Defining parameters
Level: | \( N \) | = | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(25344\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(322))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9768 | 3024 | 6744 |
Cusp forms | 9240 | 3024 | 6216 |
Eisenstein series | 528 | 0 | 528 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(322))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
322.4.a | \(\chi_{322}(1, \cdot)\) | 322.4.a.a | 2 | 1 |
322.4.a.b | 2 | |||
322.4.a.c | 2 | |||
322.4.a.d | 3 | |||
322.4.a.e | 3 | |||
322.4.a.f | 4 | |||
322.4.a.g | 5 | |||
322.4.a.h | 5 | |||
322.4.a.i | 6 | |||
322.4.c | \(\chi_{322}(321, \cdot)\) | 322.4.c.a | 24 | 1 |
322.4.c.b | 24 | |||
322.4.e | \(\chi_{322}(93, \cdot)\) | 322.4.e.a | 22 | 2 |
322.4.e.b | 22 | |||
322.4.e.c | 22 | |||
322.4.e.d | 22 | |||
322.4.g | \(\chi_{322}(45, \cdot)\) | 322.4.g.a | 48 | 2 |
322.4.g.b | 48 | |||
322.4.i | \(\chi_{322}(29, \cdot)\) | n/a | 360 | 10 |
322.4.k | \(\chi_{322}(83, \cdot)\) | n/a | 480 | 10 |
322.4.m | \(\chi_{322}(9, \cdot)\) | n/a | 960 | 20 |
322.4.o | \(\chi_{322}(5, \cdot)\) | n/a | 960 | 20 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(322))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(322)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 2}\)