Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,2,Mod(83,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 21]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.83");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.k (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.57118294509\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
83.1 | 0.959493 | − | 0.281733i | −2.27797 | + | 1.97387i | 0.841254 | − | 0.540641i | −0.347463 | − | 2.41666i | −1.62959 | + | 2.53570i | −2.04477 | − | 1.67896i | 0.654861 | − | 0.755750i | 0.866033 | − | 6.02339i | −1.01424 | − | 2.22088i |
83.2 | 0.959493 | − | 0.281733i | −1.76160 | + | 1.52644i | 0.841254 | − | 0.540641i | 0.360367 | + | 2.50641i | −1.26020 | + | 1.96091i | 1.49769 | − | 2.18104i | 0.654861 | − | 0.755750i | 0.346290 | − | 2.40850i | 1.05191 | + | 2.30335i |
83.3 | 0.959493 | − | 0.281733i | −1.04759 | + | 0.907744i | 0.841254 | − | 0.540641i | −0.229109 | − | 1.59349i | −0.749417 | + | 1.16612i | 2.48964 | + | 0.895380i | 0.654861 | − | 0.755750i | −0.153494 | + | 1.06757i | −0.668765 | − | 1.46439i |
83.4 | 0.959493 | − | 0.281733i | −0.668109 | + | 0.578920i | 0.841254 | − | 0.540641i | 0.308243 | + | 2.14388i | −0.477945 | + | 0.743697i | −1.85023 | + | 1.89121i | 0.654861 | − | 0.755750i | −0.315723 | + | 2.19590i | 0.899756 | + | 1.97019i |
83.5 | 0.959493 | − | 0.281733i | 0.668109 | − | 0.578920i | 0.841254 | − | 0.540641i | −0.308243 | − | 2.14388i | 0.477945 | − | 0.743697i | 0.217640 | − | 2.63678i | 0.654861 | − | 0.755750i | −0.315723 | + | 2.19590i | −0.899756 | − | 1.97019i |
83.6 | 0.959493 | − | 0.281733i | 1.04759 | − | 0.907744i | 0.841254 | − | 0.540641i | 0.229109 | + | 1.59349i | 0.749417 | − | 1.16612i | 2.30705 | + | 1.29519i | 0.654861 | − | 0.755750i | −0.153494 | + | 1.06757i | 0.668765 | + | 1.46439i |
83.7 | 0.959493 | − | 0.281733i | 1.76160 | − | 1.52644i | 0.841254 | − | 0.540641i | −0.360367 | − | 2.50641i | 1.26020 | − | 1.96091i | −0.667538 | + | 2.56015i | 0.654861 | − | 0.755750i | 0.346290 | − | 2.40850i | −1.05191 | − | 2.30335i |
83.8 | 0.959493 | − | 0.281733i | 2.27797 | − | 1.97387i | 0.841254 | − | 0.540641i | 0.347463 | + | 2.41666i | 1.62959 | − | 2.53570i | −2.60791 | − | 0.445849i | 0.654861 | − | 0.755750i | 0.866033 | − | 6.02339i | 1.01424 | + | 2.22088i |
97.1 | 0.959493 | + | 0.281733i | −2.27797 | − | 1.97387i | 0.841254 | + | 0.540641i | −0.347463 | + | 2.41666i | −1.62959 | − | 2.53570i | −2.04477 | + | 1.67896i | 0.654861 | + | 0.755750i | 0.866033 | + | 6.02339i | −1.01424 | + | 2.22088i |
97.2 | 0.959493 | + | 0.281733i | −1.76160 | − | 1.52644i | 0.841254 | + | 0.540641i | 0.360367 | − | 2.50641i | −1.26020 | − | 1.96091i | 1.49769 | + | 2.18104i | 0.654861 | + | 0.755750i | 0.346290 | + | 2.40850i | 1.05191 | − | 2.30335i |
97.3 | 0.959493 | + | 0.281733i | −1.04759 | − | 0.907744i | 0.841254 | + | 0.540641i | −0.229109 | + | 1.59349i | −0.749417 | − | 1.16612i | 2.48964 | − | 0.895380i | 0.654861 | + | 0.755750i | −0.153494 | − | 1.06757i | −0.668765 | + | 1.46439i |
97.4 | 0.959493 | + | 0.281733i | −0.668109 | − | 0.578920i | 0.841254 | + | 0.540641i | 0.308243 | − | 2.14388i | −0.477945 | − | 0.743697i | −1.85023 | − | 1.89121i | 0.654861 | + | 0.755750i | −0.315723 | − | 2.19590i | 0.899756 | − | 1.97019i |
97.5 | 0.959493 | + | 0.281733i | 0.668109 | + | 0.578920i | 0.841254 | + | 0.540641i | −0.308243 | + | 2.14388i | 0.477945 | + | 0.743697i | 0.217640 | + | 2.63678i | 0.654861 | + | 0.755750i | −0.315723 | − | 2.19590i | −0.899756 | + | 1.97019i |
97.6 | 0.959493 | + | 0.281733i | 1.04759 | + | 0.907744i | 0.841254 | + | 0.540641i | 0.229109 | − | 1.59349i | 0.749417 | + | 1.16612i | 2.30705 | − | 1.29519i | 0.654861 | + | 0.755750i | −0.153494 | − | 1.06757i | 0.668765 | − | 1.46439i |
97.7 | 0.959493 | + | 0.281733i | 1.76160 | + | 1.52644i | 0.841254 | + | 0.540641i | −0.360367 | + | 2.50641i | 1.26020 | + | 1.96091i | −0.667538 | − | 2.56015i | 0.654861 | + | 0.755750i | 0.346290 | + | 2.40850i | −1.05191 | + | 2.30335i |
97.8 | 0.959493 | + | 0.281733i | 2.27797 | + | 1.97387i | 0.841254 | + | 0.540641i | 0.347463 | − | 2.41666i | 1.62959 | + | 2.53570i | −2.60791 | + | 0.445849i | 0.654861 | + | 0.755750i | 0.866033 | + | 6.02339i | 1.01424 | − | 2.22088i |
111.1 | −0.415415 | − | 0.909632i | −0.860482 | − | 2.93053i | −0.654861 | + | 0.755750i | 2.12917 | + | 1.36833i | −2.30825 | + | 2.00011i | −2.62625 | − | 0.320606i | 0.959493 | + | 0.281733i | −5.32384 | + | 3.42142i | 0.360192 | − | 2.50519i |
111.2 | −0.415415 | − | 0.909632i | −0.725956 | − | 2.47238i | −0.654861 | + | 0.755750i | −2.94826 | − | 1.89473i | −1.94738 | + | 1.68742i | 2.01573 | − | 1.71372i | 0.959493 | + | 0.281733i | −3.06188 | + | 1.96775i | −0.498756 | + | 3.46893i |
111.3 | −0.415415 | − | 0.909632i | −0.521769 | − | 1.77698i | −0.654861 | + | 0.755750i | 1.91138 | + | 1.22837i | −1.39965 | + | 1.21280i | 2.44569 | + | 1.00927i | 0.959493 | + | 0.281733i | −0.361658 | + | 0.232423i | 0.323348 | − | 2.24893i |
111.4 | −0.415415 | − | 0.909632i | −0.0730120 | − | 0.248656i | −0.654861 | + | 0.755750i | 0.853287 | + | 0.548374i | −0.195855 | + | 0.169710i | −1.00334 | + | 2.44812i | 0.959493 | + | 0.281733i | 2.46726 | − | 1.58561i | 0.144351 | − | 1.00398i |
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
23.d | odd | 22 | 1 | inner |
161.k | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.2.k.b | ✓ | 80 |
7.b | odd | 2 | 1 | inner | 322.2.k.b | ✓ | 80 |
23.d | odd | 22 | 1 | inner | 322.2.k.b | ✓ | 80 |
161.k | even | 22 | 1 | inner | 322.2.k.b | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.2.k.b | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
322.2.k.b | ✓ | 80 | 7.b | odd | 2 | 1 | inner |
322.2.k.b | ✓ | 80 | 23.d | odd | 22 | 1 | inner |
322.2.k.b | ✓ | 80 | 161.k | even | 22 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{80} - 19 T_{3}^{78} + 183 T_{3}^{76} - 1172 T_{3}^{74} + 6522 T_{3}^{72} - 84094 T_{3}^{70} + \cdots + 19790033062801 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).