Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,3,Mod(3,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([11, 48]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.3");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.n (of order \(66\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.77386451240\) |
Analytic rank: | \(0\) |
Dimension: | \(640\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{66})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{66}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −1.11165 | + | 0.874209i | −4.74563 | + | 3.37935i | 0.471518 | − | 1.94362i | 1.84102 | − | 9.55212i | 2.32121 | − | 7.90531i | −6.00323 | + | 3.60017i | 1.17497 | + | 2.57283i | 8.15740 | − | 23.5693i | 6.30398 | + | 12.2280i |
3.2 | −1.11165 | + | 0.874209i | −4.15068 | + | 2.95569i | 0.471518 | − | 1.94362i | −0.473192 | + | 2.45515i | 2.03021 | − | 6.91425i | 6.83869 | + | 1.49408i | 1.17497 | + | 2.57283i | 5.54847 | − | 16.0313i | −1.62029 | − | 3.14293i |
3.3 | −1.11165 | + | 0.874209i | −3.78233 | + | 2.69339i | 0.471518 | − | 1.94362i | −1.41059 | + | 7.31886i | 1.85004 | − | 6.30064i | −2.81835 | − | 6.40756i | 1.17497 | + | 2.57283i | 4.10810 | − | 11.8696i | −4.83013 | − | 9.36914i |
3.4 | −1.11165 | + | 0.874209i | −2.80080 | + | 1.99444i | 0.471518 | − | 1.94362i | −0.737564 | + | 3.82685i | 1.36994 | − | 4.66560i | −4.16628 | + | 5.62513i | 1.17497 | + | 2.57283i | 0.923072 | − | 2.66704i | −2.52555 | − | 4.89889i |
3.5 | −1.11165 | + | 0.874209i | −2.44387 | + | 1.74027i | 0.471518 | − | 1.94362i | 0.735244 | − | 3.81481i | 1.19536 | − | 4.07102i | 1.44533 | − | 6.84916i | 1.17497 | + | 2.57283i | 0.000339994 | 0 | 0.000982349i | 2.51761 | + | 4.88347i |
3.6 | −1.11165 | + | 0.874209i | −1.89275 | + | 1.34782i | 0.471518 | − | 1.94362i | 0.837424 | − | 4.34497i | 0.925792 | − | 3.15296i | 6.26522 | + | 3.12203i | 1.17497 | + | 2.57283i | −1.17773 | + | 3.40283i | 2.86749 | + | 5.56216i |
3.7 | −1.11165 | + | 0.874209i | −1.37861 | + | 0.981707i | 0.471518 | − | 1.94362i | 0.380300 | − | 1.97318i | 0.674316 | − | 2.29651i | −6.71241 | − | 1.98583i | 1.17497 | + | 2.57283i | −2.00678 | + | 5.79822i | 1.30221 | + | 2.52594i |
3.8 | −1.11165 | + | 0.874209i | 0.504676 | − | 0.359378i | 0.471518 | − | 1.94362i | −1.00974 | + | 5.23903i | −0.246850 | + | 0.840694i | −4.18462 | + | 5.61151i | 1.17497 | + | 2.57283i | −2.81807 | + | 8.14227i | −3.45753 | − | 6.70667i |
3.9 | −1.11165 | + | 0.874209i | 0.506631 | − | 0.360771i | 0.471518 | − | 1.94362i | −0.655707 | + | 3.40213i | −0.247806 | + | 0.843951i | 4.62081 | − | 5.25815i | 1.17497 | + | 2.57283i | −2.81709 | + | 8.13945i | −2.24526 | − | 4.35519i |
3.10 | −1.11165 | + | 0.874209i | 1.30880 | − | 0.931990i | 0.471518 | − | 1.94362i | 0.541366 | − | 2.80887i | −0.640166 | + | 2.18021i | −0.762236 | + | 6.95838i | 1.17497 | + | 2.57283i | −2.09927 | + | 6.06543i | 1.85374 | + | 3.59574i |
3.11 | −1.11165 | + | 0.874209i | 2.04236 | − | 1.45436i | 0.471518 | − | 1.94362i | 1.52399 | − | 7.90719i | −0.998972 | + | 3.40219i | 6.56953 | − | 2.41687i | 1.17497 | + | 2.57283i | −0.887529 | + | 2.56435i | 5.21840 | + | 10.1223i |
3.12 | −1.11165 | + | 0.874209i | 2.28306 | − | 1.62576i | 0.471518 | − | 1.94362i | 1.59535 | − | 8.27748i | −1.11670 | + | 3.80313i | −6.01615 | − | 3.57854i | 1.17497 | + | 2.57283i | −0.374354 | + | 1.08162i | 5.46278 | + | 10.5963i |
3.13 | −1.11165 | + | 0.874209i | 2.48903 | − | 1.77243i | 0.471518 | − | 1.94362i | −1.06810 | + | 5.54185i | −1.21745 | + | 4.14625i | −4.56730 | − | 5.30470i | 1.17497 | + | 2.57283i | 0.110154 | − | 0.318270i | −3.65738 | − | 7.09432i |
3.14 | −1.11165 | + | 0.874209i | 3.23801 | − | 2.30578i | 0.471518 | − | 1.94362i | −1.00442 | + | 5.21145i | −1.58379 | + | 5.39391i | 5.49532 | + | 4.33606i | 1.17497 | + | 2.57283i | 2.22450 | − | 6.42726i | −3.43933 | − | 6.67136i |
3.15 | −1.11165 | + | 0.874209i | 3.86295 | − | 2.75080i | 0.471518 | − | 1.94362i | −1.13909 | + | 5.91015i | −1.88947 | + | 6.43494i | −6.16630 | − | 3.31311i | 1.17497 | + | 2.57283i | 4.41191 | − | 12.7474i | −3.90044 | − | 7.56580i |
3.16 | −1.11165 | + | 0.874209i | 4.39124 | − | 3.12699i | 0.471518 | − | 1.94362i | 0.316061 | − | 1.63988i | −2.14787 | + | 7.31497i | 5.65268 | − | 4.12882i | 1.17497 | + | 2.57283i | 6.56133 | − | 18.9577i | 1.08225 | + | 2.09927i |
3.17 | 1.11165 | − | 0.874209i | −4.41945 | + | 3.14707i | 0.471518 | − | 1.94362i | 0.0422989 | − | 0.219467i | −2.16166 | + | 7.36195i | −4.20941 | − | 5.59293i | −1.17497 | − | 2.57283i | 6.68382 | − | 19.3116i | −0.144839 | − | 0.280948i |
3.18 | 1.11165 | − | 0.874209i | −3.99264 | + | 2.84315i | 0.471518 | − | 1.94362i | −1.71132 | + | 8.87916i | −1.95290 | + | 6.65098i | 5.85687 | + | 3.83367i | −1.17497 | − | 2.57283i | 4.91410 | − | 14.1984i | 5.85986 | + | 11.3665i |
3.19 | 1.11165 | − | 0.874209i | −3.70995 | + | 2.64184i | 0.471518 | − | 1.94362i | 0.762734 | − | 3.95744i | −1.81463 | + | 6.18007i | −1.67925 | + | 6.79560i | −1.17497 | − | 2.57283i | 3.84078 | − | 11.0972i | −2.61174 | − | 5.06607i |
3.20 | 1.11165 | − | 0.874209i | −2.23862 | + | 1.59412i | 0.471518 | − | 1.94362i | −0.717669 | + | 3.72362i | −1.09497 | + | 3.72912i | −0.530757 | − | 6.97985i | −1.17497 | − | 2.57283i | −0.473387 | + | 1.36776i | 2.45743 | + | 4.76674i |
See next 80 embeddings (of 640 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
23.c | even | 11 | 1 | inner |
161.n | odd | 66 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.3.n.a | ✓ | 640 |
7.d | odd | 6 | 1 | inner | 322.3.n.a | ✓ | 640 |
23.c | even | 11 | 1 | inner | 322.3.n.a | ✓ | 640 |
161.n | odd | 66 | 1 | inner | 322.3.n.a | ✓ | 640 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.3.n.a | ✓ | 640 | 1.a | even | 1 | 1 | trivial |
322.3.n.a | ✓ | 640 | 7.d | odd | 6 | 1 | inner |
322.3.n.a | ✓ | 640 | 23.c | even | 11 | 1 | inner |
322.3.n.a | ✓ | 640 | 161.n | odd | 66 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(322, [\chi])\).