Properties

Label 322.4
Level 322
Weight 4
Dimension 3024
Nonzero newspaces 8
Sturm bound 25344
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(25344\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(322))\).

Total New Old
Modular forms 9768 3024 6744
Cusp forms 9240 3024 6216
Eisenstein series 528 0 528

Trace form

\( 3024 q - 24 q^{3} + 48 q^{5} + 72 q^{6} + 96 q^{7} - 84 q^{9} - 72 q^{10} - 84 q^{11} - 96 q^{12} - 132 q^{13} - 264 q^{14} - 1472 q^{15} - 52 q^{17} + 512 q^{18} + 560 q^{19} + 944 q^{20} + 1464 q^{21}+ \cdots - 15636 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(322))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
322.4.a \(\chi_{322}(1, \cdot)\) 322.4.a.a 2 1
322.4.a.b 2
322.4.a.c 2
322.4.a.d 3
322.4.a.e 3
322.4.a.f 4
322.4.a.g 5
322.4.a.h 5
322.4.a.i 6
322.4.c \(\chi_{322}(321, \cdot)\) 322.4.c.a 24 1
322.4.c.b 24
322.4.e \(\chi_{322}(93, \cdot)\) 322.4.e.a 22 2
322.4.e.b 22
322.4.e.c 22
322.4.e.d 22
322.4.g \(\chi_{322}(45, \cdot)\) 322.4.g.a 48 2
322.4.g.b 48
322.4.i \(\chi_{322}(29, \cdot)\) n/a 360 10
322.4.k \(\chi_{322}(83, \cdot)\) n/a 480 10
322.4.m \(\chi_{322}(9, \cdot)\) n/a 960 20
322.4.o \(\chi_{322}(5, \cdot)\) n/a 960 20

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(322))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(322)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 2}\)