Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,3,Mod(11,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([44, 27]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.11");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.p (of order \(66\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.77386451240\) |
Analytic rank: | \(0\) |
Dimension: | \(640\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{66})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{66}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −1.25700 | − | 0.648030i | −3.89257 | − | 3.06115i | 1.16011 | + | 1.62915i | −5.21143 | + | 5.46559i | 2.90925 | + | 6.37038i | −6.68556 | + | 2.07445i | −0.402527 | − | 2.79964i | 3.65962 | + | 15.0852i | 10.0926 | − | 3.49310i |
11.2 | −1.25700 | − | 0.648030i | −3.85387 | − | 3.03072i | 1.16011 | + | 1.62915i | 5.16879 | − | 5.42087i | 2.88033 | + | 6.30705i | 4.35506 | + | 5.48028i | −0.402527 | − | 2.79964i | 3.54525 | + | 14.6137i | −10.0101 | + | 3.46452i |
11.3 | −1.25700 | − | 0.648030i | −3.73796 | − | 2.93957i | 1.16011 | + | 1.62915i | 3.97965 | − | 4.17374i | 2.79370 | + | 6.11735i | −4.89473 | − | 5.00416i | −0.402527 | − | 2.79964i | 3.20948 | + | 13.2297i | −7.70714 | + | 2.66747i |
11.4 | −1.25700 | − | 0.648030i | −3.02934 | − | 2.38230i | 1.16011 | + | 1.62915i | −1.89902 | + | 1.99164i | 2.26409 | + | 4.95767i | 6.80071 | + | 1.65840i | −0.402527 | − | 2.79964i | 1.37973 | + | 5.68733i | 3.67772 | − | 1.27287i |
11.5 | −1.25700 | − | 0.648030i | −2.00962 | − | 1.58038i | 1.16011 | + | 1.62915i | 1.20550 | − | 1.26430i | 1.50196 | + | 3.28884i | −6.90349 | + | 1.15834i | −0.402527 | − | 2.79964i | −0.580867 | − | 2.39437i | −2.33462 | + | 0.808021i |
11.6 | −1.25700 | − | 0.648030i | −1.41063 | − | 1.10934i | 1.16011 | + | 1.62915i | −4.46910 | + | 4.68706i | 1.05429 | + | 2.30857i | 1.67113 | − | 6.79760i | −0.402527 | − | 2.79964i | −1.36257 | − | 5.61657i | 8.65504 | − | 2.99554i |
11.7 | −1.25700 | − | 0.648030i | −0.755926 | − | 0.594467i | 1.16011 | + | 1.62915i | 3.32345 | − | 3.48553i | 0.564969 | + | 1.23711i | 1.11071 | − | 6.91132i | −0.402527 | − | 2.79964i | −1.90380 | − | 7.84756i | −6.43631 | + | 2.22763i |
11.8 | −1.25700 | − | 0.648030i | 0.0985099 | + | 0.0774690i | 1.16011 | + | 1.62915i | −4.68358 | + | 4.91199i | −0.0736249 | − | 0.161216i | 1.08599 | + | 6.91525i | −0.402527 | − | 2.79964i | −2.11813 | − | 8.73104i | 9.07039 | − | 3.13929i |
11.9 | −1.25700 | − | 0.648030i | 0.383835 | + | 0.301851i | 1.16011 | + | 1.62915i | −1.43428 | + | 1.50423i | −0.286873 | − | 0.628164i | 5.66810 | + | 4.10764i | −0.402527 | − | 2.79964i | −2.06562 | − | 8.51458i | 2.77768 | − | 0.961364i |
11.10 | −1.25700 | − | 0.648030i | 1.22290 | + | 0.961696i | 1.16011 | + | 1.62915i | 5.14971 | − | 5.40086i | −0.913976 | − | 2.00133i | 6.81593 | − | 1.59470i | −0.402527 | − | 2.79964i | −1.55122 | − | 6.39420i | −9.97313 | + | 3.45173i |
11.11 | −1.25700 | − | 0.648030i | 1.24577 | + | 0.979686i | 1.16011 | + | 1.62915i | 2.88072 | − | 3.02121i | −0.931073 | − | 2.03877i | −3.79398 | + | 5.88266i | −0.402527 | − | 2.79964i | −1.52967 | − | 6.30537i | −5.57891 | + | 1.93088i |
11.12 | −1.25700 | − | 0.648030i | 2.57257 | + | 2.02309i | 1.16011 | + | 1.62915i | −2.00945 | + | 2.10745i | −1.92271 | − | 4.21014i | −3.84021 | − | 5.85259i | −0.402527 | − | 2.79964i | 0.403390 | + | 1.66279i | 3.89157 | − | 1.34689i |
11.13 | −1.25700 | − | 0.648030i | 2.74918 | + | 2.16198i | 1.16011 | + | 1.62915i | −0.940848 | + | 0.986733i | −2.05470 | − | 4.49917i | −6.99974 | − | 0.0597914i | −0.402527 | − | 2.79964i | 0.762015 | + | 3.14107i | 1.82208 | − | 0.630629i |
11.14 | −1.25700 | − | 0.648030i | 3.56094 | + | 2.80035i | 1.16011 | + | 1.62915i | 0.809396 | − | 0.848871i | −2.66140 | − | 5.82765i | 4.21811 | − | 5.58637i | −0.402527 | − | 2.79964i | 2.71647 | + | 11.1975i | −1.56751 | + | 0.542520i |
11.15 | −1.25700 | − | 0.648030i | 4.36265 | + | 3.43082i | 1.16011 | + | 1.62915i | 5.58209 | − | 5.85433i | −3.26058 | − | 7.13968i | −0.862587 | + | 6.94665i | −0.402527 | − | 2.79964i | 5.14030 | + | 21.1886i | −10.8105 | + | 3.74155i |
11.16 | −1.25700 | − | 0.648030i | 4.36393 | + | 3.43183i | 1.16011 | + | 1.62915i | −6.08549 | + | 6.38228i | −3.26154 | − | 7.14178i | 2.75429 | + | 6.43536i | −0.402527 | − | 2.79964i | 5.14458 | + | 21.2063i | 11.7854 | − | 4.07897i |
11.17 | 1.25700 | + | 0.648030i | −4.41158 | − | 3.46931i | 1.16011 | + | 1.62915i | −0.984942 | + | 1.03298i | −3.29716 | − | 7.21977i | −5.92223 | − | 3.73192i | 0.402527 | + | 2.79964i | 5.30414 | + | 21.8640i | −1.90748 | + | 0.660184i |
11.18 | 1.25700 | + | 0.648030i | −3.80389 | − | 2.99141i | 1.16011 | + | 1.62915i | 3.89919 | − | 4.08935i | −2.84298 | − | 6.22525i | 4.30373 | + | 5.52068i | 0.402527 | + | 2.79964i | 3.39920 | + | 14.0117i | 7.55132 | − | 2.61354i |
11.19 | 1.25700 | + | 0.648030i | −3.42677 | − | 2.69484i | 1.16011 | + | 1.62915i | −2.69686 | + | 2.82839i | −2.56112 | − | 5.60808i | 6.97589 | − | 0.580476i | 0.402527 | + | 2.79964i | 2.35876 | + | 9.72294i | −5.22285 | + | 1.80765i |
11.20 | 1.25700 | + | 0.648030i | −2.29767 | − | 1.80691i | 1.16011 | + | 1.62915i | 6.45892 | − | 6.77392i | −1.71725 | − | 3.76025i | −6.66189 | − | 2.14924i | 0.402527 | + | 2.79964i | −0.107458 | − | 0.442949i | 12.5086 | − | 4.32926i |
See next 80 embeddings (of 640 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
23.d | odd | 22 | 1 | inner |
161.p | odd | 66 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.3.p.a | ✓ | 640 |
7.c | even | 3 | 1 | inner | 322.3.p.a | ✓ | 640 |
23.d | odd | 22 | 1 | inner | 322.3.p.a | ✓ | 640 |
161.p | odd | 66 | 1 | inner | 322.3.p.a | ✓ | 640 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.3.p.a | ✓ | 640 | 1.a | even | 1 | 1 | trivial |
322.3.p.a | ✓ | 640 | 7.c | even | 3 | 1 | inner |
322.3.p.a | ✓ | 640 | 23.d | odd | 22 | 1 | inner |
322.3.p.a | ✓ | 640 | 161.p | odd | 66 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(322, [\chi])\).