Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,2,Mod(5,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([55, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.o (of order \(66\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.57118294509\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{66})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{66}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | 0.723734 | − | 0.690079i | −0.618301 | + | 3.20805i | 0.0475819 | − | 0.998867i | 2.71652 | + | 2.13629i | 1.76632 | + | 2.74845i | 2.21316 | − | 1.44980i | −0.654861 | − | 0.755750i | −7.12418 | − | 2.85209i | 3.44025 | − | 0.328504i |
5.2 | 0.723734 | − | 0.690079i | −0.290209 | + | 1.50575i | 0.0475819 | − | 0.998867i | −0.209478 | − | 0.164735i | 0.829051 | + | 1.29003i | 0.478644 | + | 2.60210i | −0.654861 | − | 0.755750i | 0.602045 | + | 0.241023i | −0.265286 | + | 0.0253318i |
5.3 | 0.723734 | − | 0.690079i | −0.219533 | + | 1.13904i | 0.0475819 | − | 0.998867i | −0.936223 | − | 0.736254i | 0.627147 | + | 0.975860i | 0.155114 | − | 2.64120i | −0.654861 | − | 0.755750i | 1.53588 | + | 0.614873i | −1.18565 | + | 0.113216i |
5.4 | 0.723734 | − | 0.690079i | 0.141475 | − | 0.734043i | 0.0475819 | − | 0.998867i | 1.50572 | + | 1.18411i | −0.404157 | − | 0.628881i | 2.62746 | + | 0.310594i | −0.654861 | − | 0.755750i | 2.26630 | + | 0.907289i | 1.90687 | − | 0.182084i |
5.5 | 0.723734 | − | 0.690079i | 0.223563 | − | 1.15995i | 0.0475819 | − | 0.998867i | −2.96167 | − | 2.32908i | −0.638660 | − | 0.993774i | −1.92017 | + | 1.82015i | −0.654861 | − | 0.755750i | 1.48959 | + | 0.596343i | −3.75071 | + | 0.358150i |
5.6 | 0.723734 | − | 0.690079i | 0.340605 | − | 1.76722i | 0.0475819 | − | 0.998867i | −0.793626 | − | 0.624115i | −0.973017 | − | 1.51404i | −0.911188 | − | 2.48390i | −0.654861 | − | 0.755750i | −0.221966 | − | 0.0888616i | −1.00506 | + | 0.0959718i |
5.7 | 0.723734 | − | 0.690079i | 0.410973 | − | 2.13233i | 0.0475819 | − | 0.998867i | 3.20038 | + | 2.51681i | −1.17404 | − | 1.82684i | −2.40619 | − | 1.10010i | −0.654861 | − | 0.755750i | −1.59282 | − | 0.637669i | 4.05302 | − | 0.387017i |
5.8 | 0.723734 | − | 0.690079i | 0.640458 | − | 3.32301i | 0.0475819 | − | 0.998867i | −0.463735 | − | 0.364685i | −1.82962 | − | 2.84694i | 1.94583 | + | 1.79269i | −0.654861 | − | 0.755750i | −7.84710 | − | 3.14151i | −0.587283 | + | 0.0560787i |
17.1 | −0.995472 | + | 0.0950560i | −2.26151 | − | 2.37180i | 0.981929 | − | 0.189251i | 2.68625 | + | 1.38486i | 2.47672 | + | 2.14609i | 2.03190 | − | 1.69451i | −0.959493 | + | 0.281733i | −0.368277 | + | 7.73108i | −2.80573 | − | 1.12324i |
17.2 | −0.995472 | + | 0.0950560i | −1.67171 | − | 1.75324i | 0.981929 | − | 0.189251i | −3.49473 | − | 1.80166i | 1.83079 | + | 1.58639i | 2.30654 | − | 1.29610i | −0.959493 | + | 0.281733i | −0.136486 | + | 2.86520i | 3.65017 | + | 1.46131i |
17.3 | −0.995472 | + | 0.0950560i | −1.02117 | − | 1.07097i | 0.981929 | − | 0.189251i | 0.591499 | + | 0.304939i | 1.11835 | + | 0.969052i | −2.51796 | − | 0.812315i | −0.959493 | + | 0.281733i | 0.0385527 | − | 0.809321i | −0.617807 | − | 0.247332i |
17.4 | −0.995472 | + | 0.0950560i | −0.855603 | − | 0.897331i | 0.981929 | − | 0.189251i | −2.48995 | − | 1.28366i | 0.937026 | + | 0.811937i | −1.18187 | + | 2.36710i | −0.959493 | + | 0.281733i | 0.0696000 | − | 1.46108i | 2.60070 | + | 1.04116i |
17.5 | −0.995472 | + | 0.0950560i | 0.322555 | + | 0.338286i | 0.981929 | − | 0.189251i | 0.680578 | + | 0.350862i | −0.353250 | − | 0.306093i | −0.141341 | − | 2.64197i | −0.959493 | + | 0.281733i | 0.132350 | − | 2.77837i | −0.710848 | − | 0.284581i |
17.6 | −0.995472 | + | 0.0950560i | 0.519459 | + | 0.544793i | 0.981929 | − | 0.189251i | 2.76848 | + | 1.42725i | −0.568893 | − | 0.492948i | 2.09567 | + | 1.61498i | −0.959493 | + | 0.281733i | 0.115784 | − | 2.43061i | −2.89162 | − | 1.15763i |
17.7 | −0.995472 | + | 0.0950560i | 1.77845 | + | 1.86518i | 0.981929 | − | 0.189251i | −1.66354 | − | 0.857616i | −1.94769 | − | 1.68768i | 2.61594 | − | 0.396066i | −0.959493 | + | 0.281733i | −0.173283 | + | 3.63765i | 1.73753 | + | 0.695603i |
17.8 | −0.995472 | + | 0.0950560i | 2.19647 | + | 2.30360i | 0.981929 | − | 0.189251i | 1.78887 | + | 0.922229i | −2.40550 | − | 2.08438i | −2.58627 | + | 0.557860i | −0.959493 | + | 0.281733i | −0.339309 | + | 7.12298i | −1.86844 | − | 0.748010i |
19.1 | −0.995472 | − | 0.0950560i | −2.26151 | + | 2.37180i | 0.981929 | + | 0.189251i | 2.68625 | − | 1.38486i | 2.47672 | − | 2.14609i | 2.03190 | + | 1.69451i | −0.959493 | − | 0.281733i | −0.368277 | − | 7.73108i | −2.80573 | + | 1.12324i |
19.2 | −0.995472 | − | 0.0950560i | −1.67171 | + | 1.75324i | 0.981929 | + | 0.189251i | −3.49473 | + | 1.80166i | 1.83079 | − | 1.58639i | 2.30654 | + | 1.29610i | −0.959493 | − | 0.281733i | −0.136486 | − | 2.86520i | 3.65017 | − | 1.46131i |
19.3 | −0.995472 | − | 0.0950560i | −1.02117 | + | 1.07097i | 0.981929 | + | 0.189251i | 0.591499 | − | 0.304939i | 1.11835 | − | 0.969052i | −2.51796 | + | 0.812315i | −0.959493 | − | 0.281733i | 0.0385527 | + | 0.809321i | −0.617807 | + | 0.247332i |
19.4 | −0.995472 | − | 0.0950560i | −0.855603 | + | 0.897331i | 0.981929 | + | 0.189251i | −2.48995 | + | 1.28366i | 0.937026 | − | 0.811937i | −1.18187 | − | 2.36710i | −0.959493 | − | 0.281733i | 0.0696000 | + | 1.46108i | 2.60070 | − | 1.04116i |
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
23.d | odd | 22 | 1 | inner |
161.o | even | 66 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.2.o.b | ✓ | 160 |
7.d | odd | 6 | 1 | inner | 322.2.o.b | ✓ | 160 |
23.d | odd | 22 | 1 | inner | 322.2.o.b | ✓ | 160 |
161.o | even | 66 | 1 | inner | 322.2.o.b | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.2.o.b | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
322.2.o.b | ✓ | 160 | 7.d | odd | 6 | 1 | inner |
322.2.o.b | ✓ | 160 | 23.d | odd | 22 | 1 | inner |
322.2.o.b | ✓ | 160 | 161.o | even | 66 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{160} + 6 T_{3}^{159} + 24 T_{3}^{158} + 72 T_{3}^{157} + 118 T_{3}^{156} + 93 T_{3}^{155} + \cdots + 39501840932401 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).