Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,3,Mod(15,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 17]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.15");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.j (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.77386451240\) |
Analytic rank: | \(0\) |
Dimension: | \(240\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15.1 | −0.201264 | + | 1.39982i | −2.39034 | − | 5.23411i | −1.91899 | − | 0.563465i | −4.63367 | + | 4.01509i | 7.80790 | − | 2.29261i | −1.43040 | + | 2.22575i | 1.17497 | − | 2.57283i | −15.7885 | + | 18.2209i | −4.68782 | − | 7.29439i |
15.2 | −0.201264 | + | 1.39982i | −1.55437 | − | 3.40360i | −1.91899 | − | 0.563465i | −2.57535 | + | 2.23155i | 5.07726 | − | 1.49082i | 1.43040 | − | 2.22575i | 1.17497 | − | 2.57283i | −3.27466 | + | 3.77916i | −2.60544 | − | 4.05415i |
15.3 | −0.201264 | + | 1.39982i | −1.40484 | − | 3.07618i | −1.91899 | − | 0.563465i | 3.31708 | − | 2.87427i | 4.58883 | − | 1.34740i | 1.43040 | − | 2.22575i | 1.17497 | − | 2.57283i | −1.59553 | + | 1.84134i | 3.35585 | + | 5.22180i |
15.4 | −0.201264 | + | 1.39982i | −0.989563 | − | 2.16684i | −1.91899 | − | 0.563465i | −0.242716 | + | 0.210315i | 3.23235 | − | 0.949103i | −1.43040 | + | 2.22575i | 1.17497 | − | 2.57283i | 2.17778 | − | 2.51329i | −0.245553 | − | 0.382088i |
15.5 | −0.201264 | + | 1.39982i | −0.429611 | − | 0.940716i | −1.91899 | − | 0.563465i | −5.46755 | + | 4.73766i | 1.40330 | − | 0.412045i | −1.43040 | + | 2.22575i | 1.17497 | − | 2.57283i | 5.19336 | − | 5.99346i | −5.53145 | − | 8.60710i |
15.6 | −0.201264 | + | 1.39982i | 0.156968 | + | 0.343713i | −1.91899 | − | 0.563465i | −1.96268 | + | 1.70068i | −0.512728 | + | 0.150551i | 1.43040 | − | 2.22575i | 1.17497 | − | 2.57283i | 5.80025 | − | 6.69384i | −1.98562 | − | 3.08969i |
15.7 | −0.201264 | + | 1.39982i | 0.393781 | + | 0.862259i | −1.91899 | − | 0.563465i | 1.48495 | − | 1.28672i | −1.28626 | + | 0.377680i | −1.43040 | + | 2.22575i | 1.17497 | − | 2.57283i | 5.30532 | − | 6.12266i | 1.50230 | + | 2.33763i |
15.8 | −0.201264 | + | 1.39982i | 0.551983 | + | 1.20867i | −1.91899 | − | 0.563465i | 3.97234 | − | 3.44205i | −1.80302 | + | 0.529414i | 1.43040 | − | 2.22575i | 1.17497 | − | 2.57283i | 4.73754 | − | 5.46741i | 4.01876 | + | 6.25332i |
15.9 | −0.201264 | + | 1.39982i | 1.12331 | + | 2.45971i | −1.91899 | − | 0.563465i | −5.83730 | + | 5.05805i | −3.66923 | + | 1.07738i | 1.43040 | − | 2.22575i | 1.17497 | − | 2.57283i | 1.10540 | − | 1.27570i | −5.90551 | − | 9.18916i |
15.10 | −0.201264 | + | 1.39982i | 1.74692 | + | 3.82522i | −1.91899 | − | 0.563465i | 1.96464 | − | 1.70237i | −5.70621 | + | 1.67549i | −1.43040 | + | 2.22575i | 1.17497 | − | 2.57283i | −5.68684 | + | 6.56296i | 1.98760 | + | 3.09276i |
15.11 | −0.201264 | + | 1.39982i | 1.82589 | + | 3.99814i | −1.91899 | − | 0.563465i | 6.64281 | − | 5.75602i | −5.96415 | + | 1.75123i | 1.43040 | − | 2.22575i | 1.17497 | − | 2.57283i | −6.75749 | + | 7.79856i | 6.72044 | + | 10.4572i |
15.12 | −0.201264 | + | 1.39982i | 2.36775 | + | 5.18465i | −1.91899 | − | 0.563465i | −5.63924 | + | 4.88643i | −7.73412 | + | 2.27094i | −1.43040 | + | 2.22575i | 1.17497 | − | 2.57283i | −15.3806 | + | 17.7502i | −5.70514 | − | 8.87738i |
15.13 | 0.201264 | − | 1.39982i | −2.22483 | − | 4.87171i | −1.91899 | − | 0.563465i | 3.64048 | − | 3.15450i | −7.26729 | + | 2.13387i | −1.43040 | + | 2.22575i | −1.17497 | + | 2.57283i | −12.8899 | + | 14.8757i | −3.68303 | − | 5.73090i |
15.14 | 0.201264 | − | 1.39982i | −1.80401 | − | 3.95022i | −1.91899 | − | 0.563465i | −1.53881 | + | 1.33339i | −5.89268 | + | 1.73025i | 1.43040 | − | 2.22575i | −1.17497 | + | 2.57283i | −6.45607 | + | 7.45070i | 1.55680 | + | 2.42242i |
15.15 | 0.201264 | − | 1.39982i | −1.79572 | − | 3.93208i | −1.91899 | − | 0.563465i | −5.39698 | + | 4.67651i | −5.86562 | + | 1.72230i | −1.43040 | + | 2.22575i | −1.17497 | + | 2.57283i | −6.34291 | + | 7.32011i | 5.46005 | + | 8.49600i |
15.16 | 0.201264 | − | 1.39982i | −0.881617 | − | 1.93047i | −1.91899 | − | 0.563465i | 5.29356 | − | 4.58689i | −2.87975 | + | 0.845571i | 1.43040 | − | 2.22575i | −1.17497 | + | 2.57283i | 2.94427 | − | 3.39787i | −5.35542 | − | 8.33319i |
15.17 | 0.201264 | − | 1.39982i | −0.141297 | − | 0.309398i | −1.91899 | − | 0.563465i | −2.21531 | + | 1.91957i | −0.461539 | + | 0.135520i | 1.43040 | − | 2.22575i | −1.17497 | + | 2.57283i | 5.81798 | − | 6.71431i | 2.24120 | + | 3.48737i |
15.18 | 0.201264 | − | 1.39982i | 0.0276705 | + | 0.0605900i | −1.91899 | − | 0.563465i | −7.31210 | + | 6.33597i | 0.0903841 | − | 0.0265392i | 1.43040 | − | 2.22575i | −1.17497 | + | 2.57283i | 5.89084 | − | 6.79839i | 7.39755 | + | 11.5108i |
15.19 | 0.201264 | − | 1.39982i | 0.120703 | + | 0.264303i | −1.91899 | − | 0.563465i | −0.332863 | + | 0.288428i | 0.394270 | − | 0.115768i | −1.43040 | + | 2.22575i | −1.17497 | + | 2.57283i | 5.83846 | − | 6.73794i | 0.336753 | + | 0.523998i |
15.20 | 0.201264 | − | 1.39982i | 0.465580 | + | 1.01948i | −1.91899 | − | 0.563465i | −2.47539 | + | 2.14494i | 1.52079 | − | 0.446544i | −1.43040 | + | 2.22575i | −1.17497 | + | 2.57283i | 5.07118 | − | 5.85245i | 2.50432 | + | 3.89680i |
See next 80 embeddings (of 240 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.d | odd | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.3.j.a | ✓ | 240 |
23.d | odd | 22 | 1 | inner | 322.3.j.a | ✓ | 240 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.3.j.a | ✓ | 240 | 1.a | even | 1 | 1 | trivial |
322.3.j.a | ✓ | 240 | 23.d | odd | 22 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(322, [\chi])\).