Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,3,Mod(139,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.139");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.77386451240\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
139.1 | −1.41421 | − | 5.78135i | 2.00000 | − | 5.81041i | 8.17607i | 2.60526 | + | 6.49712i | −2.82843 | −24.4240 | 8.21716i | ||||||||||||||
139.2 | −1.41421 | − | 5.04789i | 2.00000 | 0.579996i | 7.13880i | 5.70567 | − | 4.05528i | −2.82843 | −16.4812 | − | 0.820238i | ||||||||||||||
139.3 | −1.41421 | − | 3.82674i | 2.00000 | 7.51239i | 5.41183i | −4.12978 | + | 5.65198i | −2.82843 | −5.64396 | − | 10.6241i | ||||||||||||||
139.4 | −1.41421 | − | 3.46826i | 2.00000 | 2.85039i | 4.90486i | −6.91362 | + | 1.09631i | −2.82843 | −3.02883 | − | 4.03106i | ||||||||||||||
139.5 | −1.41421 | − | 3.38816i | 2.00000 | − | 5.67755i | 4.79158i | −6.01256 | − | 3.58456i | −2.82843 | −2.47960 | 8.02927i | ||||||||||||||
139.6 | −1.41421 | − | 2.45755i | 2.00000 | 1.94523i | 3.47550i | 6.91966 | + | 1.05748i | −2.82843 | 2.96047 | − | 2.75098i | ||||||||||||||
139.7 | −1.41421 | − | 0.808444i | 2.00000 | − | 8.92170i | 1.14331i | 0.0318752 | + | 6.99993i | −2.82843 | 8.34642 | 12.6172i | ||||||||||||||
139.8 | −1.41421 | − | 0.499241i | 2.00000 | 1.45903i | 0.706034i | 0.207708 | − | 6.99692i | −2.82843 | 8.75076 | − | 2.06338i | ||||||||||||||
139.9 | −1.41421 | 0.499241i | 2.00000 | − | 1.45903i | − | 0.706034i | 0.207708 | + | 6.99692i | −2.82843 | 8.75076 | 2.06338i | ||||||||||||||
139.10 | −1.41421 | 0.808444i | 2.00000 | 8.92170i | − | 1.14331i | 0.0318752 | − | 6.99993i | −2.82843 | 8.34642 | − | 12.6172i | ||||||||||||||
139.11 | −1.41421 | 2.45755i | 2.00000 | − | 1.94523i | − | 3.47550i | 6.91966 | − | 1.05748i | −2.82843 | 2.96047 | 2.75098i | ||||||||||||||
139.12 | −1.41421 | 3.38816i | 2.00000 | 5.67755i | − | 4.79158i | −6.01256 | + | 3.58456i | −2.82843 | −2.47960 | − | 8.02927i | ||||||||||||||
139.13 | −1.41421 | 3.46826i | 2.00000 | − | 2.85039i | − | 4.90486i | −6.91362 | − | 1.09631i | −2.82843 | −3.02883 | 4.03106i | ||||||||||||||
139.14 | −1.41421 | 3.82674i | 2.00000 | − | 7.51239i | − | 5.41183i | −4.12978 | − | 5.65198i | −2.82843 | −5.64396 | 10.6241i | ||||||||||||||
139.15 | −1.41421 | 5.04789i | 2.00000 | − | 0.579996i | − | 7.13880i | 5.70567 | + | 4.05528i | −2.82843 | −16.4812 | 0.820238i | ||||||||||||||
139.16 | −1.41421 | 5.78135i | 2.00000 | 5.81041i | − | 8.17607i | 2.60526 | − | 6.49712i | −2.82843 | −24.4240 | − | 8.21716i | ||||||||||||||
139.17 | 1.41421 | − | 5.72743i | 2.00000 | 1.63680i | − | 8.09981i | −6.95198 | + | 0.818518i | 2.82843 | −23.8034 | 2.31478i | ||||||||||||||
139.18 | 1.41421 | − | 4.95679i | 2.00000 | 9.92413i | − | 7.00996i | 6.78730 | + | 1.71249i | 2.82843 | −15.5698 | 14.0348i | ||||||||||||||
139.19 | 1.41421 | − | 4.52542i | 2.00000 | − | 5.90217i | − | 6.39991i | 4.60838 | − | 5.26905i | 2.82843 | −11.4794 | − | 8.34694i | ||||||||||||
139.20 | 1.41421 | − | 3.31400i | 2.00000 | − | 9.29762i | − | 4.68671i | −4.96652 | + | 4.93292i | 2.82843 | −1.98262 | − | 13.1488i | ||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.3.b.a | ✓ | 32 |
7.b | odd | 2 | 1 | inner | 322.3.b.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.3.b.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
322.3.b.a | ✓ | 32 | 7.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(322, [\chi])\).