Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,2,Mod(29,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 18]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.29");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.i (of order \(11\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.57118294509\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | 0.415415 | − | 0.909632i | −2.49681 | − | 0.733130i | −0.654861 | − | 0.755750i | −1.90645 | + | 1.22520i | −1.70409 | + | 1.96663i | 0.142315 | − | 0.989821i | −0.959493 | + | 0.281733i | 3.17283 | + | 2.03906i | 0.322515 | + | 2.24314i |
29.2 | 0.415415 | − | 0.909632i | −2.34488 | − | 0.688518i | −0.654861 | − | 0.755750i | 3.30897 | − | 2.12655i | −1.60040 | + | 1.84696i | 0.142315 | − | 0.989821i | −0.959493 | + | 0.281733i | 2.50063 | + | 1.60706i | −0.559779 | − | 3.89335i |
29.3 | 0.415415 | − | 0.909632i | −0.195887 | − | 0.0575176i | −0.654861 | − | 0.755750i | −1.56656 | + | 1.00676i | −0.133694 | + | 0.154291i | 0.142315 | − | 0.989821i | −0.959493 | + | 0.281733i | −2.48870 | − | 1.59939i | 0.265014 | + | 1.84322i |
29.4 | 0.415415 | − | 0.909632i | 2.84549 | + | 0.835512i | −0.654861 | − | 0.755750i | −0.221294 | + | 0.142217i | 1.94207 | − | 2.24127i | 0.142315 | − | 0.989821i | −0.959493 | + | 0.281733i | 4.87498 | + | 3.13296i | 0.0374364 | + | 0.260376i |
71.1 | 0.841254 | + | 0.540641i | −0.473601 | − | 3.29397i | 0.415415 | + | 0.909632i | −2.68725 | − | 0.789049i | 1.38243 | − | 3.02711i | 0.654861 | − | 0.755750i | −0.142315 | + | 0.989821i | −7.74745 | + | 2.27486i | −1.83407 | − | 2.11663i |
71.2 | 0.841254 | + | 0.540641i | −0.311523 | − | 2.16669i | 0.415415 | + | 0.909632i | 3.63410 | + | 1.06707i | 0.909331 | − | 1.99116i | 0.654861 | − | 0.755750i | −0.142315 | + | 0.989821i | −1.71902 | + | 0.504749i | 2.48030 | + | 2.86241i |
71.3 | 0.841254 | + | 0.540641i | −0.0270781 | − | 0.188333i | 0.415415 | + | 0.909632i | −0.254438 | − | 0.0747098i | 0.0790407 | − | 0.173075i | 0.654861 | − | 0.755750i | −0.142315 | + | 0.989821i | 2.84374 | − | 0.834998i | −0.173656 | − | 0.200410i |
71.4 | 0.841254 | + | 0.540641i | 0.341180 | + | 2.37296i | 0.415415 | + | 0.909632i | 1.96603 | + | 0.577277i | −0.995899 | + | 2.18071i | 0.654861 | − | 0.755750i | −0.142315 | + | 0.989821i | −2.63604 | + | 0.774012i | 1.34183 | + | 1.54855i |
85.1 | −0.654861 | + | 0.755750i | −0.863913 | + | 0.555203i | −0.142315 | − | 0.989821i | −0.415591 | − | 0.910017i | 0.146148 | − | 1.01648i | 0.959493 | − | 0.281733i | 0.841254 | + | 0.540641i | −0.808150 | + | 1.76960i | 0.959899 | + | 0.281852i |
85.2 | −0.654861 | + | 0.755750i | 0.124065 | − | 0.0797318i | −0.142315 | − | 0.989821i | 1.52064 | + | 3.32974i | −0.0209881 | + | 0.145975i | 0.959493 | − | 0.281733i | 0.841254 | + | 0.540641i | −1.23721 | + | 2.70911i | −3.51226 | − | 1.03129i |
85.3 | −0.654861 | + | 0.755750i | 1.39187 | − | 0.894499i | −0.142315 | − | 0.989821i | −1.27474 | − | 2.79128i | −0.235462 | + | 1.63768i | 0.959493 | − | 0.281733i | 0.841254 | + | 0.540641i | −0.109077 | + | 0.238845i | 2.94429 | + | 0.864520i |
85.4 | −0.654861 | + | 0.755750i | 2.64484 | − | 1.69974i | −0.142315 | − | 0.989821i | 0.940662 | + | 2.05976i | −0.447428 | + | 3.11193i | 0.959493 | − | 0.281733i | 0.841254 | + | 0.540641i | 2.85983 | − | 6.26216i | −2.17267 | − | 0.637952i |
127.1 | 0.841254 | − | 0.540641i | −0.473601 | + | 3.29397i | 0.415415 | − | 0.909632i | −2.68725 | + | 0.789049i | 1.38243 | + | 3.02711i | 0.654861 | + | 0.755750i | −0.142315 | − | 0.989821i | −7.74745 | − | 2.27486i | −1.83407 | + | 2.11663i |
127.2 | 0.841254 | − | 0.540641i | −0.311523 | + | 2.16669i | 0.415415 | − | 0.909632i | 3.63410 | − | 1.06707i | 0.909331 | + | 1.99116i | 0.654861 | + | 0.755750i | −0.142315 | − | 0.989821i | −1.71902 | − | 0.504749i | 2.48030 | − | 2.86241i |
127.3 | 0.841254 | − | 0.540641i | −0.0270781 | + | 0.188333i | 0.415415 | − | 0.909632i | −0.254438 | + | 0.0747098i | 0.0790407 | + | 0.173075i | 0.654861 | + | 0.755750i | −0.142315 | − | 0.989821i | 2.84374 | + | 0.834998i | −0.173656 | + | 0.200410i |
127.4 | 0.841254 | − | 0.540641i | 0.341180 | − | 2.37296i | 0.415415 | − | 0.909632i | 1.96603 | − | 0.577277i | −0.995899 | − | 2.18071i | 0.654861 | + | 0.755750i | −0.142315 | − | 0.989821i | −2.63604 | − | 0.774012i | 1.34183 | − | 1.54855i |
141.1 | −0.142315 | − | 0.989821i | −1.08968 | + | 2.38606i | −0.959493 | + | 0.281733i | 0.443664 | − | 0.512016i | 2.51685 | + | 0.739013i | −0.841254 | + | 0.540641i | 0.415415 | + | 0.909632i | −2.54129 | − | 2.93281i | −0.569944 | − | 0.366281i |
141.2 | −0.142315 | − | 0.989821i | −0.182677 | + | 0.400008i | −0.959493 | + | 0.281733i | 2.48992 | − | 2.87352i | 0.421934 | + | 0.123891i | −0.841254 | + | 0.540641i | 0.415415 | + | 0.909632i | 1.83795 | + | 2.12110i | −3.19863 | − | 2.05563i |
141.3 | −0.142315 | − | 0.989821i | 0.128569 | − | 0.281527i | −0.959493 | + | 0.281733i | −1.69136 | + | 1.95194i | −0.296959 | − | 0.0871950i | −0.841254 | + | 0.540641i | 0.415415 | + | 0.909632i | 1.90185 | + | 2.19486i | 2.17278 | + | 1.39636i |
141.4 | −0.142315 | − | 0.989821i | 1.27568 | − | 2.79334i | −0.959493 | + | 0.281733i | 0.685739 | − | 0.791385i | −2.94645 | − | 0.865157i | −0.841254 | + | 0.540641i | 0.415415 | + | 0.909632i | −4.21081 | − | 4.85954i | −0.880921 | − | 0.566133i |
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.2.i.d | ✓ | 40 |
23.c | even | 11 | 1 | inner | 322.2.i.d | ✓ | 40 |
23.c | even | 11 | 1 | 7406.2.a.bu | 20 | ||
23.d | odd | 22 | 1 | 7406.2.a.bv | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.2.i.d | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
322.2.i.d | ✓ | 40 | 23.c | even | 11 | 1 | inner |
7406.2.a.bu | 20 | 23.c | even | 11 | 1 | ||
7406.2.a.bv | 20 | 23.d | odd | 22 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{40} + 10 T_{3}^{38} - 7 T_{3}^{37} + 29 T_{3}^{36} + 69 T_{3}^{35} + 300 T_{3}^{34} + \cdots + 11881 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).