616960 0.998095i \(-0.480349\pi\)
0.0616960 + 0.998095i \(0.480349\pi\)
\(60\) −305.706 −0.657774
\(61\) 538.316 1.12991 0.564953 0.825123i \(-0.308894\pi\)
0.564953 + 0.825123i \(0.308894\pi\)
\(62\) 114.357 0.234249
\(63\) 83.7939 0.167572
\(64\) 64.0000 0.125000
\(65\) 475.362 0.907099
\(66\) 586.441 1.09373
\(67\) 73.6670 0.134326 0.0671631 0.997742i \(-0.478605\pi\)
0.0671631 + 0.997742i \(0.478605\pi\)
\(68\) −309.754 −0.552401
\(69\) −143.581 −0.250509
\(70\) −171.397 −0.292655
\(71\) −213.200 −0.356369 −0.178185 0.983997i \(-0.557022\pi\)
−0.178185 + 0.983997i \(0.557022\pi\)
\(72\) −95.7645 −0.156749
\(73\) −653.024 −1.04699 −0.523497 0.852027i \(-0.675373\pi\)
−0.523497 + 0.852027i \(0.675373\pi\)
\(74\) −187.833 −0.295070
\(75\) −155.331 −0.239148
\(76\) −169.137 −0.255281
\(77\) 328.794 0.486617
\(78\) 484.784 0.703730
\(79\) 437.759 0.623439 0.311720 0.950174i \(-0.399095\pi\)
0.311720 + 0.950174i \(0.399095\pi\)
\(80\) 195.882 0.273754
\(81\) −908.911 −1.24679
\(82\) −16.8242 −0.0226576
\(83\) 507.200 0.670752 0.335376 0.942084i \(-0.391137\pi\)
0.335376 + 0.942084i \(0.391137\pi\)
\(84\) −174.794 −0.227043
\(85\) −948.053 −1.20977
\(86\) −826.372 −1.03616
\(87\) 658.323 0.811260
\(88\) −375.765 −0.455189
\(89\) −871.153 −1.03755 −0.518775 0.854911i \(-0.673612\pi\)
−0.518775 + 0.854911i \(0.673612\pi\)
\(90\) −293.103 −0.343286
\(91\) 271.799 0.313102
\(92\) 92.0000 0.104257
\(93\) 356.946 0.397996
\(94\) −1078.91 −1.18384
\(95\) −517.671 −0.559073
\(96\) 199.765 0.212379
\(97\) 284.482 0.297781 0.148891 0.988854i \(-0.452430\pi\)
0.148891 + 0.988854i \(0.452430\pi\)
\(98\) −98.0000 −0.101015
\(99\) 562.264 0.570805
\(100\) 99.5290 0.0995290
\(101\) 1113.37 1.09687 0.548436 0.836192i \(-0.315223\pi\)
0.548436 + 0.836192i \(0.315223\pi\)
\(102\) −966.843 −0.938546
\(103\) 223.598 0.213901 0.106950 0.994264i \(-0.465891\pi\)
0.106950 + 0.994264i \(0.465891\pi\)
\(104\) −310.627 −0.292880
\(105\) −534.985 −0.497230
\(106\) −829.637 −0.760202
\(107\) 1510.18 1.36443 0.682216 0.731150i \(-0.261016\pi\)
0.682216 + 0.731150i \(0.261016\pi\)
\(108\) 375.294 0.334376
\(109\) −1383.40 −1.21565 −0.607825 0.794071i \(-0.707958\pi\)
−0.607825 + 0.794071i \(0.707958\pi\)
\(110\) −1150.09 −0.996878
\(111\) −586.288 −0.501334
\(112\) 112.000 0.0944911
\(113\) 1228.23 1.02250 0.511248 0.859433i \(-0.329184\pi\)
0.511248 + 0.859433i \(0.329184\pi\)
\(114\) −527.931 −0.433730
\(115\) 281.581 0.228326
\(116\) −421.823 −0.337632
\(117\) 464.798 0.367270
\(118\) −111.839 −0.0872513
\(119\) −542.070 −0.417576
\(120\) 611.411 0.465116
\(121\) 875.234 0.657576
\(122\) −1076.63 −0.798964
\(123\) −52.5139 −0.0384961
\(124\) −228.715 −0.165639
\(125\) −1225.71 −0.877044
\(126\) −167.588 −0.118491
\(127\) 144.770 0.101151 0.0505757 0.998720i \(-0.483894\pi\)
0.0505757 + 0.998720i \(0.483894\pi\)
\(128\) −128.000 −0.0883883
\(129\) −2579.37 −1.76047
\(130\) −950.725 −0.641416
\(131\) 957.932 0.638893 0.319446 0.947604i \(-0.396503\pi\)
0.319446 + 0.947604i \(0.396503\pi\)
\(132\) −1172.88 −0.773380
\(133\) −295.990 −0.192974
\(134\) −147.334 −0.0949829
\(135\) 1148.65 0.732294
\(136\) 619.509 0.390606
\(137\) 508.865 0.317338 0.158669 0.987332i \(-0.449280\pi\)
0.158669 + 0.987332i \(0.449280\pi\)
\(138\) 287.161 0.177136
\(139\) −138.415 −0.0844620 −0.0422310 0.999108i \(-0.513447\pi\)
−0.0422310 + 0.999108i \(0.513447\pi\)
\(140\) 342.794 0.206938
\(141\) −3367.61 −2.01138
\(142\) 426.400 0.251991
\(143\) 1823.79 1.06653
\(144\) 191.529 0.110839
\(145\) −1291.06 −0.739424
\(146\) 1306.05 0.740337
\(147\) −305.889 −0.171628
\(148\) 375.667 0.208646
\(149\) 2393.87 1.31620 0.658099 0.752931i \(-0.271361\pi\)
0.658099 + 0.752931i \(0.271361\pi\)
\(150\) 310.662 0.169103
\(151\) 2722.35 1.46717 0.733583 0.679600i \(-0.237847\pi\)
0.733583 + 0.679600i \(0.237847\pi\)
\(152\) 338.274 0.180511
\(153\) −926.984 −0.489818
\(154\) −657.588 −0.344091
\(155\) −700.018 −0.362754
\(156\) −969.568 −0.497612
\(157\) −3131.42 −1.59181 −0.795906 0.605420i \(-0.793005\pi\)
−0.795906 + 0.605420i \(0.793005\pi\)
\(158\) −875.517 −0.440838
\(159\) −2589.56 −1.29161
\(160\) −391.765 −0.193573
\(161\) 161.000 0.0788110
\(162\) 1817.82 0.881615
\(163\) 2574.26 1.23700 0.618502 0.785783i \(-0.287740\pi\)
0.618502 + 0.785783i \(0.287740\pi\)
\(164\) 33.6485 0.0160214
\(165\) −3589.79 −1.69373
\(166\) −1014.40 −0.474294
\(167\) −2095.67 −0.971064 −0.485532 0.874219i \(-0.661374\pi\)
−0.485532 + 0.874219i \(0.661374\pi\)
\(168\) 349.588 0.160543
\(169\) −689.353 −0.313770
\(170\) 1896.11 0.855439
\(171\) −506.167 −0.226360
\(172\) 1652.74 0.732677
\(173\) 2945.42 1.29443 0.647215 0.762308i \(-0.275934\pi\)
0.647215 + 0.762308i \(0.275934\pi\)
\(174\) −1316.65 −0.573648
\(175\) 174.176 0.0752369
\(176\) 751.529 0.321867
\(177\) −349.087 −0.148243
\(178\) 1742.31 0.733659
\(179\) 3856.38 1.61028 0.805138 0.593088i \(-0.202091\pi\)
0.805138 + 0.593088i \(0.202091\pi\)
\(180\) 586.205 0.242740
\(181\) −3418.95 −1.40402 −0.702012 0.712165i \(-0.747715\pi\)
−0.702012 + 0.712165i \(0.747715\pi\)
\(182\) −543.598 −0.221397
\(183\) −3360.51 −1.35747
\(184\) −184.000 −0.0737210
\(185\) 1149.79 0.456941
\(186\) −713.892 −0.281425
\(187\) −3637.33 −1.42240
\(188\) 2157.81 0.837099
\(189\) 656.764 0.252765
\(190\) 1035.34 0.395324
\(191\) −365.536 −0.138478 −0.0692388 0.997600i \(-0.522057\pi\)
−0.0692388 + 0.997600i \(0.522057\pi\)
\(192\) −399.529 −0.150175
\(193\) −1377.99 −0.513938 −0.256969 0.966420i \(-0.582724\pi\)
−0.256969 + 0.966420i \(0.582724\pi\)
\(194\) −568.965 −0.210563
\(195\) −2967.52 −1.08979
\(196\) 196.000 0.0714286
\(197\) 3773.71 1.36480 0.682401 0.730978i \(-0.260936\pi\)
0.682401 + 0.730978i \(0.260936\pi\)
\(198\) −1124.53 −0.403620
\(199\) 451.095 0.160690 0.0803449 0.996767i \(-0.474398\pi\)
0.0803449 + 0.996767i \(0.474398\pi\)
\(200\) −199.058 −0.0703776
\(201\) −459.876 −0.161379
\(202\) −2226.73 −0.775606
\(203\) −738.191 −0.255226
\(204\) 1933.69 0.663652
\(205\) 102.987 0.0350873
\(206\) −447.196 −0.151251
\(207\) 275.323 0.0924457
\(208\) 621.255 0.207097
\(209\) −1986.12 −0.657333
\(210\) 1069.97 0.351595
\(211\) −1105.82 −0.360794 −0.180397 0.983594i \(-0.557738\pi\)
−0.180397 + 0.983594i \(0.557738\pi\)
\(212\) 1659.27 0.537544
\(213\) 1330.93 0.428141
\(214\) −3020.35 −0.964800
\(215\) 5058.49 1.60459
\(216\) −750.587 −0.236440
\(217\) −400.251 −0.125211
\(218\) 2766.80 0.859594
\(219\) 4076.59 1.25786
\(220\) 2300.17 0.704899
\(221\) −3006.82 −0.915206
\(222\) 1172.58 0.354496
\(223\) −3175.29 −0.953512 −0.476756 0.879036i \(-0.658187\pi\)
−0.476756 + 0.879036i \(0.658187\pi\)
\(224\) −224.000 −0.0668153
\(225\) 297.855 0.0882532
\(226\) −2456.46 −0.723013
\(227\) −2318.36 −0.677863 −0.338931 0.940811i \(-0.610065\pi\)
−0.338931 + 0.940811i \(0.610065\pi\)
\(228\) 1055.86 0.306694
\(229\) 3213.52 0.927315 0.463658 0.886014i \(-0.346537\pi\)
0.463658 + 0.886014i \(0.346537\pi\)
\(230\) −563.161 −0.161451
\(231\) −2052.54 −0.584621
\(232\) 843.647 0.238742
\(233\) 4377.41 1.23079 0.615394 0.788220i \(-0.288997\pi\)
0.615394 + 0.788220i \(0.288997\pi\)
\(234\) −929.596 −0.259699
\(235\) 6604.33 1.83327
\(236\) 223.679 0.0616960
\(237\) −2732.77 −0.748998
\(238\) 1084.14 0.295271
\(239\) −5343.96 −1.44633 −0.723163 0.690677i \(-0.757313\pi\)
−0.723163 + 0.690677i \(0.757313\pi\)
\(240\) −1222.82 −0.328887
\(241\) −4194.43 −1.12111 −0.560554 0.828118i \(-0.689412\pi\)
−0.560554 + 0.828118i \(0.689412\pi\)
\(242\) −1750.47 −0.464977
\(243\) 3140.77 0.829138
\(244\) 2153.26 0.564953
\(245\) 599.889 0.156431
\(246\) 105.028 0.0272208
\(247\) −1641.83 −0.422944
\(248\) 457.430 0.117124
\(249\) −3166.27 −0.805840
\(250\) 2451.41 0.620163
\(251\) −5488.84 −1.38029 −0.690145 0.723671i \(-0.742453\pi\)
−0.690145 + 0.723671i \(0.742453\pi\)
\(252\) 335.176 0.0837861
\(253\) 1080.32 0.268456
\(254\) −289.539 −0.0715248
\(255\) 5918.35 1.45342
\(256\) 256.000 0.0625000
\(257\) 1198.72 0.290949 0.145475 0.989362i \(-0.453529\pi\)
0.145475 + 0.989362i \(0.453529\pi\)
\(258\) 5158.74 1.24484
\(259\) 657.417 0.157722
\(260\) 1901.45 0.453550
\(261\) −1262.37 −0.299381
\(262\) −1915.86 −0.451765
\(263\) 5256.51 1.23244 0.616218 0.787576i \(-0.288664\pi\)
0.616218 + 0.787576i \(0.288664\pi\)
\(264\) 2345.76 0.546863
\(265\) 5078.47 1.17724
\(266\) 591.980 0.136453
\(267\) 5438.29 1.24651
\(268\) 294.668 0.0671631
\(269\) −1805.02 −0.409122 −0.204561 0.978854i \(-0.565577\pi\)
−0.204561 + 0.978854i \(0.565577\pi\)
\(270\) −2297.29 −0.517810
\(271\) −627.083 −0.140563 −0.0702815 0.997527i \(-0.522390\pi\)
−0.0702815 + 0.997527i \(0.522390\pi\)
\(272\) −1239.02 −0.276200
\(273\) −1696.74 −0.376160
\(274\) −1017.73 −0.224392
\(275\) 1168.73 0.256281
\(276\) −574.323 −0.125254
\(277\) −2178.88 −0.472622 −0.236311 0.971677i \(-0.575938\pi\)
−0.236311 + 0.971677i \(0.575938\pi\)
\(278\) 276.830 0.0597236
\(279\) −684.461 −0.146873
\(280\) −685.588 −0.146328
\(281\) 8243.92 1.75015 0.875073 0.483991i \(-0.160813\pi\)
0.875073 + 0.483991i \(0.160813\pi\)
\(282\) 6735.22 1.42226
\(283\) −5078.31 −1.06669 −0.533347 0.845897i \(-0.679066\pi\)
−0.533347 + 0.845897i \(0.679066\pi\)
\(284\) −852.801 −0.178185
\(285\) 3231.63 0.671669
\(286\) −3647.59 −0.754148
\(287\) 58.8849 0.0121110
\(288\) −383.058 −0.0783747
\(289\) 1083.74 0.220586
\(290\) 2582.12 0.522852
\(291\) −1775.92 −0.357754
\(292\) −2612.09 −0.523497
\(293\) −1733.67 −0.345672 −0.172836 0.984951i \(-0.555293\pi\)
−0.172836 + 0.984951i \(0.555293\pi\)
\(294\) 611.779 0.121359
\(295\) 684.605 0.135116
\(296\) −751.334 −0.147535
\(297\) 4406.94 0.860998
\(298\) −4787.74 −0.930693
\(299\) 893.054 0.172731
\(300\) −621.324 −0.119574
\(301\) 2892.30 0.553852
\(302\) −5444.71 −1.03744
\(303\) −6950.35 −1.31778
\(304\) −676.548 −0.127640
\(305\) 6590.41 1.23726
\(306\) 1853.97 0.346354
\(307\) 5071.94 0.942902 0.471451 0.881892i \(-0.343730\pi\)
0.471451 + 0.881892i \(0.343730\pi\)
\(308\) 1315.18 0.243309
\(309\) −1395.84 −0.256980
\(310\) 1400.04 0.256506
\(311\) 7951.74 1.44984 0.724922 0.688831i \(-0.241876\pi\)
0.724922 + 0.688831i \(0.241876\pi\)
\(312\) 1939.14 0.351865
\(313\) 10155.1 1.83387 0.916933 0.399041i \(-0.130657\pi\)
0.916933 + 0.399041i \(0.130657\pi\)
\(314\) 6262.84 1.12558
\(315\) 1025.86 0.183494
\(316\) 1751.03 0.311720
\(317\) −10171.6 −1.80219 −0.901097 0.433617i \(-0.857237\pi\)
−0.901097 + 0.433617i \(0.857237\pi\)
\(318\) 5179.12 0.913304
\(319\) −4953.32 −0.869381
\(320\) 783.529 0.136877
\(321\) −9427.49 −1.63922
\(322\) −322.000 −0.0557278
\(323\) 3274.43 0.564069
\(324\) −3635.64 −0.623396
\(325\) 966.139 0.164898
\(326\) −5148.52 −0.874694
\(327\) 8636.08 1.46048
\(328\) −67.2970 −0.0113288
\(329\) 3776.17 0.632787
\(330\) 7179.58 1.19765
\(331\) 867.235 0.144011 0.0720054 0.997404i \(-0.477060\pi\)
0.0720054 + 0.997404i \(0.477060\pi\)
\(332\) 2028.80 0.335376
\(333\) 1124.24 0.185008
\(334\) 4191.34 0.686646
\(335\) 901.878 0.147089
\(336\) −699.176 −0.113521
\(337\) −3597.66 −0.581535 −0.290767 0.956794i \(-0.593911\pi\)
−0.290767 + 0.956794i \(0.593911\pi\)
\(338\) 1378.71 0.221869
\(339\) −7667.39 −1.22842
\(340\) −3792.21 −0.604887
\(341\) −2685.72 −0.426509
\(342\) 1012.33 0.160061
\(343\) 343.000 0.0539949
\(344\) −3305.49 −0.518081
\(345\) −1757.81 −0.274311
\(346\) −5890.84 −0.915300
\(347\) −3953.82 −0.611678 −0.305839 0.952083i \(-0.598937\pi\)
−0.305839 + 0.952083i \(0.598937\pi\)
\(348\) 2633.29 0.405630
\(349\) −5491.05 −0.842204 −0.421102 0.907013i \(-0.638357\pi\)
−0.421102 + 0.907013i \(0.638357\pi\)
\(350\) −348.352 −0.0532005
\(351\) 3643.01 0.553988
\(352\) −1503.06 −0.227594
\(353\) 7870.27 1.18666 0.593332 0.804958i \(-0.297812\pi\)
0.593332 + 0.804958i \(0.297812\pi\)
\(354\) 698.173 0.104823
\(355\) −2610.13 −0.390229
\(356\) −3484.61 −0.518775
\(357\) 3383.95 0.501674
\(358\) −7712.76 −1.13864
\(359\) 7137.34 1.04929 0.524644 0.851322i \(-0.324198\pi\)
0.524644 + 0.851322i \(0.324198\pi\)
\(360\) −1172.41 −0.171643
\(361\) −5071.04 −0.739326
\(362\) 6837.89 0.992795
\(363\) −5463.77 −0.790010
\(364\) 1087.20 0.156551
\(365\) −7994.73 −1.14648
\(366\) 6721.02 0.959873
\(367\) −6594.51 −0.937958 −0.468979 0.883209i \(-0.655378\pi\)
−0.468979 + 0.883209i \(0.655378\pi\)
\(368\) 368.000 0.0521286
\(369\) 100.698 0.0142063
\(370\) −2299.58 −0.323106
\(371\) 2903.73 0.406345
\(372\) 1427.78 0.198998
\(373\) −9191.18 −1.27587 −0.637937 0.770088i \(-0.720212\pi\)
−0.637937 + 0.770088i \(0.720212\pi\)
\(374\) 7274.67 1.00579
\(375\) 7651.64 1.05368
\(376\) −4315.62 −0.591918
\(377\) −4094.68 −0.559382
\(378\) −1313.53 −0.178732
\(379\) −5974.63 −0.809753 −0.404876 0.914371i \(-0.632685\pi\)
−0.404876 + 0.914371i \(0.632685\pi\)
\(380\) −2070.68 −0.279537
\(381\) −903.744 −0.121523
\(382\) 731.071 0.0979185
\(383\) −12197.4 −1.62730 −0.813652 0.581352i \(-0.802524\pi\)
−0.813652 + 0.581352i \(0.802524\pi\)
\(384\) 799.058 0.106189
\(385\) 4025.31 0.532853
\(386\) 2755.98 0.363409
\(387\) 4946.07 0.649671
\(388\) 1137.93 0.148891
\(389\) 1363.18 0.177676 0.0888382 0.996046i \(-0.471685\pi\)
0.0888382 + 0.996046i \(0.471685\pi\)
\(390\) 5935.03 0.770595
\(391\) −1781.09 −0.230367
\(392\) −392.000 −0.0505076
\(393\) −5980.03 −0.767563
\(394\) −7547.42 −0.965060
\(395\) 5359.32 0.682675
\(396\) 2249.06 0.285402
\(397\) −7438.58 −0.940382 −0.470191 0.882565i \(-0.655815\pi\)
−0.470191 + 0.882565i \(0.655815\pi\)
\(398\) −902.190 −0.113625
\(399\) 1847.76 0.231839
\(400\) 398.116 0.0497645
\(401\) −2128.99 −0.265129 −0.132565 0.991174i \(-0.542321\pi\)
−0.132565 + 0.991174i \(0.542321\pi\)
\(402\) 919.753 0.114112
\(403\) −2220.16 −0.274427
\(404\) 4453.47 0.548436
\(405\) −11127.5 −1.36526
\(406\) 1476.38 0.180472
\(407\) 4411.32 0.537251
\(408\) −3867.37 −0.469273
\(409\) −9885.58 −1.19514 −0.597568 0.801818i \(-0.703866\pi\)
−0.597568 + 0.801818i \(0.703866\pi\)
\(410\) −205.973 −0.0248105
\(411\) −3176.66 −0.381249
\(412\) 894.392 0.106950
\(413\) 391.438 0.0466378
\(414\) −550.646 −0.0653690
\(415\) 6209.47 0.734484
\(416\) −1242.51 −0.146440
\(417\) 864.076 0.101472
\(418\) 3972.23 0.464804
\(419\) −8457.18 −0.986063 −0.493031 0.870012i \(-0.664111\pi\)
−0.493031 + 0.870012i \(0.664111\pi\)
\(420\) −2139.94 −0.248615
\(421\) −9598.83 −1.11121 −0.555604 0.831447i \(-0.687513\pi\)
−0.555604 + 0.831447i \(0.687513\pi\)
\(422\) 2211.63 0.255120
\(423\) 6457.55 0.742263
\(424\) −3318.55 −0.380101
\(425\) −1926.85 −0.219920
\(426\) −2661.86 −0.302741
\(427\) 3768.21 0.427064
\(428\) 6040.71 0.682216
\(429\) −11385.3 −1.28132
\(430\) −10117.0 −1.13461
\(431\) −2829.18 −0.316188 −0.158094 0.987424i \(-0.550535\pi\)
−0.158094 + 0.987424i \(0.550535\pi\)
\(432\) 1501.17 0.167188
\(433\) 12474.5 1.38450 0.692248 0.721660i \(-0.256620\pi\)
0.692248 + 0.721660i \(0.256620\pi\)
\(434\) 800.502 0.0885376
\(435\) 8059.61 0.888342
\(436\) −5533.60 −0.607825
\(437\) −972.538 −0.106460
\(438\) −8153.18 −0.889439
\(439\) −12614.5 −1.37143 −0.685713 0.727872i \(-0.740509\pi\)
−0.685713 + 0.727872i \(0.740509\pi\)
\(440\) −4600.35 −0.498439
\(441\) 586.558 0.0633363
\(442\) 6013.64 0.647148
\(443\) 12027.9 1.28999 0.644994 0.764188i \(-0.276860\pi\)
0.644994 + 0.764188i \(0.276860\pi\)
\(444\) −2345.15 −0.250667
\(445\) −10665.2 −1.13613
\(446\) 6350.58 0.674234
\(447\) −14944.1 −1.58128
\(448\) 448.000 0.0472456
\(449\) 16312.8 1.71459 0.857295 0.514826i \(-0.172144\pi\)
0.857295 + 0.514826i \(0.172144\pi\)
\(450\) −595.709 −0.0624044
\(451\) 395.122 0.0412540
\(452\) 4912.91 0.511248
\(453\) −16994.7 −1.76265
\(454\) 4636.72 0.479321
\(455\) 3327.54 0.342851
\(456\) −2111.72 −0.216865
\(457\) 10301.0 1.05440 0.527202 0.849740i \(-0.323241\pi\)
0.527202 + 0.849740i \(0.323241\pi\)
\(458\) −6427.03 −0.655711
\(459\) −7265.55 −0.738839
\(460\) 1126.32 0.114163
\(461\) −4735.26 −0.478402 −0.239201 0.970970i \(-0.576885\pi\)
−0.239201 + 0.970970i \(0.576885\pi\)
\(462\) 4105.08 0.413389
\(463\) 7970.27 0.800021 0.400010 0.916511i \(-0.369007\pi\)
0.400010 + 0.916511i \(0.369007\pi\)
\(464\) −1687.29 −0.168816
\(465\) 4369.96 0.435811
\(466\) −8754.81 −0.870298
\(467\) −10453.2 −1.03580 −0.517900 0.855441i \(-0.673286\pi\)
−0.517900 + 0.855441i \(0.673286\pi\)
\(468\) 1859.19 0.183635
\(469\) 515.669 0.0507705
\(470\) −13208.7 −1.29632
\(471\) 19548.3 1.91240
\(472\) −447.358 −0.0436256
\(473\) 19407.6 1.88660
\(474\) 5465.54 0.529621
\(475\) −1052.13 −0.101631
\(476\) −2168.28 −0.208788
\(477\) 4965.61 0.476645
\(478\) 10687.9 1.02271
\(479\) −18800.4 −1.79334 −0.896671 0.442697i \(-0.854022\pi\)
−0.896671 + 0.442697i \(0.854022\pi\)
\(480\) 2445.65 0.232558
\(481\) 3646.64 0.345681
\(482\) 8388.87 0.792744
\(483\) −1005.07 −0.0946833
\(484\) 3500.94 0.328788
\(485\) 3482.81 0.326075
\(486\) −6281.55 −0.586289
\(487\) −10972.4 −1.02096 −0.510481 0.859889i \(-0.670532\pi\)
−0.510481 + 0.859889i \(0.670532\pi\)
\(488\) −4306.53 −0.399482
\(489\) −16070.2 −1.48613
\(490\) −1199.78 −0.110613
\(491\) 17235.5 1.58417 0.792083 0.610414i \(-0.208997\pi\)
0.792083 + 0.610414i \(0.208997\pi\)
\(492\) −210.055 −0.0192480
\(493\) 8166.35 0.746033
\(494\) 3283.66 0.299067
\(495\) 6883.60 0.625040
\(496\) −914.859 −0.0828194
\(497\) −1492.40 −0.134695
\(498\) 6332.54 0.569815
\(499\) −660.575 −0.0592614 −0.0296307 0.999561i \(-0.509433\pi\)
−0.0296307 + 0.999561i \(0.509433\pi\)
\(500\) −4902.82 −0.438522
\(501\) 13082.5 1.16663
\(502\) 10977.7 0.976012
\(503\) −1701.15 −0.150796 −0.0753980 0.997154i \(-0.524023\pi\)
−0.0753980 + 0.997154i \(0.524023\pi\)
\(504\) −670.352 −0.0592457
\(505\) 13630.5 1.20109
\(506\) −2160.65 −0.189827
\(507\) 4303.38 0.376963
\(508\) 579.078 0.0505757
\(509\) −15163.6 −1.32046 −0.660231 0.751062i \(-0.729542\pi\)
−0.660231 + 0.751062i \(0.729542\pi\)
\(510\) −11836.7 −1.02772
\(511\) −4571.16 −0.395727
\(512\) −512.000 −0.0441942
\(513\) −3967.25 −0.341440
\(514\) −2397.44 −0.205732
\(515\) 2737.43 0.234224
\(516\) −10317.5 −0.880236
\(517\) 25338.4 2.15548
\(518\) −1314.83 −0.111526
\(519\) −18387.2 −1.55512
\(520\) −3802.90 −0.320708
\(521\) −17065.7 −1.43506 −0.717528 0.696530i \(-0.754726\pi\)
−0.717528 + 0.696530i \(0.754726\pi\)
\(522\) 2524.73 0.211694
\(523\) −1479.69 −0.123714 −0.0618569 0.998085i \(-0.519702\pi\)
−0.0618569 + 0.998085i \(0.519702\pi\)
\(524\) 3831.73 0.319446
\(525\) −1087.32 −0.0903893
\(526\) −10513.0 −0.871463
\(527\) 4427.84 0.365996
\(528\) −4691.53 −0.386690
\(529\) 529.000 0.0434783
\(530\) −10156.9 −0.832433
\(531\) 669.390 0.0547063
\(532\) −1183.96 −0.0964871
\(533\) 326.629 0.0265439
\(534\) −10876.6 −0.881416
\(535\) 18488.5 1.49407
\(536\) −589.336 −0.0474915
\(537\) −24074.0 −1.93458
\(538\) 3610.03 0.289293
\(539\) 2301.56 0.183924
\(540\) 4594.58 0.366147
\(541\) 778.940 0.0619025 0.0309512 0.999521i \(-0.490146\pi\)
0.0309512 + 0.999521i \(0.490146\pi\)
\(542\) 1254.17 0.0993931
\(543\) 21343.3 1.68679
\(544\) 2478.04 0.195303
\(545\) −16936.5 −1.33115
\(546\) 3393.49 0.265985
\(547\) 12758.6 0.997288 0.498644 0.866807i \(-0.333831\pi\)
0.498644 + 0.866807i \(0.333831\pi\)
\(548\) 2035.46 0.158669
\(549\) 6443.94 0.500949
\(550\) −2337.47 −0.181218
\(551\) 4459.12 0.344764
\(552\) 1148.65 0.0885681
\(553\) 3064.31 0.235638
\(554\) 4357.76 0.334194
\(555\) −7177.72 −0.548968
\(556\) −553.660 −0.0422310
\(557\) −11147.0 −0.847957 −0.423978 0.905672i \(-0.639367\pi\)
−0.423978 + 0.905672i \(0.639367\pi\)
\(558\) 1368.92 0.103855
\(559\) 16043.4 1.21388
\(560\) 1371.18 0.103469
\(561\) 22706.6 1.70886
\(562\) −16487.8 −1.23754
\(563\) −15030.4 −1.12514 −0.562570 0.826749i \(-0.690187\pi\)
−0.562570 + 0.826749i \(0.690187\pi\)
\(564\) −13470.4 −1.00569
\(565\) 15036.8 1.11965
\(566\) 10156.6 0.754266
\(567\) −6362.38 −0.471243
\(568\) 1705.60 0.125995
\(569\) −6078.25 −0.447827 −0.223914 0.974609i \(-0.571883\pi\)
−0.223914 + 0.974609i \(0.571883\pi\)
\(570\) −6463.27 −0.474941
\(571\) 3550.29 0.260202 0.130101 0.991501i \(-0.458470\pi\)
0.130101 + 0.991501i \(0.458470\pi\)
\(572\) 7295.17 0.533263
\(573\) 2281.91 0.166367
\(574\) −117.770 −0.00856378
\(575\) 572.292 0.0415065
\(576\) 766.116 0.0554193
\(577\) 18938.3 1.36640 0.683198 0.730234i \(-0.260589\pi\)
0.683198 + 0.730234i \(0.260589\pi\)
\(578\) −2167.47 −0.155978
\(579\) 8602.31 0.617443
\(580\) −5164.23 −0.369712
\(581\) 3550.40 0.253521
\(582\) 3551.84 0.252970
\(583\) 19484.3 1.38414
\(584\) 5224.19 0.370169
\(585\) 5690.36 0.402166
\(586\) 3467.33 0.244427
\(587\) 21377.4 1.50313 0.751567 0.659657i \(-0.229299\pi\)
0.751567 + 0.659657i \(0.229299\pi\)
\(588\) −1223.56 −0.0858141
\(589\) 2417.76 0.169138
\(590\) −1369.21 −0.0955415
\(591\) −23557.9 −1.63967
\(592\) 1502.67 0.104323
\(593\) −7021.45 −0.486234 −0.243117 0.969997i \(-0.578170\pi\)
−0.243117 + 0.969997i \(0.578170\pi\)
\(594\) −8813.87 −0.608818
\(595\) −6636.37 −0.457252
\(596\) 9575.48 0.658099
\(597\) −2816.02 −0.193052
\(598\) −1786.11 −0.122139
\(599\) 7336.15 0.500412 0.250206 0.968193i \(-0.419502\pi\)
0.250206 + 0.968193i \(0.419502\pi\)
\(600\) 1242.65 0.0845515
\(601\) 10999.6 0.746564 0.373282 0.927718i \(-0.378232\pi\)
0.373282 + 0.927718i \(0.378232\pi\)
\(602\) −5784.60 −0.391633
\(603\) 881.835 0.0595541
\(604\) 10889.4 0.733583
\(605\) 10715.2 0.720056
\(606\) 13900.7 0.931811
\(607\) −15403.7 −1.03001 −0.515005 0.857187i \(-0.672210\pi\)
−0.515005 + 0.857187i \(0.672210\pi\)
\(608\) 1353.10 0.0902555
\(609\) 4608.26 0.306627
\(610\) −13180.8 −0.874878
\(611\) 20946.1 1.38689
\(612\) −3707.93 −0.244909
\(613\) −23890.3 −1.57410 −0.787048 0.616892i \(-0.788392\pi\)
−0.787048 + 0.616892i \(0.788392\pi\)
\(614\) −10143.9 −0.666732
\(615\) −642.908 −0.0421538
\(616\) −2630.35 −0.172045
\(617\) −3199.68 −0.208775 −0.104388 0.994537i \(-0.533288\pi\)
−0.104388 + 0.994537i \(0.533288\pi\)
\(618\) 2791.68 0.181712
\(619\) −7854.20 −0.509995 −0.254998 0.966942i \(-0.582075\pi\)
−0.254998 + 0.966942i \(0.582075\pi\)
\(620\) −2800.07 −0.181377
\(621\) 2157.94 0.139445
\(622\) −15903.5 −1.02520
\(623\) −6098.07 −0.392157
\(624\) −3878.27 −0.248806
\(625\) −18116.2 −1.15943
\(626\) −20310.2 −1.29674
\(627\) 12398.6 0.789717
\(628\) −12525.7 −0.795906
\(629\) −7272.78 −0.461025
\(630\) −2051.72 −0.129750
\(631\) −15253.8 −0.962350 −0.481175 0.876624i \(-0.659790\pi\)
−0.481175 + 0.876624i \(0.659790\pi\)
\(632\) −3502.07 −0.220419
\(633\) 6903.21 0.433456
\(634\) 20343.3 1.27434
\(635\) 1772.36 0.110762
\(636\) −10358.2 −0.645804
\(637\) 1902.59 0.118341
\(638\) 9906.64 0.614746
\(639\) −2552.13 −0.157998
\(640\) −1567.06 −0.0967866
\(641\) −21067.3 −1.29814 −0.649071 0.760728i \(-0.724842\pi\)
−0.649071 + 0.760728i \(0.724842\pi\)
\(642\) 18855.0 1.15911
\(643\) 8282.08 0.507953 0.253976 0.967210i \(-0.418261\pi\)
0.253976 + 0.967210i \(0.418261\pi\)
\(644\) 644.000 0.0394055
\(645\) −31578.3 −1.92774
\(646\) −6548.87 −0.398857
\(647\) 1367.52 0.0830955 0.0415478 0.999137i \(-0.486771\pi\)
0.0415478 + 0.999137i \(0.486771\pi\)
\(648\) 7271.29 0.440807
\(649\) 2626.58 0.158863
\(650\) −1932.28 −0.116600
\(651\) 2498.62 0.150428
\(652\) 10297.0 0.618502
\(653\) −10988.8 −0.658537 −0.329269 0.944236i \(-0.606802\pi\)
−0.329269 + 0.944236i \(0.606802\pi\)
\(654\) −17272.2 −1.03271
\(655\) 11727.6 0.699597
\(656\) 134.594 0.00801069
\(657\) −7817.06 −0.464190
\(658\) −7552.34 −0.447448
\(659\) −25288.8 −1.49486 −0.747430 0.664340i \(-0.768713\pi\)
−0.747430 + 0.664340i \(0.768713\pi\)
\(660\) −14359.2 −0.846863
\(661\) −20387.1 −1.19965 −0.599823 0.800133i \(-0.704762\pi\)
−0.599823 + 0.800133i \(0.704762\pi\)
\(662\) −1734.47 −0.101831
\(663\) 18770.5 1.09953
\(664\) −4057.60 −0.237147
\(665\) −3623.70 −0.211310
\(666\) −2248.47 −0.130821
\(667\) −2425.48 −0.140802
\(668\) −8382.67 −0.485532
\(669\) 19822.2 1.14555
\(670\) −1803.76 −0.104008
\(671\) 25285.0 1.45472
\(672\) 1398.35 0.0802717
\(673\) −16015.5 −0.917313 −0.458657 0.888614i \(-0.651669\pi\)
−0.458657 + 0.888614i \(0.651669\pi\)
\(674\) 7195.33 0.411207
\(675\) 2334.54 0.133121
\(676\) −2757.41 −0.156885
\(677\) 13594.8 0.771773 0.385887 0.922546i \(-0.373896\pi\)
0.385887 + 0.922546i \(0.373896\pi\)
\(678\) 15334.8 0.868626
\(679\) 1991.38 0.112551
\(680\) 7584.42 0.427720
\(681\) 14472.7 0.814382
\(682\) 5371.43 0.301588
\(683\) 5331.72 0.298701 0.149350 0.988784i \(-0.452282\pi\)
0.149350 + 0.988784i \(0.452282\pi\)
\(684\) −2024.67 −0.113180
\(685\) 6229.86 0.347490
\(686\) −686.000 −0.0381802
\(687\) −20060.8 −1.11407
\(688\) 6610.97 0.366339
\(689\) 16106.7 0.890592
\(690\) 3515.61 0.193967
\(691\) 16431.8 0.904623 0.452311 0.891860i \(-0.350600\pi\)
0.452311 + 0.891860i \(0.350600\pi\)
\(692\) 11781.7 0.647215
\(693\) 3935.85 0.215744
\(694\) 7907.64 0.432521
\(695\) −1694.57 −0.0924871
\(696\) −5266.58 −0.286824
\(697\) −651.423 −0.0354009
\(698\) 10982.1 0.595528
\(699\) −27326.6 −1.47866
\(700\) 696.703 0.0376184
\(701\) 12759.3 0.687464 0.343732 0.939068i \(-0.388309\pi\)
0.343732 + 0.939068i \(0.388309\pi\)
\(702\) −7286.03 −0.391729
\(703\) −3971.20 −0.213054
\(704\) 3006.12 0.160934
\(705\) −41228.4 −2.20249
\(706\) −15740.5 −0.839098
\(707\) 7793.57 0.414579
\(708\) −1396.35 −0.0741213
\(709\) 16649.2 0.881910 0.440955 0.897529i \(-0.354640\pi\)
0.440955 + 0.897529i \(0.354640\pi\)
\(710\) 5220.27 0.275934
\(711\) 5240.22 0.276404
\(712\) 6969.22 0.366829
\(713\) −1315.11 −0.0690761
\(714\) −6767.90 −0.354737
\(715\) 22328.0 1.16786
\(716\) 15425.5 0.805138
\(717\) 33360.4 1.73761
\(718\) −14274.7 −0.741959
\(719\) 2427.31 0.125902 0.0629508 0.998017i \(-0.479949\pi\)
0.0629508 + 0.998017i \(0.479949\pi\)
\(720\) 2344.82 0.121370
\(721\) 1565.19 0.0808468
\(722\) 10142.1 0.522783
\(723\) 26184.3 1.34690
\(724\) −13675.8 −0.702012
\(725\) −2623.98 −0.134417
\(726\) 10927.5 0.558621
\(727\) 34930.8 1.78199 0.890997 0.454008i \(-0.150006\pi\)
0.890997 + 0.454008i \(0.150006\pi\)
\(728\) −2174.39 −0.110698
\(729\) 4933.88 0.250667
\(730\) 15989.5 0.810680
\(731\) −31996.5 −1.61893
\(732\) −13442.0 −0.678733
\(733\) 6837.01 0.344517 0.172258 0.985052i \(-0.444894\pi\)
0.172258 + 0.985052i \(0.444894\pi\)
\(734\) 13189.0 0.663236
\(735\) −3744.89 −0.187935
\(736\) −736.000 −0.0368605
\(737\) 3460.18 0.172941
\(738\) −201.396 −0.0100454
\(739\) −26314.9 −1.30989 −0.654946 0.755676i \(-0.727309\pi\)
−0.654946 + 0.755676i \(0.727309\pi\)
\(740\) 4599.16 0.228471
\(741\) 10249.4 0.508124
\(742\) −5807.46 −0.287329
\(743\) 38854.6 1.91849 0.959245 0.282575i \(-0.0911887\pi\)
0.959245 + 0.282575i \(0.0911887\pi\)
\(744\) −2855.57 −0.140713
\(745\) 29307.3 1.44126
\(746\) 18382.4 0.902180
\(747\) 6071.47 0.297381
\(748\) −14549.3 −0.711199
\(749\) 10571.2 0.515707
\(750\) −15303.3 −0.745062
\(751\) 26570.6 1.29104 0.645522 0.763742i \(-0.276640\pi\)
0.645522 + 0.763742i \(0.276640\pi\)
\(752\) 8631.25 0.418549
\(753\) 34264.9 1.65828
\(754\) 8189.37 0.395543
\(755\) 33328.8 1.60657
\(756\) 2627.05 0.126382
\(757\) −8595.17 −0.412677 −0.206339 0.978481i \(-0.566155\pi\)
−0.206339 + 0.978481i \(0.566155\pi\)
\(758\) 11949.3 0.572582
\(759\) −6744.07 −0.322522
\(760\) 4141.37 0.197662
\(761\) 22094.3 1.05246 0.526228 0.850343i \(-0.323606\pi\)
0.526228 + 0.850343i \(0.323606\pi\)
\(762\) 1807.49 0.0859297
\(763\) −9683.81 −0.459472
\(764\) −1462.14 −0.0692388
\(765\) −11348.7 −0.536358
\(766\) 24394.8 1.15068
\(767\) 2171.27 0.102217
\(768\) −1598.12 −0.0750873
\(769\) −836.349 −0.0392191 −0.0196096 0.999808i \(-0.506242\pi\)
−0.0196096 + 0.999808i \(0.506242\pi\)
\(770\) −8050.61 −0.376784
\(771\) −7483.17 −0.349546
\(772\) −5511.97 −0.256969
\(773\) −13259.9 −0.616981 −0.308490 0.951227i \(-0.599824\pi\)
−0.308490 + 0.951227i \(0.599824\pi\)
\(774\) −9892.13 −0.459387
\(775\) −1422.74 −0.0659434
\(776\) −2275.86 −0.105282
\(777\) −4104.02 −0.189486
\(778\) −2726.36 −0.125636
\(779\) −355.700 −0.0163598
\(780\) −11870.1 −0.544893
\(781\) −10014.1 −0.458814
\(782\) 3562.18 0.162894
\(783\) −9894.22 −0.451585
\(784\) 784.000 0.0357143
\(785\) −38336.9 −1.74306
\(786\) 11960.1 0.542749
\(787\) 6704.31 0.303663 0.151832 0.988406i \(-0.451483\pi\)
0.151832 + 0.988406i \(0.451483\pi\)
\(788\) 15094.8 0.682401
\(789\) −32814.5 −1.48064
\(790\) −10718.6 −0.482724
\(791\) 8597.59 0.386467
\(792\) −4498.11 −0.201810
\(793\) 20902.0 0.936003
\(794\) 14877.2 0.664951
\(795\) −31703.1 −1.41433
\(796\) 1804.38 0.0803449
\(797\) −20847.1 −0.926526 −0.463263 0.886221i \(-0.653322\pi\)
−0.463263 + 0.886221i \(0.653322\pi\)
\(798\) −3695.52 −0.163935
\(799\) −41774.5 −1.84966
\(800\) −796.232 −0.0351888
\(801\) −10428.2 −0.460002
\(802\) 4257.99 0.187475
\(803\) −30672.9 −1.34797
\(804\) −1839.51 −0.0806895
\(805\) 1971.07 0.0862993
\(806\) 4440.32 0.194049
\(807\) 11268.1 0.491518
\(808\) −8906.93 −0.387803
\(809\) −17906.1 −0.778177 −0.389088 0.921200i \(-0.627210\pi\)
−0.389088 + 0.921200i \(0.627210\pi\)
\(810\) 22254.9 0.965381
\(811\) −8702.07 −0.376783 −0.188391 0.982094i \(-0.560327\pi\)
−0.188391 + 0.982094i \(0.560327\pi\)
\(812\) −2952.76 −0.127613
\(813\) 3914.65 0.168872
\(814\) −8822.64 −0.379894
\(815\) 31515.7 1.35454
\(816\) 7734.74 0.331826
\(817\) −17471.3 −0.748154
\(818\) 19771.2 0.845089
\(819\) 3253.59 0.138815
\(820\) 411.946 0.0175436
\(821\) 15473.2 0.657758 0.328879 0.944372i \(-0.393329\pi\)
0.328879 + 0.944372i \(0.393329\pi\)
\(822\) 6353.33 0.269584
\(823\) 16597.6 0.702982 0.351491 0.936191i \(-0.385675\pi\)
0.351491 + 0.936191i \(0.385675\pi\)
\(824\) −1788.78 −0.0756253
\(825\) −7295.98 −0.307895
\(826\) −782.876 −0.0329779
\(827\) 36683.0 1.54243 0.771217 0.636573i \(-0.219648\pi\)
0.771217 + 0.636573i \(0.219648\pi\)
\(828\) 1101.29 0.0462229
\(829\) 17798.7 0.745688 0.372844 0.927894i \(-0.378383\pi\)
0.372844 + 0.927894i \(0.378383\pi\)
\(830\) −12418.9 −0.519359
\(831\) 13602.0 0.567806
\(832\) 2485.02 0.103549
\(833\) −3794.49 −0.157829
\(834\) −1728.15 −0.0717518
\(835\) −25656.5 −1.06333
\(836\) −7944.46 −0.328666
\(837\) −5364.70 −0.221543
\(838\) 16914.4 0.697252
\(839\) 1592.68 0.0655369 0.0327685 0.999463i \(-0.489568\pi\)
0.0327685 + 0.999463i \(0.489568\pi\)
\(840\) 4279.88 0.175797
\(841\) −13268.1 −0.544018
\(842\) 19197.7 0.785742
\(843\) −51463.8 −2.10262
\(844\) −4423.26 −0.180397
\(845\) −8439.50 −0.343583
\(846\) −12915.1 −0.524859
\(847\) 6126.64 0.248540
\(848\) 6637.09 0.268772
\(849\) 31702.1 1.28152
\(850\) 3853.69 0.155507
\(851\) 2160.08 0.0870115
\(852\) 5323.73 0.214070
\(853\) 46012.5 1.84694 0.923469 0.383672i \(-0.125341\pi\)
0.923469 + 0.383672i \(0.125341\pi\)
\(854\) −7536.42 −0.301980
\(855\) −6196.81 −0.247867
\(856\) −12081.4 −0.482400
\(857\) −8771.84 −0.349639 −0.174819 0.984601i \(-0.555934\pi\)
−0.174819 + 0.984601i \(0.555934\pi\)
\(858\) 22770.6 0.906031
\(859\) −27134.6 −1.07779 −0.538895 0.842373i \(-0.681158\pi\)
−0.538895 + 0.842373i \(0.681158\pi\)
\(860\) 20233.9 0.802293
\(861\) −367.597 −0.0145501
\(862\) 5658.37 0.223579
\(863\) −22245.2 −0.877443 −0.438722 0.898623i \(-0.644569\pi\)
−0.438722 + 0.898623i \(0.644569\pi\)
\(864\) −3002.35 −0.118220
\(865\) 36059.7 1.41742
\(866\) −24949.0 −0.978986
\(867\) −6765.38 −0.265011
\(868\) −1601.00 −0.0626056
\(869\) 20561.8 0.802658
\(870\) −16119.2 −0.628153
\(871\) 2860.37 0.111274
\(872\) 11067.2 0.429797
\(873\) 3405.41 0.132023
\(874\) 1945.08 0.0752783
\(875\) −8579.94 −0.331491
\(876\) 16306.4 0.628928
\(877\) −2504.43 −0.0964295 −0.0482147 0.998837i \(-0.515353\pi\)
−0.0482147 + 0.998837i \(0.515353\pi\)
\(878\) 25228.9 0.969744
\(879\) 10822.6 0.415289
\(880\) 9200.70 0.352449
\(881\) 24428.9 0.934199 0.467100 0.884205i \(-0.345299\pi\)
0.467100 + 0.884205i \(0.345299\pi\)
\(882\) −1173.12 −0.0447855
\(883\) −43235.1 −1.64776 −0.823882 0.566761i \(-0.808196\pi\)
−0.823882 + 0.566761i \(0.808196\pi\)
\(884\) −12027.3 −0.457603
\(885\) −4273.74 −0.162328
\(886\) −24055.9 −0.912159
\(887\) −41927.7 −1.58714 −0.793571 0.608478i \(-0.791780\pi\)
−0.793571 + 0.608478i \(0.791780\pi\)
\(888\) 4690.31 0.177248
\(889\) 1013.39 0.0382316
\(890\) 21330.4 0.803368
\(891\) −42692.1 −1.60520
\(892\) −12701.2 −0.476756
\(893\) −22810.4 −0.854782
\(894\) 29888.1 1.11813
\(895\) 47212.3 1.76328
\(896\) −896.000 −0.0334077
\(897\) −5575.01 −0.207519
\(898\) −32625.7 −1.21240
\(899\) 6029.83 0.223700
\(900\) 1191.42 0.0441266
\(901\) −32123.0 −1.18776
\(902\) −790.244 −0.0291710
\(903\) −18055.6 −0.665396
\(904\) −9825.82 −0.361507
\(905\) −41856.9 −1.53743
\(906\) 33989.4 1.24638
\(907\) −13646.7 −0.499594 −0.249797 0.968298i \(-0.580364\pi\)
−0.249797 + 0.968298i \(0.580364\pi\)
\(908\) −9273.43 −0.338931
\(909\) 13327.6 0.486303
\(910\) −6655.07 −0.242433
\(911\) −10246.8 −0.372657 −0.186329 0.982487i \(-0.559659\pi\)
−0.186329 + 0.982487i \(0.559659\pi\)
\(912\) 4223.45 0.153347
\(913\) 23823.5 0.863573
\(914\) −20602.1 −0.745576
\(915\) −41141.5 −1.48645
\(916\) 12854.1 0.463658
\(917\) 6705.53 0.241479
\(918\) 14531.1 0.522438
\(919\) −32764.9 −1.17608 −0.588038 0.808834i \(-0.700099\pi\)
−0.588038 + 0.808834i \(0.700099\pi\)
\(920\) −2252.65 −0.0807256
\(921\) −31662.3 −1.13280
\(922\) 9470.53 0.338281
\(923\) −8278.23 −0.295212
\(924\) −8210.17 −0.292310
\(925\) 2336.86 0.0830654
\(926\) −15940.5 −0.565700
\(927\) 2676.59 0.0948337
\(928\) 3374.59 0.119371
\(929\) −43613.7 −1.54028 −0.770139 0.637876i \(-0.779813\pi\)
−0.770139 + 0.637876i \(0.779813\pi\)
\(930\) −8739.93 −0.308165
\(931\) −2071.93 −0.0729374
\(932\) 17509.6 0.615394
\(933\) −49639.8 −1.74184
\(934\) 20906.5 0.732421
\(935\) −44530.6 −1.55755
\(936\) −3718.38 −0.129850
\(937\) −378.814 −0.0132074 −0.00660368 0.999978i \(-0.502102\pi\)
−0.00660368 + 0.999978i \(0.502102\pi\)
\(938\) −1031.34 −0.0359002
\(939\) −63394.6 −2.20320
\(940\) 26417.3 0.916636
\(941\) 49464.9 1.71361 0.856806 0.515640i \(-0.172446\pi\)
0.856806 + 0.515640i \(0.172446\pi\)
\(942\) −39096.7 −1.35227
\(943\) 193.479 0.00668137
\(944\) 894.715 0.0308480
\(945\) 8040.52 0.276781
\(946\) −38815.1 −1.33403
\(947\) −42622.8 −1.46257 −0.731286 0.682071i \(-0.761080\pi\)
−0.731286 + 0.682071i \(0.761080\pi\)
\(948\) −10931.1 −0.374499
\(949\) −25355.9 −0.867320
\(950\) 2104.26 0.0718643
\(951\) 63497.8 2.16515
\(952\) 4336.56 0.147635
\(953\) −10839.0 −0.368427 −0.184214 0.982886i \(-0.558974\pi\)
−0.184214 + 0.982886i \(0.558974\pi\)
\(954\) −9931.22 −0.337039
\(955\) −4475.12 −0.151635
\(956\) −21375.8 −0.723163
\(957\) 30921.8 1.04447
\(958\) 37600.8 1.26808
\(959\) 3562.06 0.119942
\(960\) −4891.29 −0.164443
\(961\) −26521.6 −0.890255
\(962\) −7293.28 −0.244433
\(963\) 18077.7 0.604927
\(964\) −16777.7 −0.560554
\(965\) −16870.3 −0.562770
\(966\) 2010.13 0.0669512
\(967\) −24089.9 −0.801114 −0.400557 0.916272i \(-0.631183\pi\)
−0.400557 + 0.916272i \(0.631183\pi\)
\(968\) −7001.87 −0.232488
\(969\) −20441.1 −0.677671
\(970\) −6965.63 −0.230570
\(971\) −46038.8 −1.52158 −0.760791 0.648997i \(-0.775189\pi\)
−0.760791 + 0.648997i \(0.775189\pi\)
\(972\) 12563.1 0.414569
\(973\) −968.906 −0.0319236
\(974\) 21944.9 0.721928
\(975\) −6031.26 −0.198107
\(976\) 8613.05 0.282477
\(977\) −28376.6 −0.929221 −0.464611 0.885515i \(-0.653806\pi\)
−0.464611 + 0.885515i \(0.653806\pi\)
\(978\) 32140.4 1.05085
\(979\) −40918.5 −1.33581
\(980\) 2399.56 0.0782154
\(981\) −16560.1 −0.538963
\(982\) −34470.9 −1.12017
\(983\) 27751.8 0.900454 0.450227 0.892914i \(-0.351343\pi\)
0.450227 + 0.892914i \(0.351343\pi\)
\(984\) 420.111 0.0136104
\(985\) 46200.2 1.49448
\(986\) −16332.7 −0.527525
\(987\) −23573.3 −0.760229
\(988\) −6567.33 −0.211472
\(989\) 9503.27 0.305548
\(990\) −13767.2 −0.441970
\(991\) 44044.0 1.41181 0.705905 0.708307i \(-0.250541\pi\)
0.705905 + 0.708307i \(0.250541\pi\)
\(992\) 1829.72 0.0585621
\(993\) −5413.84 −0.173014
\(994\) 2984.80 0.0952436
\(995\) 5522.59 0.175958
\(996\) −12665.1 −0.402920
\(997\) −2663.81 −0.0846175 −0.0423087 0.999105i \(-0.513471\pi\)
−0.0423087 + 0.999105i \(0.513471\pi\)
\(998\) 1321.15 0.0419041
\(999\) 8811.59 0.279065
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 322.4.a.a.1.1 2
7.6 odd 2 2254.4.a.e.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.a.a.1.1 2 1.1 even 1 trivial
2254.4.a.e.1.2 2 7.6 odd 2