Newspace parameters
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.g (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.57118294509\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} + 12x^{14} + 73x^{12} + 312x^{10} + 1045x^{8} + 2808x^{6} + 5913x^{4} + 8748x^{2} + 6561 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 12x^{14} + 73x^{12} + 312x^{10} + 1045x^{8} + 2808x^{6} + 5913x^{4} + 8748x^{2} + 6561 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{15} + 12\nu^{13} + 73\nu^{11} + 312\nu^{9} + 1045\nu^{7} + 2808\nu^{5} + 5913\nu^{3} + 6561\nu ) / 2187 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 100 \nu^{14} - 1713 \nu^{12} - 9244 \nu^{10} - 39975 \nu^{8} - 129853 \nu^{6} - 323595 \nu^{4} - 601668 \nu^{2} - 661203 ) / 103518 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 311 \nu^{15} - 3174 \nu^{13} - 16250 \nu^{11} - 59943 \nu^{9} - 179573 \nu^{7} - 452016 \nu^{5} - 856251 \nu^{3} - 769095 \nu ) / 310554 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 452 \nu^{15} - 4650 \nu^{13} - 23303 \nu^{11} - 95700 \nu^{9} - 286580 \nu^{7} - 673740 \nu^{5} - 1285470 \nu^{3} - 1237113 \nu ) / 310554 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 386 \nu^{14} - 3660 \nu^{12} - 19349 \nu^{10} - 74748 \nu^{8} - 227600 \nu^{6} - 541512 \nu^{4} - 985446 \nu^{2} - 1070901 ) / 103518 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 199 \nu^{15} - 2346 \nu^{13} - 12619 \nu^{11} - 49464 \nu^{9} - 149950 \nu^{7} - 367725 \nu^{5} - 668304 \nu^{3} - 737991 \nu ) / 103518 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 148 \nu^{14} + 1155 \nu^{12} + 5323 \nu^{10} + 18906 \nu^{8} + 55462 \nu^{6} + 118908 \nu^{4} + 194751 \nu^{2} + 142155 ) / 34506 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 386 \nu^{15} - 3660 \nu^{13} - 19349 \nu^{11} - 74748 \nu^{9} - 227600 \nu^{7} - 541512 \nu^{5} - 985446 \nu^{3} - 967383 \nu ) / 103518 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 149 \nu^{15} - 1525 \nu^{13} - 7784 \nu^{11} - 30151 \nu^{9} - 92585 \nu^{7} - 221938 \nu^{5} - 403254 \nu^{3} - 433269 \nu ) / 34506 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 361 \nu^{14} - 3498 \nu^{12} - 18316 \nu^{10} - 69813 \nu^{8} - 211591 \nu^{6} - 511680 \nu^{4} - 907875 \nu^{2} - 935793 ) / 34506 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 1241 \nu^{14} + 12012 \nu^{12} + 60812 \nu^{10} + 231384 \nu^{8} + 703412 \nu^{6} + 1673847 \nu^{4} + 3027618 \nu^{2} + 3031182 ) / 103518 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 1249 \nu^{14} + 11280 \nu^{12} + 56644 \nu^{10} + 216690 \nu^{8} + 651076 \nu^{6} + 1557621 \nu^{4} + 2756916 \nu^{2} + 2703132 ) / 103518 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 1493 \nu^{14} + 13236 \nu^{12} + 65627 \nu^{10} + 247134 \nu^{8} + 730286 \nu^{6} + 1700397 \nu^{4} + 2902716 \nu^{2} + 2635335 ) / 103518 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 2365 \nu^{15} - 20352 \nu^{13} - 102067 \nu^{11} - 382929 \nu^{9} - 1142809 \nu^{7} - 2673774 \nu^{5} - 4606875 \nu^{3} - 4299642 \nu ) / 310554 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{12} + \beta_{11} - \beta_{8} - \beta_{6} + \beta_{3} - 2 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{15} - 2\beta_{9} + 2\beta_{7} - \beta_{5} - 3\beta_{4} - \beta_{2} + \beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{14} + 2\beta_{13} - 2\beta_{12} - 3\beta_{11} + \beta_{8} + 6\beta_{6} - \beta_{3} + 2 \)
|
\(\nu^{5}\) | \(=\) |
\( -5\beta_{15} + 2\beta_{10} + 11\beta_{9} - 8\beta_{7} + 2\beta_{5} + 5\beta_{4} + 9\beta_{2} - 5\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( -6\beta_{14} - \beta_{13} - 5\beta_{12} - 4\beta_{11} + 18\beta_{8} - 8\beta_{6} - 10\beta_{3} - 4 \)
|
\(\nu^{7}\) | \(=\) |
\( 10\beta_{15} - 18\beta_{10} - 19\beta_{9} + 20\beta_{7} + 11\beta_{5} + 12\beta_{4} - 13\beta_{2} - 10\beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( 31\beta_{14} - 3\beta_{13} + 8\beta_{12} + 34\beta_{11} - 56\beta_{8} - 27\beta_{6} + 12\beta_{3} + 5 \)
|
\(\nu^{9}\) | \(=\) |
\( -22\beta_{15} + 52\beta_{10} + 34\beta_{9} - 52\beta_{7} - 62\beta_{5} + 16\beta_{4} + 21\beta_{2} + 25\beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( -18\beta_{14} - 56\beta_{13} + 10\beta_{12} - 72\beta_{11} + 28\beta_{8} + 60\beta_{3} - 57 \)
|
\(\nu^{11}\) | \(=\) |
\( 76\beta_{15} + 12\beta_{10} - 228\beta_{9} + 56\beta_{7} + 146\beta_{5} - 168\beta_{4} - 148\beta_{2} + 81\beta_1 \)
|
\(\nu^{12}\) | \(=\) |
\( 60\beta_{14} + 4\beta_{13} + 219\beta_{12} + 119\beta_{11} - 101\beta_{8} + 519\beta_{6} - 77\beta_{3} + 476 \)
|
\(\nu^{13}\) | \(=\) |
\( -9\beta_{15} - 414\beta_{10} + 546\beta_{9} + 114\beta_{7} - 183\beta_{5} - 183\beta_{4} - 111\beta_{2} - 257\beta_1 \)
|
\(\nu^{14}\) | \(=\) |
\( -729\beta_{14} + 1134\beta_{13} - 926\beta_{12} - 89\beta_{11} + 935\beta_{8} - 1108\beta_{6} + 145\beta_{3} - 740 \)
|
\(\nu^{15}\) | \(=\) |
\( - 899 \beta_{15} + 1062 \beta_{10} + 277 \beta_{9} + 506 \beta_{7} - 316 \beta_{5} + 627 \beta_{4} + 1997 \beta_{2} + 1387 \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).
\(n\) | \(185\) | \(281\) |
\(\chi(n)\) | \(-\beta_{6}\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45.1 |
|
0.500000 | + | 0.866025i | −2.64992 | − | 1.52993i | −0.500000 | + | 0.866025i | −0.920495 | − | 1.59434i | − | 3.05986i | −0.254505 | + | 2.63348i | −1.00000 | 3.18138 | + | 5.51031i | 0.920495 | − | 1.59434i | |||||||||||||||||||||||||||||||||||||||||||||||||||
45.2 | 0.500000 | + | 0.866025i | −2.64992 | − | 1.52993i | −0.500000 | + | 0.866025i | 0.920495 | + | 1.59434i | − | 3.05986i | 0.254505 | − | 2.63348i | −1.00000 | 3.18138 | + | 5.51031i | −0.920495 | + | 1.59434i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
45.3 | 0.500000 | + | 0.866025i | −1.07743 | − | 0.622057i | −0.500000 | + | 0.866025i | −0.668984 | − | 1.15871i | − | 1.24411i | −2.09536 | + | 1.61539i | −1.00000 | −0.726090 | − | 1.25762i | 0.668984 | − | 1.15871i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
45.4 | 0.500000 | + | 0.866025i | −1.07743 | − | 0.622057i | −0.500000 | + | 0.866025i | 0.668984 | + | 1.15871i | − | 1.24411i | 2.09536 | − | 1.61539i | −1.00000 | −0.726090 | − | 1.25762i | −0.668984 | + | 1.15871i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
45.5 | 0.500000 | + | 0.866025i | 0.0922753 | + | 0.0532752i | −0.500000 | + | 0.866025i | −1.78715 | − | 3.09543i | 0.106550i | −0.672033 | − | 2.55898i | −1.00000 | −1.49432 | − | 2.58824i | 1.78715 | − | 3.09543i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
45.6 | 0.500000 | + | 0.866025i | 0.0922753 | + | 0.0532752i | −0.500000 | + | 0.866025i | 1.78715 | + | 3.09543i | 0.106550i | 0.672033 | + | 2.55898i | −1.00000 | −1.49432 | − | 2.58824i | −1.78715 | + | 3.09543i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
45.7 | 0.500000 | + | 0.866025i | 2.13508 | + | 1.23269i | −0.500000 | + | 0.866025i | −0.511122 | − | 0.885289i | 2.46537i | 2.61593 | + | 0.396147i | −1.00000 | 1.53904 | + | 2.66569i | 0.511122 | − | 0.885289i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
45.8 | 0.500000 | + | 0.866025i | 2.13508 | + | 1.23269i | −0.500000 | + | 0.866025i | 0.511122 | + | 0.885289i | 2.46537i | −2.61593 | − | 0.396147i | −1.00000 | 1.53904 | + | 2.66569i | −0.511122 | + | 0.885289i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
229.1 | 0.500000 | − | 0.866025i | −2.64992 | + | 1.52993i | −0.500000 | − | 0.866025i | −0.920495 | + | 1.59434i | 3.05986i | −0.254505 | − | 2.63348i | −1.00000 | 3.18138 | − | 5.51031i | 0.920495 | + | 1.59434i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
229.2 | 0.500000 | − | 0.866025i | −2.64992 | + | 1.52993i | −0.500000 | − | 0.866025i | 0.920495 | − | 1.59434i | 3.05986i | 0.254505 | + | 2.63348i | −1.00000 | 3.18138 | − | 5.51031i | −0.920495 | − | 1.59434i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
229.3 | 0.500000 | − | 0.866025i | −1.07743 | + | 0.622057i | −0.500000 | − | 0.866025i | −0.668984 | + | 1.15871i | 1.24411i | −2.09536 | − | 1.61539i | −1.00000 | −0.726090 | + | 1.25762i | 0.668984 | + | 1.15871i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
229.4 | 0.500000 | − | 0.866025i | −1.07743 | + | 0.622057i | −0.500000 | − | 0.866025i | 0.668984 | − | 1.15871i | 1.24411i | 2.09536 | + | 1.61539i | −1.00000 | −0.726090 | + | 1.25762i | −0.668984 | − | 1.15871i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
229.5 | 0.500000 | − | 0.866025i | 0.0922753 | − | 0.0532752i | −0.500000 | − | 0.866025i | −1.78715 | + | 3.09543i | − | 0.106550i | −0.672033 | + | 2.55898i | −1.00000 | −1.49432 | + | 2.58824i | 1.78715 | + | 3.09543i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
229.6 | 0.500000 | − | 0.866025i | 0.0922753 | − | 0.0532752i | −0.500000 | − | 0.866025i | 1.78715 | − | 3.09543i | − | 0.106550i | 0.672033 | − | 2.55898i | −1.00000 | −1.49432 | + | 2.58824i | −1.78715 | − | 3.09543i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
229.7 | 0.500000 | − | 0.866025i | 2.13508 | − | 1.23269i | −0.500000 | − | 0.866025i | −0.511122 | + | 0.885289i | − | 2.46537i | 2.61593 | − | 0.396147i | −1.00000 | 1.53904 | − | 2.66569i | 0.511122 | + | 0.885289i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
229.8 | 0.500000 | − | 0.866025i | 2.13508 | − | 1.23269i | −0.500000 | − | 0.866025i | 0.511122 | − | 0.885289i | − | 2.46537i | −2.61593 | + | 0.396147i | −1.00000 | 1.53904 | − | 2.66569i | −0.511122 | − | 0.885289i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
23.b | odd | 2 | 1 | inner |
161.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.2.g.b | ✓ | 16 |
7.c | even | 3 | 1 | 2254.2.c.b | 16 | ||
7.d | odd | 6 | 1 | inner | 322.2.g.b | ✓ | 16 |
7.d | odd | 6 | 1 | 2254.2.c.b | 16 | ||
23.b | odd | 2 | 1 | inner | 322.2.g.b | ✓ | 16 |
161.f | odd | 6 | 1 | 2254.2.c.b | 16 | ||
161.g | even | 6 | 1 | inner | 322.2.g.b | ✓ | 16 |
161.g | even | 6 | 1 | 2254.2.c.b | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.2.g.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
322.2.g.b | ✓ | 16 | 7.d | odd | 6 | 1 | inner |
322.2.g.b | ✓ | 16 | 23.b | odd | 2 | 1 | inner |
322.2.g.b | ✓ | 16 | 161.g | even | 6 | 1 | inner |
2254.2.c.b | 16 | 7.c | even | 3 | 1 | ||
2254.2.c.b | 16 | 7.d | odd | 6 | 1 | ||
2254.2.c.b | 16 | 161.f | odd | 6 | 1 | ||
2254.2.c.b | 16 | 161.g | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{8} + 3T_{3}^{7} - 4T_{3}^{6} - 21T_{3}^{5} + 33T_{3}^{4} + 105T_{3}^{3} + 68T_{3}^{2} - 15T_{3} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - T + 1)^{8} \)
$3$
\( (T^{8} + 3 T^{7} - 4 T^{6} - 21 T^{5} + 33 T^{4} + \cdots + 1)^{2} \)
$5$
\( T^{16} + 19 T^{14} + 270 T^{12} + \cdots + 6561 \)
$7$
\( T^{16} + 9 T^{14} - 28 T^{12} + \cdots + 5764801 \)
$11$
\( T^{16} - 64 T^{14} + 2928 T^{12} + \cdots + 74805201 \)
$13$
\( (T^{8} + 55 T^{6} + 562 T^{4} + 1356 T^{2} + \cdots + 9)^{2} \)
$17$
\( T^{16} + 49 T^{14} + 2037 T^{12} + \cdots + 194481 \)
$19$
\( T^{16} + 83 T^{14} + \cdots + 639128961 \)
$23$
\( T^{16} - 8 T^{15} + \cdots + 78310985281 \)
$29$
\( (T^{4} + 4 T^{3} - 11 T^{2} - 48 T - 15)^{4} \)
$31$
\( (T^{8} - 6 T^{7} + 4 T^{6} + 48 T^{5} + \cdots + 225)^{2} \)
$37$
\( T^{16} - 62 T^{14} + 2886 T^{12} + \cdots + 81 \)
$41$
\( (T^{8} + 131 T^{6} + 930 T^{4} + 1820 T^{2} + \cdots + 961)^{2} \)
$43$
\( (T^{8} + 80 T^{6} + 1756 T^{4} + 8073 T^{2} + \cdots + 729)^{2} \)
$47$
\( (T^{8} + 3 T^{7} - 112 T^{6} - 345 T^{5} + \cdots + 15625)^{2} \)
$53$
\( T^{16} - 315 T^{14} + 69572 T^{12} + \cdots + 625 \)
$59$
\( (T^{8} - 18 T^{7} + 44 T^{6} + 1152 T^{5} + \cdots + 73441)^{2} \)
$61$
\( T^{16} + 345 T^{14} + \cdots + 10756569837841 \)
$67$
\( T^{16} - 405 T^{14} + \cdots + 2311278643521 \)
$71$
\( (T^{4} + 13 T^{3} + 46 T^{2} + 36 T - 15)^{4} \)
$73$
\( (T^{8} - 12 T^{7} - 80 T^{6} + \cdots + 10595025)^{2} \)
$79$
\( T^{16} + \cdots + 415557398300625 \)
$83$
\( (T^{8} - 196 T^{6} + 11713 T^{4} + \cdots + 1896129)^{2} \)
$89$
\( T^{16} + \cdots + 121639745379681 \)
$97$
\( (T^{8} - 900 T^{6} + 302197 T^{4} + \cdots + 2486119321)^{2} \)
show more
show less