Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,3,Mod(47,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.47");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.h (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.77386451240\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | −0.707107 | + | 1.22474i | −4.33276 | + | 2.50152i | −1.00000 | − | 1.73205i | 1.21736 | + | 0.702845i | − | 7.07537i | 6.79744 | + | 1.67177i | 2.82843 | 8.01522 | − | 13.8828i | −1.72161 | + | 0.993973i | |||
47.2 | −0.707107 | + | 1.22474i | −3.83561 | + | 2.21449i | −1.00000 | − | 1.73205i | −5.49758 | − | 3.17403i | − | 6.26352i | −0.781511 | − | 6.95624i | 2.82843 | 5.30792 | − | 9.19359i | 7.77475 | − | 4.48875i | |||
47.3 | −0.707107 | + | 1.22474i | −3.06700 | + | 1.77073i | −1.00000 | − | 1.73205i | 4.80747 | + | 2.77559i | − | 5.00838i | 6.67083 | − | 2.12131i | 2.82843 | 1.77098 | − | 3.06742i | −6.79879 | + | 3.92528i | |||
47.4 | −0.707107 | + | 1.22474i | −2.55289 | + | 1.47391i | −1.00000 | − | 1.73205i | 1.43645 | + | 0.829334i | − | 4.16885i | −2.32604 | + | 6.60224i | 2.82843 | −0.155180 | + | 0.268780i | −2.03145 | + | 1.17286i | |||
47.5 | −0.707107 | + | 1.22474i | −1.98245 | + | 1.14457i | −1.00000 | − | 1.73205i | −5.36395 | − | 3.09688i | − | 3.23733i | −6.39638 | + | 2.84365i | 2.82843 | −1.87993 | + | 3.25613i | 7.58578 | − | 4.37965i | |||
47.6 | −0.707107 | + | 1.22474i | −0.543801 | + | 0.313964i | −1.00000 | − | 1.73205i | 7.19802 | + | 4.15578i | − | 0.888023i | −5.94482 | − | 3.69583i | 2.82843 | −4.30285 | + | 7.45276i | −10.1795 | + | 5.87716i | |||
47.7 | −0.707107 | + | 1.22474i | −0.174775 | + | 0.100906i | −1.00000 | − | 1.73205i | 0.489698 | + | 0.282727i | − | 0.285406i | −4.73142 | − | 5.15885i | 2.82843 | −4.47964 | + | 7.75896i | −0.692537 | + | 0.399837i | |||
47.8 | −0.707107 | + | 1.22474i | −0.142548 | + | 0.0823001i | −1.00000 | − | 1.73205i | −1.73588 | − | 1.00221i | − | 0.232780i | 5.04685 | − | 4.85071i | 2.82843 | −4.48645 | + | 7.77077i | 2.45491 | − | 1.41734i | |||
47.9 | −0.707107 | + | 1.22474i | 1.39285 | − | 0.804161i | −1.00000 | − | 1.73205i | 7.16669 | + | 4.13769i | 2.27451i | 1.79332 | + | 6.76639i | 2.82843 | −3.20665 | + | 5.55408i | −10.1352 | + | 5.85157i | ||||
47.10 | −0.707107 | + | 1.22474i | 2.89183 | − | 1.66960i | −1.00000 | − | 1.73205i | 1.32786 | + | 0.766641i | 4.72234i | −1.25907 | + | 6.88584i | 2.82843 | 1.07512 | − | 1.86217i | −1.87788 | + | 1.08419i | ||||
47.11 | −0.707107 | + | 1.22474i | 3.13212 | − | 1.80833i | −1.00000 | − | 1.73205i | −6.13932 | − | 3.54454i | 5.11474i | −6.88042 | − | 1.28836i | 2.82843 | 2.04013 | − | 3.53361i | 8.68231 | − | 5.01273i | ||||
47.12 | −0.707107 | + | 1.22474i | 3.51603 | − | 2.02998i | −1.00000 | − | 1.73205i | 6.22999 | + | 3.59689i | 5.74166i | 6.30679 | − | 3.03716i | 2.82843 | 3.74166 | − | 6.48074i | −8.81054 | + | 5.08677i | ||||
47.13 | −0.707107 | + | 1.22474i | 3.84786 | − | 2.22156i | −1.00000 | − | 1.73205i | 1.14087 | + | 0.658680i | 6.28352i | −3.44155 | − | 6.09555i | 2.82843 | 5.37066 | − | 9.30226i | −1.61343 | + | 0.931514i | ||||
47.14 | −0.707107 | + | 1.22474i | 4.85114 | − | 2.80080i | −1.00000 | − | 1.73205i | −3.79239 | − | 2.18954i | 7.92187i | 5.56018 | + | 4.25258i | 2.82843 | 11.1890 | − | 19.3799i | 5.36325 | − | 3.09647i | ||||
47.15 | 0.707107 | − | 1.22474i | −4.90423 | + | 2.83146i | −1.00000 | − | 1.73205i | −5.92198 | − | 3.41905i | 8.00857i | −6.82230 | + | 1.56724i | −2.82843 | 11.5343 | − | 19.9780i | −8.37494 | + | 4.83527i | ||||
47.16 | 0.707107 | − | 1.22474i | −3.78100 | + | 2.18296i | −1.00000 | − | 1.73205i | −0.607733 | − | 0.350875i | 6.17434i | 6.99651 | + | 0.221121i | −2.82843 | 5.03062 | − | 8.71328i | −0.859464 | + | 0.496212i | ||||
47.17 | 0.707107 | − | 1.22474i | −2.69391 | + | 1.55533i | −1.00000 | − | 1.73205i | −3.08901 | − | 1.78344i | 4.39913i | 5.18183 | + | 4.70623i | −2.82843 | 0.338087 | − | 0.585585i | −4.36852 | + | 2.52217i | ||||
47.18 | 0.707107 | − | 1.22474i | −2.50244 | + | 1.44479i | −1.00000 | − | 1.73205i | 4.59492 | + | 2.65288i | 4.08647i | −6.49312 | + | 2.61521i | −2.82843 | −0.325186 | + | 0.563239i | 6.49820 | − | 3.75174i | ||||
47.19 | 0.707107 | − | 1.22474i | −1.19086 | + | 0.687541i | −1.00000 | − | 1.73205i | −8.55945 | − | 4.94180i | 1.94466i | 1.07028 | − | 6.91770i | −2.82843 | −3.55458 | + | 6.15671i | −12.1049 | + | 6.98877i | ||||
47.20 | 0.707107 | − | 1.22474i | −0.935211 | + | 0.539944i | −1.00000 | − | 1.73205i | 6.24644 | + | 3.60638i | 1.52719i | 6.87255 | − | 1.32966i | −2.82843 | −3.91692 | + | 6.78430i | 8.83380 | − | 5.10020i | ||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.3.h.a | ✓ | 56 |
7.d | odd | 6 | 1 | inner | 322.3.h.a | ✓ | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.3.h.a | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
322.3.h.a | ✓ | 56 | 7.d | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(322, [\chi])\).