Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,2,Mod(29,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 18]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.29");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.i (of order \(11\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.57118294509\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −0.415415 | + | 0.909632i | −2.45665 | − | 0.721337i | −0.654861 | − | 0.755750i | −3.26944 | + | 2.10114i | 1.67668 | − | 1.93499i | −0.142315 | + | 0.989821i | 0.959493 | − | 0.281733i | 2.99103 | + | 1.92222i | −0.553091 | − | 3.84683i |
29.2 | −0.415415 | + | 0.909632i | −0.589310 | − | 0.173037i | −0.654861 | − | 0.755750i | 3.36368 | − | 2.16170i | 0.402208 | − | 0.464173i | −0.142315 | + | 0.989821i | 0.959493 | − | 0.281733i | −2.20642 | − | 1.41798i | 0.569033 | + | 3.95771i |
29.3 | −0.415415 | + | 0.909632i | −0.427601 | − | 0.125555i | −0.654861 | − | 0.755750i | −0.0300272 | + | 0.0192973i | 0.291841 | − | 0.336802i | −0.142315 | + | 0.989821i | 0.959493 | − | 0.281733i | −2.35668 | − | 1.51455i | −0.00507970 | − | 0.0353301i |
29.4 | −0.415415 | + | 0.909632i | 3.20046 | + | 0.939739i | −0.654861 | − | 0.755750i | −3.28037 | + | 2.10817i | −2.18434 | + | 2.52086i | −0.142315 | + | 0.989821i | 0.959493 | − | 0.281733i | 6.83607 | + | 4.39327i | −0.554941 | − | 3.85970i |
71.1 | −0.841254 | − | 0.540641i | −0.459025 | − | 3.19259i | 0.415415 | + | 0.909632i | −1.51548 | − | 0.444984i | −1.33989 | + | 2.93395i | −0.654861 | + | 0.755750i | 0.142315 | − | 0.989821i | −7.10346 | + | 2.08576i | 1.03432 | + | 1.19367i |
71.2 | −0.841254 | − | 0.540641i | −0.0909948 | − | 0.632882i | 0.415415 | + | 0.909632i | −0.867979 | − | 0.254862i | −0.265612 | + | 0.581610i | −0.654861 | + | 0.755750i | 0.142315 | − | 0.989821i | 2.48622 | − | 0.730020i | 0.592402 | + | 0.683668i |
71.3 | −0.841254 | − | 0.540641i | 0.0894077 | + | 0.621844i | 0.415415 | + | 0.909632i | −2.40216 | − | 0.705337i | 0.260980 | − | 0.571466i | −0.654861 | + | 0.755750i | 0.142315 | − | 0.989821i | 2.49978 | − | 0.734002i | 1.63949 | + | 1.89207i |
71.4 | −0.841254 | − | 0.540641i | 0.274220 | + | 1.90724i | 0.415415 | + | 0.909632i | 3.76154 | + | 1.10449i | 0.800444 | − | 1.75273i | −0.654861 | + | 0.755750i | 0.142315 | − | 0.989821i | −0.683890 | + | 0.200808i | −2.56727 | − | 2.96279i |
85.1 | 0.654861 | − | 0.755750i | −1.71143 | + | 1.09987i | −0.142315 | − | 0.989821i | 0.475695 | + | 1.04163i | −0.289523 | + | 2.01368i | −0.959493 | + | 0.281733i | −0.841254 | − | 0.540641i | 0.473040 | − | 1.03581i | 1.09872 | + | 0.322614i |
85.2 | 0.654861 | − | 0.755750i | −1.01640 | + | 0.653203i | −0.142315 | − | 0.989821i | −1.23775 | − | 2.71030i | −0.171945 | + | 1.19590i | −0.959493 | + | 0.281733i | −0.841254 | − | 0.540641i | −0.639842 | + | 1.40106i | −2.85887 | − | 0.839440i |
85.3 | 0.654861 | − | 0.755750i | 2.09228 | − | 1.34463i | −0.142315 | − | 0.989821i | −0.762523 | − | 1.66969i | 0.353951 | − | 2.46178i | −0.959493 | + | 0.281733i | −0.841254 | − | 0.540641i | 1.32337 | − | 2.89778i | −1.76122 | − | 0.517140i |
85.4 | 0.654861 | − | 0.755750i | 2.24991 | − | 1.44593i | −0.142315 | − | 0.989821i | 1.60528 | + | 3.51508i | 0.380617 | − | 2.64725i | −0.959493 | + | 0.281733i | −0.841254 | − | 0.540641i | 1.72514 | − | 3.77752i | 3.70776 | + | 1.08870i |
127.1 | −0.841254 | + | 0.540641i | −0.459025 | + | 3.19259i | 0.415415 | − | 0.909632i | −1.51548 | + | 0.444984i | −1.33989 | − | 2.93395i | −0.654861 | − | 0.755750i | 0.142315 | + | 0.989821i | −7.10346 | − | 2.08576i | 1.03432 | − | 1.19367i |
127.2 | −0.841254 | + | 0.540641i | −0.0909948 | + | 0.632882i | 0.415415 | − | 0.909632i | −0.867979 | + | 0.254862i | −0.265612 | − | 0.581610i | −0.654861 | − | 0.755750i | 0.142315 | + | 0.989821i | 2.48622 | + | 0.730020i | 0.592402 | − | 0.683668i |
127.3 | −0.841254 | + | 0.540641i | 0.0894077 | − | 0.621844i | 0.415415 | − | 0.909632i | −2.40216 | + | 0.705337i | 0.260980 | + | 0.571466i | −0.654861 | − | 0.755750i | 0.142315 | + | 0.989821i | 2.49978 | + | 0.734002i | 1.63949 | − | 1.89207i |
127.4 | −0.841254 | + | 0.540641i | 0.274220 | − | 1.90724i | 0.415415 | − | 0.909632i | 3.76154 | − | 1.10449i | 0.800444 | + | 1.75273i | −0.654861 | − | 0.755750i | 0.142315 | + | 0.989821i | −0.683890 | − | 0.200808i | −2.56727 | + | 2.96279i |
141.1 | 0.142315 | + | 0.989821i | −1.36463 | + | 2.98813i | −0.959493 | + | 0.281733i | −1.28840 | + | 1.48690i | −3.15192 | − | 0.925489i | 0.841254 | − | 0.540641i | −0.415415 | − | 0.909632i | −5.10212 | − | 5.88817i | −1.65512 | − | 1.06368i |
141.2 | 0.142315 | + | 0.989821i | −0.605793 | + | 1.32650i | −0.959493 | + | 0.281733i | 2.76217 | − | 3.18771i | −1.39921 | − | 0.410846i | 0.841254 | − | 0.540641i | −0.415415 | − | 0.909632i | 0.571960 | + | 0.660077i | 3.54836 | + | 2.28039i |
141.3 | 0.142315 | + | 0.989821i | 0.527208 | − | 1.15442i | −0.959493 | + | 0.281733i | −2.43563 | + | 2.81087i | 1.21770 | + | 0.357550i | 0.841254 | − | 0.540641i | −0.415415 | − | 0.909632i | 0.909835 | + | 1.05001i | −3.12889 | − | 2.01081i |
141.4 | 0.142315 | + | 0.989821i | 0.744281 | − | 1.62975i | −0.959493 | + | 0.281733i | 1.17446 | − | 1.35540i | 1.71908 | + | 0.504768i | 0.841254 | − | 0.540641i | −0.415415 | − | 0.909632i | −0.137541 | − | 0.158731i | 1.50875 | + | 0.969614i |
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.2.i.e | ✓ | 40 |
23.c | even | 11 | 1 | inner | 322.2.i.e | ✓ | 40 |
23.c | even | 11 | 1 | 7406.2.a.bt | 20 | ||
23.d | odd | 22 | 1 | 7406.2.a.bs | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.2.i.e | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
322.2.i.e | ✓ | 40 | 23.c | even | 11 | 1 | inner |
7406.2.a.bs | 20 | 23.d | odd | 22 | 1 | ||
7406.2.a.bt | 20 | 23.c | even | 11 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{40} - 2 T_{3}^{39} + 8 T_{3}^{38} - 49 T_{3}^{37} + 169 T_{3}^{36} - 217 T_{3}^{35} + \cdots + 33860761 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).