Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,2,Mod(83,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 21]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.83");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.k (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.57118294509\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
83.1 | −0.959493 | + | 0.281733i | −1.73925 | + | 1.50707i | 0.841254 | − | 0.540641i | 0.406529 | + | 2.82747i | 1.24421 | − | 1.93603i | 0.697541 | + | 2.55214i | −0.654861 | + | 0.755750i | 0.326790 | − | 2.27288i | −1.18665 | − | 2.59840i |
83.2 | −0.959493 | + | 0.281733i | −1.70070 | + | 1.47367i | 0.841254 | − | 0.540641i | 0.0506866 | + | 0.352533i | 1.21663 | − | 1.89312i | −2.46109 | − | 0.971103i | −0.654861 | + | 0.755750i | 0.293752 | − | 2.04309i | −0.147953 | − | 0.323973i |
83.3 | −0.959493 | + | 0.281733i | −0.749737 | + | 0.649651i | 0.841254 | − | 0.540641i | −0.540672 | − | 3.76045i | 0.536339 | − | 0.834560i | −2.61856 | − | 0.378356i | −0.654861 | + | 0.755750i | −0.286885 | + | 1.99533i | 1.57821 | + | 3.45580i |
83.4 | −0.959493 | + | 0.281733i | −0.198408 | + | 0.171921i | 0.841254 | − | 0.540641i | −0.382697 | − | 2.66172i | 0.141935 | − | 0.220855i | 0.921868 | + | 2.47995i | −0.654861 | + | 0.755750i | −0.417136 | + | 2.90124i | 1.11709 | + | 2.44608i |
83.5 | −0.959493 | + | 0.281733i | 0.198408 | − | 0.171921i | 0.841254 | − | 0.540641i | 0.382697 | + | 2.66172i | −0.141935 | + | 0.220855i | 2.47792 | − | 0.927322i | −0.654861 | + | 0.755750i | −0.417136 | + | 2.90124i | −1.11709 | − | 2.44608i |
83.6 | −0.959493 | + | 0.281733i | 0.749737 | − | 0.649651i | 0.841254 | − | 0.540641i | 0.540672 | + | 3.76045i | −0.536339 | + | 0.834560i | −2.00073 | − | 1.73120i | −0.654861 | + | 0.755750i | −0.286885 | + | 1.99533i | −1.57821 | − | 3.45580i |
83.7 | −0.959493 | + | 0.281733i | 1.70070 | − | 1.47367i | 0.841254 | − | 0.540641i | −0.0506866 | − | 0.352533i | −1.21663 | + | 1.89312i | −2.34558 | − | 1.22403i | −0.654861 | + | 0.755750i | 0.293752 | − | 2.04309i | 0.147953 | + | 0.323973i |
83.8 | −0.959493 | + | 0.281733i | 1.73925 | − | 1.50707i | 0.841254 | − | 0.540641i | −0.406529 | − | 2.82747i | −1.24421 | + | 1.93603i | 2.38557 | − | 1.14413i | −0.654861 | + | 0.755750i | 0.326790 | − | 2.27288i | 1.18665 | + | 2.59840i |
97.1 | −0.959493 | − | 0.281733i | −1.73925 | − | 1.50707i | 0.841254 | + | 0.540641i | 0.406529 | − | 2.82747i | 1.24421 | + | 1.93603i | 0.697541 | − | 2.55214i | −0.654861 | − | 0.755750i | 0.326790 | + | 2.27288i | −1.18665 | + | 2.59840i |
97.2 | −0.959493 | − | 0.281733i | −1.70070 | − | 1.47367i | 0.841254 | + | 0.540641i | 0.0506866 | − | 0.352533i | 1.21663 | + | 1.89312i | −2.46109 | + | 0.971103i | −0.654861 | − | 0.755750i | 0.293752 | + | 2.04309i | −0.147953 | + | 0.323973i |
97.3 | −0.959493 | − | 0.281733i | −0.749737 | − | 0.649651i | 0.841254 | + | 0.540641i | −0.540672 | + | 3.76045i | 0.536339 | + | 0.834560i | −2.61856 | + | 0.378356i | −0.654861 | − | 0.755750i | −0.286885 | − | 1.99533i | 1.57821 | − | 3.45580i |
97.4 | −0.959493 | − | 0.281733i | −0.198408 | − | 0.171921i | 0.841254 | + | 0.540641i | −0.382697 | + | 2.66172i | 0.141935 | + | 0.220855i | 0.921868 | − | 2.47995i | −0.654861 | − | 0.755750i | −0.417136 | − | 2.90124i | 1.11709 | − | 2.44608i |
97.5 | −0.959493 | − | 0.281733i | 0.198408 | + | 0.171921i | 0.841254 | + | 0.540641i | 0.382697 | − | 2.66172i | −0.141935 | − | 0.220855i | 2.47792 | + | 0.927322i | −0.654861 | − | 0.755750i | −0.417136 | − | 2.90124i | −1.11709 | + | 2.44608i |
97.6 | −0.959493 | − | 0.281733i | 0.749737 | + | 0.649651i | 0.841254 | + | 0.540641i | 0.540672 | − | 3.76045i | −0.536339 | − | 0.834560i | −2.00073 | + | 1.73120i | −0.654861 | − | 0.755750i | −0.286885 | − | 1.99533i | −1.57821 | + | 3.45580i |
97.7 | −0.959493 | − | 0.281733i | 1.70070 | + | 1.47367i | 0.841254 | + | 0.540641i | −0.0506866 | + | 0.352533i | −1.21663 | − | 1.89312i | −2.34558 | + | 1.22403i | −0.654861 | − | 0.755750i | 0.293752 | + | 2.04309i | 0.147953 | − | 0.323973i |
97.8 | −0.959493 | − | 0.281733i | 1.73925 | + | 1.50707i | 0.841254 | + | 0.540641i | −0.406529 | + | 2.82747i | −1.24421 | − | 1.93603i | 2.38557 | + | 1.14413i | −0.654861 | − | 0.755750i | 0.326790 | + | 2.27288i | 1.18665 | − | 2.59840i |
111.1 | 0.415415 | + | 0.909632i | −0.760851 | − | 2.59122i | −0.654861 | + | 0.755750i | 2.71881 | + | 1.74727i | 2.04099 | − | 1.76853i | 0.0953475 | − | 2.64403i | −0.959493 | − | 0.281733i | −3.61176 | + | 2.32114i | −0.459941 | + | 3.19896i |
111.2 | 0.415415 | + | 0.909632i | −0.730873 | − | 2.48912i | −0.654861 | + | 0.755750i | −1.52995 | − | 0.983241i | 1.96057 | − | 1.69884i | −2.20702 | + | 1.45913i | −0.959493 | − | 0.281733i | −3.13780 | + | 2.01654i | 0.258822 | − | 1.80015i |
111.3 | 0.415415 | + | 0.909632i | −0.229469 | − | 0.781499i | −0.654861 | + | 0.755750i | −1.74460 | − | 1.12119i | 0.615551 | − | 0.533378i | −0.251104 | − | 2.63381i | −0.959493 | − | 0.281733i | 1.96568 | − | 1.26326i | 0.295134 | − | 2.05270i |
111.4 | 0.415415 | + | 0.909632i | −0.192661 | − | 0.656142i | −0.654861 | + | 0.755750i | −2.27924 | − | 1.46478i | 0.516813 | − | 0.447821i | 2.42953 | + | 1.04756i | −0.959493 | − | 0.281733i | 2.13036 | − | 1.36910i | 0.385580 | − | 2.68177i |
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
23.d | odd | 22 | 1 | inner |
161.k | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.2.k.a | ✓ | 80 |
7.b | odd | 2 | 1 | inner | 322.2.k.a | ✓ | 80 |
23.d | odd | 22 | 1 | inner | 322.2.k.a | ✓ | 80 |
161.k | even | 22 | 1 | inner | 322.2.k.a | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.2.k.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
322.2.k.a | ✓ | 80 | 7.b | odd | 2 | 1 | inner |
322.2.k.a | ✓ | 80 | 23.d | odd | 22 | 1 | inner |
322.2.k.a | ✓ | 80 | 161.k | even | 22 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{80} - 9 T_{3}^{78} + 119 T_{3}^{76} - 1342 T_{3}^{74} + 17316 T_{3}^{72} - 101532 T_{3}^{70} + \cdots + 956720690641 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).