Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,2,Mod(9,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([22, 30]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.m (of order \(33\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.57118294509\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{33})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{33}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | 0.235759 | − | 0.971812i | −1.01715 | + | 2.93887i | −0.888835 | − | 0.458227i | 3.44290 | + | 1.37833i | 2.61623 | + | 1.68135i | −1.72354 | + | 2.00734i | −0.654861 | + | 0.755750i | −5.24421 | − | 4.12409i | 2.15117 | − | 3.02089i |
9.2 | 0.235759 | − | 0.971812i | −0.728804 | + | 2.10574i | −0.888835 | − | 0.458227i | 0.0766304 | + | 0.0306782i | 1.87456 | + | 1.20471i | 2.09067 | − | 1.62144i | −0.654861 | + | 0.755750i | −1.54483 | − | 1.21487i | 0.0478797 | − | 0.0672376i |
9.3 | 0.235759 | − | 0.971812i | −0.526198 | + | 1.52035i | −0.888835 | − | 0.458227i | −1.39502 | − | 0.558482i | 1.35344 | + | 0.869801i | −1.65886 | − | 2.06112i | −0.654861 | + | 0.755750i | 0.323581 | + | 0.254467i | −0.871628 | + | 1.22403i |
9.4 | 0.235759 | − | 0.971812i | −0.270988 | + | 0.782968i | −0.888835 | − | 0.458227i | −2.81356 | − | 1.12638i | 0.697010 | + | 0.447941i | −1.54703 | + | 2.14632i | −0.654861 | + | 0.755750i | 1.81855 | + | 1.43013i | −1.75795 | + | 2.46869i |
9.5 | 0.235759 | − | 0.971812i | 0.0566868 | − | 0.163786i | −0.888835 | − | 0.458227i | 1.92505 | + | 0.770673i | −0.145804 | − | 0.0937029i | 1.33776 | + | 2.28263i | −0.654861 | + | 0.755750i | 2.33455 | + | 1.83591i | 1.20280 | − | 1.68909i |
9.6 | 0.235759 | − | 0.971812i | 0.117329 | − | 0.339001i | −0.888835 | − | 0.458227i | 3.25700 | + | 1.30391i | −0.301784 | − | 0.193945i | −1.01171 | − | 2.44468i | −0.654861 | + | 0.755750i | 2.25700 | + | 1.77493i | 2.03502 | − | 2.85778i |
9.7 | 0.235759 | − | 0.971812i | 0.790008 | − | 2.28258i | −0.888835 | − | 0.458227i | −1.30805 | − | 0.523663i | −2.03198 | − | 1.30588i | −1.85213 | + | 1.88934i | −0.654861 | + | 0.755750i | −2.22789 | − | 1.75203i | −0.817286 | + | 1.14772i |
9.8 | 0.235759 | − | 0.971812i | 0.951480 | − | 2.74912i | −0.888835 | − | 0.458227i | 1.74443 | + | 0.698364i | −2.44731 | − | 1.57279i | 2.57549 | − | 0.605703i | −0.654861 | + | 0.755750i | −4.29420 | − | 3.37699i | 1.08994 | − | 1.53061i |
25.1 | 0.0475819 | − | 0.998867i | −2.89782 | − | 1.16011i | −0.995472 | − | 0.0950560i | 0.340081 | + | 1.40183i | −1.29668 | + | 2.83934i | 0.632305 | + | 2.56908i | −0.142315 | + | 0.989821i | 4.88031 | + | 4.65336i | 1.41643 | − | 0.272994i |
25.2 | 0.0475819 | − | 0.998867i | −1.82051 | − | 0.728823i | −0.995472 | − | 0.0950560i | 0.792140 | + | 3.26525i | −0.814621 | + | 1.78377i | −0.938065 | − | 2.47387i | −0.142315 | + | 0.989821i | 0.611881 | + | 0.583427i | 3.29924 | − | 0.635876i |
25.3 | 0.0475819 | − | 0.998867i | −1.43191 | − | 0.573252i | −0.995472 | − | 0.0950560i | −0.790592 | − | 3.25886i | −0.640736 | + | 1.40302i | −1.18728 | + | 2.36439i | −0.142315 | + | 0.989821i | −0.449440 | − | 0.428541i | −3.29279 | + | 0.634633i |
25.4 | 0.0475819 | − | 0.998867i | −0.547945 | − | 0.219364i | −0.995472 | − | 0.0950560i | 0.328236 | + | 1.35301i | −0.245188 | + | 0.536886i | −2.51182 | − | 0.831108i | −0.142315 | + | 0.989821i | −1.91908 | − | 1.82984i | 1.36709 | − | 0.263485i |
25.5 | 0.0475819 | − | 0.998867i | 0.0359061 | + | 0.0143747i | −0.995472 | − | 0.0950560i | −0.272928 | − | 1.12502i | 0.0160669 | − | 0.0351815i | 2.64127 | + | 0.153951i | −0.142315 | + | 0.989821i | −2.17012 | − | 2.06920i | −1.13673 | + | 0.219088i |
25.6 | 0.0475819 | − | 0.998867i | 1.23138 | + | 0.492969i | −0.995472 | − | 0.0950560i | −0.578323 | − | 2.38388i | 0.551002 | − | 1.20653i | −0.901962 | − | 2.48726i | −0.142315 | + | 0.989821i | −0.897930 | − | 0.856175i | −2.40870 | + | 0.464239i |
25.7 | 0.0475819 | − | 0.998867i | 1.23362 | + | 0.493867i | −0.995472 | − | 0.0950560i | 0.559388 | + | 2.30583i | 0.552006 | − | 1.20872i | 2.06645 | + | 1.65221i | −0.142315 | + | 0.989821i | −0.893289 | − | 0.851749i | 2.32983 | − | 0.449038i |
25.8 | 0.0475819 | − | 0.998867i | 2.63530 | + | 1.05502i | −0.995472 | − | 0.0950560i | 0.632138 | + | 2.60571i | 1.17921 | − | 2.58212i | −2.35864 | + | 1.19868i | −0.142315 | + | 0.989821i | 3.66057 | + | 3.49034i | 2.63283 | − | 0.507437i |
39.1 | 0.981929 | + | 0.189251i | −0.129433 | − | 2.71714i | 0.928368 | + | 0.371662i | −0.147211 | + | 0.206729i | 0.387127 | − | 2.69253i | 2.54468 | − | 0.724279i | 0.841254 | + | 0.540641i | −4.37966 | + | 0.418207i | −0.183675 | + | 0.175134i |
39.2 | 0.981929 | + | 0.189251i | −0.0895616 | − | 1.88013i | 0.928368 | + | 0.371662i | 2.49808 | − | 3.50806i | 0.267874 | − | 1.86310i | 0.0372373 | + | 2.64549i | 0.841254 | + | 0.540641i | −0.540450 | + | 0.0516067i | 3.11684 | − | 2.97190i |
39.3 | 0.981929 | + | 0.189251i | −0.0465947 | − | 0.978143i | 0.928368 | + | 0.371662i | −1.87411 | + | 2.63183i | 0.139362 | − | 0.969285i | 0.306605 | + | 2.62793i | 0.841254 | + | 0.540641i | 2.03182 | − | 0.194016i | −2.33832 | + | 2.22959i |
39.4 | 0.981929 | + | 0.189251i | −0.0119548 | − | 0.250962i | 0.928368 | + | 0.371662i | 0.931525 | − | 1.30814i | 0.0357562 | − | 0.248690i | −2.50636 | − | 0.847436i | 0.841254 | + | 0.540641i | 2.92358 | − | 0.279168i | 1.16226 | − | 1.10821i |
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
23.c | even | 11 | 1 | inner |
161.m | even | 33 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.2.m.b | ✓ | 160 |
7.c | even | 3 | 1 | inner | 322.2.m.b | ✓ | 160 |
23.c | even | 11 | 1 | inner | 322.2.m.b | ✓ | 160 |
161.m | even | 33 | 1 | inner | 322.2.m.b | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.2.m.b | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
322.2.m.b | ✓ | 160 | 7.c | even | 3 | 1 | inner |
322.2.m.b | ✓ | 160 | 23.c | even | 11 | 1 | inner |
322.2.m.b | ✓ | 160 | 161.m | even | 33 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{160} + 2 T_{3}^{159} - 2 T_{3}^{158} - 2 T_{3}^{157} - 36 T_{3}^{156} - 83 T_{3}^{155} + \cdots + 13392445265761 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).