Properties

Label 322.4.a
Level $322$
Weight $4$
Character orbit 322.a
Rep. character $\chi_{322}(1,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $9$
Sturm bound $192$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 322.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(192\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(322))\).

Total New Old
Modular forms 148 32 116
Cusp forms 140 32 108
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(5\)
\(+\)\(-\)\(+\)\(-\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(5\)
\(-\)\(-\)\(+\)\(+\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(18\)
Minus space\(-\)\(14\)

Trace form

\( 32 q + 4 q^{3} + 128 q^{4} + 20 q^{5} + 40 q^{6} + 168 q^{9} - 8 q^{10} + 84 q^{11} + 16 q^{12} + 76 q^{13} + 80 q^{15} + 512 q^{16} + 144 q^{17} + 256 q^{18} - 180 q^{19} + 80 q^{20} + 224 q^{21} - 72 q^{22}+ \cdots + 3588 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(322))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 23
322.4.a.a 322.a 1.a $2$ $18.999$ \(\Q(\sqrt{2}) \) None 322.4.a.a \(-4\) \(-4\) \(16\) \(14\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-2+3\beta )q^{3}+4q^{4}+(8-3\beta )q^{5}+\cdots\)
322.4.a.b 322.a 1.a $2$ $18.999$ \(\Q(\sqrt{73}) \) None 322.4.a.b \(-4\) \(9\) \(-8\) \(14\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(5-\beta )q^{3}+4q^{4}+(-2-4\beta )q^{5}+\cdots\)
322.4.a.c 322.a 1.a $2$ $18.999$ \(\Q(\sqrt{57}) \) None 322.4.a.c \(4\) \(1\) \(-18\) \(14\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta q^{3}+4q^{4}+(-8-2\beta )q^{5}+\cdots\)
322.4.a.d 322.a 1.a $3$ $18.999$ 3.3.15384.1 None 322.4.a.d \(-6\) \(-3\) \(8\) \(-21\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}+(3+2\beta _{1}+\cdots)q^{5}+\cdots\)
322.4.a.e 322.a 1.a $3$ $18.999$ 3.3.3368.1 None 322.4.a.e \(6\) \(-7\) \(-8\) \(-21\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-2-\beta _{2})q^{3}+4q^{4}+(-3+\cdots)q^{5}+\cdots\)
322.4.a.f 322.a 1.a $4$ $18.999$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 322.4.a.f \(-8\) \(-1\) \(-2\) \(28\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+4q^{4}-\beta _{2}q^{5}+2\beta _{1}q^{6}+\cdots\)
322.4.a.g 322.a 1.a $5$ $18.999$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 322.4.a.g \(-10\) \(-9\) \(-2\) \(-35\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-2+\beta _{4})q^{3}+4q^{4}+(\beta _{1}+\cdots)q^{5}+\cdots\)
322.4.a.h 322.a 1.a $5$ $18.999$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 322.4.a.h \(10\) \(5\) \(22\) \(-35\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1-\beta _{1})q^{3}+4q^{4}+(4-\beta _{1}+\cdots)q^{5}+\cdots\)
322.4.a.i 322.a 1.a $6$ $18.999$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 322.4.a.i \(12\) \(13\) \(12\) \(42\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(2+\beta _{1})q^{3}+4q^{4}+(2-\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(322))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(322)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 2}\)