Properties

Label 322.2.e.d
Level $322$
Weight $2$
Character orbit 322.e
Analytic conductor $2.571$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,2,Mod(93,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 322.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.57118294509\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.6498455769.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} + 3x^{5} + 25x^{4} - 3x^{3} + 6x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{5} + 1) q^{2} - \beta_1 q^{3} - \beta_{5} q^{4} + ( - \beta_{7} - \beta_{6} - \beta_{5} + \cdots + 1) q^{5} + \beta_{4} q^{6} + (\beta_{7} + \beta_{5} - \beta_1 - 1) q^{7} - q^{8} + (\beta_{6} - \beta_{5} + \beta_{4} + \cdots + 1) q^{9}+ \cdots + (4 \beta_{7} + 5 \beta_{4} + \beta_{3} - 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - q^{3} - 4 q^{4} + 5 q^{5} - 2 q^{6} - 3 q^{7} - 8 q^{8} + q^{9} - 5 q^{10} + 2 q^{11} - q^{12} + 14 q^{13} + 3 q^{14} - 10 q^{15} - 4 q^{16} + 7 q^{17} - q^{18} + q^{19} - 10 q^{20}+ \cdots - 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} + 6x^{6} + 3x^{5} + 25x^{4} - 3x^{3} + 6x^{2} + x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -14\nu^{7} + 36\nu^{6} - 126\nu^{5} + 105\nu^{4} - 396\nu^{3} + 504\nu^{2} - 672\nu + 90 ) / 119 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -15\nu^{7} + 7\nu^{6} - 84\nu^{5} - 66\nu^{4} - 434\nu^{3} - 21\nu^{2} - 6\nu + 315 ) / 119 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 20\nu^{7} - 15\nu^{6} + 112\nu^{5} + 88\nu^{4} + 522\nu^{3} + 28\nu^{2} + 8\nu + 22 ) / 119 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -22\nu^{7} + 42\nu^{6} - 147\nu^{5} + 46\nu^{4} - 462\nu^{3} + 588\nu^{2} - 104\nu + 105 ) / 119 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 24\nu^{7} - 69\nu^{6} + 182\nu^{5} - 180\nu^{4} + 402\nu^{3} - 1085\nu^{2} + 81\nu + 6 ) / 119 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 105\nu^{7} - 83\nu^{6} + 588\nu^{5} + 462\nu^{4} + 2579\nu^{3} + 147\nu^{2} + 42\nu + 209 ) / 119 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + 2\beta_{5} + \beta_{4} + \beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} + 6\beta_{4} + \beta_{3} - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -6\beta_{6} - 10\beta_{5} + 6\beta_{3} - \beta_{2} - 10\beta _1 - 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 6\beta_{7} - 10\beta_{6} - 13\beta_{5} - 38\beta_{4} - 6\beta_{2} - 38\beta _1 + 13 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 10\beta_{7} - 81\beta_{4} - 38\beta_{3} + 98 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 81\beta_{6} + 114\beta_{5} - 81\beta_{3} + 38\beta_{2} + 255\beta _1 + 81 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\)
\(\chi(n)\) \(-1 + \beta_{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
93.1
1.33821 + 2.31784i
0.271028 + 0.469434i
−0.186817 0.323577i
−0.922415 1.59767i
1.33821 2.31784i
0.271028 0.469434i
−0.186817 + 0.323577i
−0.922415 + 1.59767i
0.500000 0.866025i −1.33821 2.31784i −0.500000 0.866025i 1.93020 3.34320i −2.67641 −2.21184 1.45181i −1.00000 −2.08159 + 3.60541i −1.93020 3.34320i
93.2 0.500000 0.866025i −0.271028 0.469434i −0.500000 0.866025i 0.298300 0.516670i −0.542055 −2.61586 + 0.396592i −1.00000 1.35309 2.34362i −0.298300 0.516670i
93.3 0.500000 0.866025i 0.186817 + 0.323577i −0.500000 0.866025i −1.58159 + 2.73939i 0.373635 2.36323 + 1.18960i −1.00000 1.43020 2.47718i 1.58159 + 2.73939i
93.4 0.500000 0.866025i 0.922415 + 1.59767i −0.500000 0.866025i 1.85309 3.20964i 1.84483 0.964471 + 2.46370i −1.00000 −0.201700 + 0.349355i −1.85309 3.20964i
277.1 0.500000 + 0.866025i −1.33821 + 2.31784i −0.500000 + 0.866025i 1.93020 + 3.34320i −2.67641 −2.21184 + 1.45181i −1.00000 −2.08159 3.60541i −1.93020 + 3.34320i
277.2 0.500000 + 0.866025i −0.271028 + 0.469434i −0.500000 + 0.866025i 0.298300 + 0.516670i −0.542055 −2.61586 0.396592i −1.00000 1.35309 + 2.34362i −0.298300 + 0.516670i
277.3 0.500000 + 0.866025i 0.186817 0.323577i −0.500000 + 0.866025i −1.58159 2.73939i 0.373635 2.36323 1.18960i −1.00000 1.43020 + 2.47718i 1.58159 2.73939i
277.4 0.500000 + 0.866025i 0.922415 1.59767i −0.500000 + 0.866025i 1.85309 + 3.20964i 1.84483 0.964471 2.46370i −1.00000 −0.201700 0.349355i −1.85309 + 3.20964i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 93.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 322.2.e.d 8
7.c even 3 1 inner 322.2.e.d 8
7.c even 3 1 2254.2.a.u 4
7.d odd 6 1 2254.2.a.r 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
322.2.e.d 8 1.a even 1 1 trivial
322.2.e.d 8 7.c even 3 1 inner
2254.2.a.r 4 7.d odd 6 1
2254.2.a.u 4 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + T_{3}^{7} + 6T_{3}^{6} - 3T_{3}^{5} + 25T_{3}^{4} + 3T_{3}^{3} + 6T_{3}^{2} - T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} + T^{7} + 6 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} - 5 T^{7} + \cdots + 729 \) Copy content Toggle raw display
$7$ \( T^{8} + 3 T^{7} + \cdots + 2401 \) Copy content Toggle raw display
$11$ \( T^{8} - 2 T^{7} + \cdots + 729 \) Copy content Toggle raw display
$13$ \( (T^{4} - 7 T^{3} + 38 T - 9)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} - 7 T^{7} + \cdots + 81 \) Copy content Toggle raw display
$19$ \( T^{8} - T^{7} + 18 T^{6} + \cdots + 9 \) Copy content Toggle raw display
$23$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + 6 T^{3} + \cdots + 147)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} - 4 T^{7} + \cdots + 36481 \) Copy content Toggle raw display
$37$ \( T^{8} + 70 T^{6} + \cdots + 301401 \) Copy content Toggle raw display
$41$ \( (T^{4} + 15 T^{3} + \cdots - 7647)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 12 T^{3} + \cdots - 547)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} - 15 T^{7} + \cdots + 2424249 \) Copy content Toggle raw display
$53$ \( T^{8} + 21 T^{7} + \cdots + 531441 \) Copy content Toggle raw display
$59$ \( T^{8} - 32 T^{7} + \cdots + 1565001 \) Copy content Toggle raw display
$61$ \( T^{8} - 3 T^{7} + \cdots + 729 \) Copy content Toggle raw display
$67$ \( T^{8} + 13 T^{7} + \cdots + 9 \) Copy content Toggle raw display
$71$ \( (T^{4} + 7 T^{3} + \cdots + 807)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} - 16 T^{7} + \cdots + 1750329 \) Copy content Toggle raw display
$79$ \( T^{8} + 3 T^{7} + \cdots + 1495729 \) Copy content Toggle raw display
$83$ \( (T^{4} - 8 T^{3} + 9 T^{2} + \cdots + 9)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} - 33 T^{7} + \cdots + 13461561 \) Copy content Toggle raw display
$97$ \( (T^{4} + 12 T^{3} + \cdots - 199)^{2} \) Copy content Toggle raw display
show more
show less