Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,3,Mod(137,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.137");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.f (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.77386451240\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
137.1 | −0.707107 | − | 1.22474i | −2.51318 | + | 4.35296i | −1.00000 | + | 1.73205i | −0.546184 | + | 0.315339i | 7.10835 | −6.22568 | − | 3.20014i | 2.82843 | −8.13216 | − | 14.0853i | 0.772420 | + | 0.445957i | ||||
137.2 | −0.707107 | − | 1.22474i | −2.51318 | + | 4.35296i | −1.00000 | + | 1.73205i | 0.546184 | − | 0.315339i | 7.10835 | 6.22568 | + | 3.20014i | 2.82843 | −8.13216 | − | 14.0853i | −0.772420 | − | 0.445957i | ||||
137.3 | −0.707107 | − | 1.22474i | −1.54948 | + | 2.68377i | −1.00000 | + | 1.73205i | −7.12361 | + | 4.11282i | 4.38258 | −5.34633 | + | 4.51849i | 2.82843 | −0.301758 | − | 0.522661i | 10.0743 | + | 5.81640i | ||||
137.4 | −0.707107 | − | 1.22474i | −1.54948 | + | 2.68377i | −1.00000 | + | 1.73205i | 7.12361 | − | 4.11282i | 4.38258 | 5.34633 | − | 4.51849i | 2.82843 | −0.301758 | − | 0.522661i | −10.0743 | − | 5.81640i | ||||
137.5 | −0.707107 | − | 1.22474i | −1.32093 | + | 2.28791i | −1.00000 | + | 1.73205i | −1.64114 | + | 0.947513i | 3.73614 | 1.24703 | − | 6.88803i | 2.82843 | 1.01031 | + | 1.74991i | 2.32092 | + | 1.33999i | ||||
137.6 | −0.707107 | − | 1.22474i | −1.32093 | + | 2.28791i | −1.00000 | + | 1.73205i | 1.64114 | − | 0.947513i | 3.73614 | −1.24703 | + | 6.88803i | 2.82843 | 1.01031 | + | 1.74991i | −2.32092 | − | 1.33999i | ||||
137.7 | −0.707107 | − | 1.22474i | 0.0188989 | − | 0.0327339i | −1.00000 | + | 1.73205i | −2.42489 | + | 1.40001i | −0.0534542 | 6.92977 | + | 0.989096i | 2.82843 | 4.49929 | + | 7.79299i | 3.42931 | + | 1.97992i | ||||
137.8 | −0.707107 | − | 1.22474i | 0.0188989 | − | 0.0327339i | −1.00000 | + | 1.73205i | 2.42489 | − | 1.40001i | −0.0534542 | −6.92977 | − | 0.989096i | 2.82843 | 4.49929 | + | 7.79299i | −3.42931 | − | 1.97992i | ||||
137.9 | −0.707107 | − | 1.22474i | 0.304956 | − | 0.528200i | −1.00000 | + | 1.73205i | −7.28595 | + | 4.20655i | −0.862547 | 1.93587 | − | 6.72699i | 2.82843 | 4.31400 | + | 7.47207i | 10.3039 | + | 5.94895i | ||||
137.10 | −0.707107 | − | 1.22474i | 0.304956 | − | 0.528200i | −1.00000 | + | 1.73205i | 7.28595 | − | 4.20655i | −0.862547 | −1.93587 | + | 6.72699i | 2.82843 | 4.31400 | + | 7.47207i | −10.3039 | − | 5.94895i | ||||
137.11 | −0.707107 | − | 1.22474i | 1.29385 | − | 2.24101i | −1.00000 | + | 1.73205i | −1.29217 | + | 0.746033i | −3.65956 | 6.89147 | + | 1.22785i | 2.82843 | 1.15191 | + | 1.99516i | 1.82740 | + | 1.05505i | ||||
137.12 | −0.707107 | − | 1.22474i | 1.29385 | − | 2.24101i | −1.00000 | + | 1.73205i | 1.29217 | − | 0.746033i | −3.65956 | −6.89147 | − | 1.22785i | 2.82843 | 1.15191 | + | 1.99516i | −1.82740 | − | 1.05505i | ||||
137.13 | −0.707107 | − | 1.22474i | 1.66831 | − | 2.88959i | −1.00000 | + | 1.73205i | −5.05968 | + | 2.92121i | −4.71868 | −3.03583 | + | 6.30743i | 2.82843 | −1.06649 | − | 1.84722i | 7.15547 | + | 4.13121i | ||||
137.14 | −0.707107 | − | 1.22474i | 1.66831 | − | 2.88959i | −1.00000 | + | 1.73205i | 5.05968 | − | 2.92121i | −4.71868 | 3.03583 | − | 6.30743i | 2.82843 | −1.06649 | − | 1.84722i | −7.15547 | − | 4.13121i | ||||
137.15 | −0.707107 | − | 1.22474i | 2.80468 | − | 4.85785i | −1.00000 | + | 1.73205i | −5.52581 | + | 3.19033i | −7.93283 | −2.28263 | − | 6.61737i | 2.82843 | −11.2325 | − | 19.4552i | 7.81468 | + | 4.51181i | ||||
137.16 | −0.707107 | − | 1.22474i | 2.80468 | − | 4.85785i | −1.00000 | + | 1.73205i | 5.52581 | − | 3.19033i | −7.93283 | 2.28263 | + | 6.61737i | 2.82843 | −11.2325 | − | 19.4552i | −7.81468 | − | 4.51181i | ||||
137.17 | 0.707107 | + | 1.22474i | −2.94029 | + | 5.09274i | −1.00000 | + | 1.73205i | −2.72860 | + | 1.57536i | −8.31641 | −4.41595 | + | 5.43133i | −2.82843 | −12.7907 | − | 22.1541i | −3.85882 | − | 2.22789i | ||||
137.18 | 0.707107 | + | 1.22474i | −2.94029 | + | 5.09274i | −1.00000 | + | 1.73205i | 2.72860 | − | 1.57536i | −8.31641 | 4.41595 | − | 5.43133i | −2.82843 | −12.7907 | − | 22.1541i | 3.85882 | + | 2.22789i | ||||
137.19 | 0.707107 | + | 1.22474i | −1.53650 | + | 2.66130i | −1.00000 | + | 1.73205i | −6.58899 | + | 3.80416i | −4.34588 | 2.27828 | + | 6.61887i | −2.82843 | −0.221676 | − | 0.383954i | −9.31824 | − | 5.37989i | ||||
137.20 | 0.707107 | + | 1.22474i | −1.53650 | + | 2.66130i | −1.00000 | + | 1.73205i | 6.58899 | − | 3.80416i | −4.34588 | −2.27828 | − | 6.61887i | −2.82843 | −0.221676 | − | 0.383954i | 9.31824 | + | 5.37989i | ||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
23.b | odd | 2 | 1 | inner |
161.f | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.3.f.a | ✓ | 64 |
7.c | even | 3 | 1 | inner | 322.3.f.a | ✓ | 64 |
23.b | odd | 2 | 1 | inner | 322.3.f.a | ✓ | 64 |
161.f | odd | 6 | 1 | inner | 322.3.f.a | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.3.f.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
322.3.f.a | ✓ | 64 | 7.c | even | 3 | 1 | inner |
322.3.f.a | ✓ | 64 | 23.b | odd | 2 | 1 | inner |
322.3.f.a | ✓ | 64 | 161.f | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(322, [\chi])\).