Properties

Label 322.2.e.c.93.4
Level $322$
Weight $2$
Character 322.93
Analytic conductor $2.571$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,2,Mod(93,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 322.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.57118294509\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1767277521.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + x^{6} - 10x^{5} + 38x^{4} - 40x^{3} + 64x^{2} - 38x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 93.4
Root \(2.11692 - 0.978886i\) of defining polynomial
Character \(\chi\) \(=\) 322.93
Dual form 322.2.e.c.277.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(1.43049 + 2.47769i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.686423 + 1.18892i) q^{5} +2.86099 q^{6} +(-2.30334 + 1.30178i) q^{7} -1.00000 q^{8} +(-2.59262 + 4.49055i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(1.43049 + 2.47769i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.686423 + 1.18892i) q^{5} +2.86099 q^{6} +(-2.30334 + 1.30178i) q^{7} -1.00000 q^{8} +(-2.59262 + 4.49055i) q^{9} +(0.686423 + 1.18892i) q^{10} +(1.21072 + 2.09702i) q^{11} +(1.43049 - 2.47769i) q^{12} +5.67338 q^{13} +(-0.0242947 + 2.64564i) q^{14} -3.92769 q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.18642 - 3.78700i) q^{17} +(2.59262 + 4.49055i) q^{18} +(0.735012 - 1.27308i) q^{19} +1.37285 q^{20} +(-6.52031 - 3.84476i) q^{21} +2.42143 q^{22} +(-0.500000 + 0.866025i) q^{23} +(-1.43049 - 2.47769i) q^{24} +(1.55765 + 2.69792i) q^{25} +(2.83669 - 4.91329i) q^{26} -6.25195 q^{27} +(2.27904 + 1.34386i) q^{28} +3.06671 q^{29} +(-1.96385 + 3.40148i) q^{30} +(-3.65027 - 6.32245i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-3.46385 + 5.99956i) q^{33} -4.37285 q^{34} +(0.0333529 - 3.63205i) q^{35} +5.18524 q^{36} +(2.13503 - 3.69798i) q^{37} +(-0.735012 - 1.27308i) q^{38} +(8.11574 + 14.0569i) q^{39} +(0.686423 - 1.18892i) q^{40} +6.92769 q^{41} +(-6.58982 + 3.72437i) q^{42} -2.39772 q^{43} +(1.21072 - 2.09702i) q^{44} +(-3.55927 - 6.16483i) q^{45} +(0.500000 + 0.866025i) q^{46} +(0.915257 - 1.58527i) q^{47} -2.86099 q^{48} +(3.61074 - 5.99688i) q^{49} +3.11530 q^{50} +(6.25533 - 10.8345i) q^{51} +(-2.83669 - 4.91329i) q^{52} +(-2.12759 - 3.68510i) q^{53} +(-3.12597 + 5.41435i) q^{54} -3.32426 q^{55} +(2.30334 - 1.30178i) q^{56} +4.20572 q^{57} +(1.53335 - 2.65585i) q^{58} +(-0.416437 - 0.721290i) q^{59} +(1.96385 + 3.40148i) q^{60} +(7.67220 - 13.2886i) q^{61} -7.30054 q^{62} +(0.125974 - 13.7183i) q^{63} +1.00000 q^{64} +(-3.89434 + 6.74519i) q^{65} +(3.46385 + 5.99956i) q^{66} +(4.79148 + 8.29909i) q^{67} +(-2.18642 + 3.78700i) q^{68} -2.86099 q^{69} +(-3.12878 - 1.84491i) q^{70} -14.1410 q^{71} +(2.59262 - 4.49055i) q^{72} +(2.22883 + 3.86045i) q^{73} +(-2.13503 - 3.69798i) q^{74} +(-4.45641 + 7.71873i) q^{75} -1.47002 q^{76} +(-5.51856 - 3.25407i) q^{77} +16.2315 q^{78} +(-7.50508 + 12.9992i) q^{79} +(-0.686423 - 1.18892i) q^{80} +(-1.16551 - 2.01871i) q^{81} +(3.46385 - 5.99956i) q^{82} +5.16388 q^{83} +(-0.0695069 + 7.56914i) q^{84} +6.00324 q^{85} +(-1.19886 + 2.07648i) q^{86} +(4.38690 + 7.59834i) q^{87} +(-1.21072 - 2.09702i) q^{88} +(-8.98696 + 15.5659i) q^{89} -7.11854 q^{90} +(-13.0677 + 7.38550i) q^{91} +1.00000 q^{92} +(10.4434 - 18.0884i) q^{93} +(-0.915257 - 1.58527i) q^{94} +(1.00906 + 1.74774i) q^{95} +(-1.43049 + 2.47769i) q^{96} -2.26106 q^{97} +(-3.38808 - 6.12543i) q^{98} -12.5557 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - q^{3} - 4 q^{4} - 3 q^{5} - 2 q^{6} - q^{7} - 8 q^{8} - 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} - q^{3} - 4 q^{4} - 3 q^{5} - 2 q^{6} - q^{7} - 8 q^{8} - 7 q^{9} + 3 q^{10} + 6 q^{11} - q^{12} - 2 q^{13} + q^{14} + 6 q^{15} - 4 q^{16} - 15 q^{17} + 7 q^{18} + q^{19} + 6 q^{20} - q^{21} + 12 q^{22} - 4 q^{23} + q^{24} + 5 q^{25} - q^{26} - 10 q^{27} + 2 q^{28} + 12 q^{29} + 3 q^{30} - 8 q^{31} + 4 q^{32} - 9 q^{33} - 30 q^{34} - 6 q^{35} + 14 q^{36} - 8 q^{37} - q^{38} + 25 q^{39} + 3 q^{40} + 18 q^{41} - 14 q^{42} + 28 q^{43} + 6 q^{44} - 21 q^{45} + 4 q^{46} - 9 q^{47} + 2 q^{48} + 5 q^{49} + 10 q^{50} - 6 q^{51} + q^{52} + 3 q^{53} - 5 q^{54} - 24 q^{55} + q^{56} + 46 q^{57} + 6 q^{58} - 12 q^{59} - 3 q^{60} - 11 q^{61} - 16 q^{62} - 19 q^{63} + 8 q^{64} + 9 q^{66} + q^{67} - 15 q^{68} + 2 q^{69} - 30 q^{70} - 6 q^{71} + 7 q^{72} + 4 q^{73} + 8 q^{74} - 22 q^{75} - 2 q^{76} - 9 q^{77} + 50 q^{78} - 5 q^{79} - 3 q^{80} + 8 q^{81} + 9 q^{82} + 24 q^{83} - 13 q^{84} + 48 q^{85} + 14 q^{86} + 9 q^{87} - 6 q^{88} - 27 q^{89} - 42 q^{90} - 26 q^{91} + 8 q^{92} + 25 q^{93} + 9 q^{94} + 3 q^{95} + q^{96} + 4 q^{97} - 26 q^{98} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 1.43049 + 2.47769i 0.825896 + 1.43049i 0.901233 + 0.433335i \(0.142663\pi\)
−0.0753373 + 0.997158i \(0.524003\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.686423 + 1.18892i −0.306978 + 0.531701i −0.977700 0.210008i \(-0.932651\pi\)
0.670722 + 0.741709i \(0.265984\pi\)
\(6\) 2.86099 1.16799
\(7\) −2.30334 + 1.30178i −0.870580 + 0.492027i
\(8\) −1.00000 −0.353553
\(9\) −2.59262 + 4.49055i −0.864207 + 1.49685i
\(10\) 0.686423 + 1.18892i 0.217066 + 0.375969i
\(11\) 1.21072 + 2.09702i 0.365045 + 0.632277i 0.988783 0.149357i \(-0.0477202\pi\)
−0.623738 + 0.781633i \(0.714387\pi\)
\(12\) 1.43049 2.47769i 0.412948 0.715247i
\(13\) 5.67338 1.57351 0.786757 0.617263i \(-0.211759\pi\)
0.786757 + 0.617263i \(0.211759\pi\)
\(14\) −0.0242947 + 2.64564i −0.00649304 + 0.707077i
\(15\) −3.92769 −1.01413
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.18642 3.78700i −0.530285 0.918481i −0.999376 0.0353310i \(-0.988751\pi\)
0.469090 0.883150i \(-0.344582\pi\)
\(18\) 2.59262 + 4.49055i 0.611087 + 1.05843i
\(19\) 0.735012 1.27308i 0.168623 0.292064i −0.769313 0.638872i \(-0.779401\pi\)
0.937936 + 0.346808i \(0.112735\pi\)
\(20\) 1.37285 0.306978
\(21\) −6.52031 3.84476i −1.42285 0.838996i
\(22\) 2.42143 0.516252
\(23\) −0.500000 + 0.866025i −0.104257 + 0.180579i
\(24\) −1.43049 2.47769i −0.291998 0.505756i
\(25\) 1.55765 + 2.69792i 0.311530 + 0.539585i
\(26\) 2.83669 4.91329i 0.556321 0.963576i
\(27\) −6.25195 −1.20319
\(28\) 2.27904 + 1.34386i 0.430699 + 0.253966i
\(29\) 3.06671 0.569473 0.284736 0.958606i \(-0.408094\pi\)
0.284736 + 0.958606i \(0.408094\pi\)
\(30\) −1.96385 + 3.40148i −0.358548 + 0.621023i
\(31\) −3.65027 6.32245i −0.655608 1.13555i −0.981741 0.190222i \(-0.939079\pi\)
0.326133 0.945324i \(-0.394254\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −3.46385 + 5.99956i −0.602978 + 1.04439i
\(34\) −4.37285 −0.749937
\(35\) 0.0333529 3.63205i 0.00563767 0.613929i
\(36\) 5.18524 0.864207
\(37\) 2.13503 3.69798i 0.350997 0.607945i −0.635427 0.772161i \(-0.719176\pi\)
0.986424 + 0.164216i \(0.0525094\pi\)
\(38\) −0.735012 1.27308i −0.119235 0.206521i
\(39\) 8.11574 + 14.0569i 1.29956 + 2.25090i
\(40\) 0.686423 1.18892i 0.108533 0.187985i
\(41\) 6.92769 1.08192 0.540962 0.841047i \(-0.318060\pi\)
0.540962 + 0.841047i \(0.318060\pi\)
\(42\) −6.58982 + 3.72437i −1.01683 + 0.574684i
\(43\) −2.39772 −0.365648 −0.182824 0.983146i \(-0.558524\pi\)
−0.182824 + 0.983146i \(0.558524\pi\)
\(44\) 1.21072 2.09702i 0.182523 0.316138i
\(45\) −3.55927 6.16483i −0.530584 0.918999i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) 0.915257 1.58527i 0.133504 0.231236i −0.791521 0.611142i \(-0.790710\pi\)
0.925025 + 0.379906i \(0.124044\pi\)
\(48\) −2.86099 −0.412948
\(49\) 3.61074 5.99688i 0.515820 0.856697i
\(50\) 3.11530 0.440569
\(51\) 6.25533 10.8345i 0.875921 1.51714i
\(52\) −2.83669 4.91329i −0.393378 0.681351i
\(53\) −2.12759 3.68510i −0.292248 0.506188i 0.682093 0.731265i \(-0.261070\pi\)
−0.974341 + 0.225077i \(0.927736\pi\)
\(54\) −3.12597 + 5.41435i −0.425391 + 0.736799i
\(55\) −3.32426 −0.448243
\(56\) 2.30334 1.30178i 0.307797 0.173958i
\(57\) 4.20572 0.557061
\(58\) 1.53335 2.65585i 0.201339 0.348730i
\(59\) −0.416437 0.721290i −0.0542155 0.0939040i 0.837644 0.546217i \(-0.183932\pi\)
−0.891859 + 0.452313i \(0.850599\pi\)
\(60\) 1.96385 + 3.40148i 0.253531 + 0.439129i
\(61\) 7.67220 13.2886i 0.982325 1.70144i 0.329056 0.944310i \(-0.393269\pi\)
0.653269 0.757126i \(-0.273397\pi\)
\(62\) −7.30054 −0.927169
\(63\) 0.125974 13.7183i 0.0158712 1.72834i
\(64\) 1.00000 0.125000
\(65\) −3.89434 + 6.74519i −0.483033 + 0.836638i
\(66\) 3.46385 + 5.99956i 0.426370 + 0.738494i
\(67\) 4.79148 + 8.29909i 0.585372 + 1.01389i 0.994829 + 0.101565i \(0.0323850\pi\)
−0.409457 + 0.912330i \(0.634282\pi\)
\(68\) −2.18642 + 3.78700i −0.265143 + 0.459241i
\(69\) −2.86099 −0.344422
\(70\) −3.12878 1.84491i −0.373960 0.220509i
\(71\) −14.1410 −1.67823 −0.839117 0.543951i \(-0.816928\pi\)
−0.839117 + 0.543951i \(0.816928\pi\)
\(72\) 2.59262 4.49055i 0.305543 0.529217i
\(73\) 2.22883 + 3.86045i 0.260865 + 0.451832i 0.966472 0.256772i \(-0.0826588\pi\)
−0.705607 + 0.708604i \(0.749325\pi\)
\(74\) −2.13503 3.69798i −0.248192 0.429882i
\(75\) −4.45641 + 7.71873i −0.514582 + 0.891282i
\(76\) −1.47002 −0.168623
\(77\) −5.51856 3.25407i −0.628898 0.370836i
\(78\) 16.2315 1.83785
\(79\) −7.50508 + 12.9992i −0.844387 + 1.46252i 0.0417653 + 0.999127i \(0.486702\pi\)
−0.886152 + 0.463394i \(0.846632\pi\)
\(80\) −0.686423 1.18892i −0.0767444 0.132925i
\(81\) −1.16551 2.01871i −0.129501 0.224302i
\(82\) 3.46385 5.99956i 0.382518 0.662540i
\(83\) 5.16388 0.566810 0.283405 0.959000i \(-0.408536\pi\)
0.283405 + 0.959000i \(0.408536\pi\)
\(84\) −0.0695069 + 7.56914i −0.00758382 + 0.825861i
\(85\) 6.00324 0.651143
\(86\) −1.19886 + 2.07648i −0.129276 + 0.223913i
\(87\) 4.38690 + 7.59834i 0.470325 + 0.814627i
\(88\) −1.21072 2.09702i −0.129063 0.223544i
\(89\) −8.98696 + 15.5659i −0.952616 + 1.64998i −0.212884 + 0.977078i \(0.568286\pi\)
−0.739732 + 0.672902i \(0.765048\pi\)
\(90\) −7.11854 −0.750360
\(91\) −13.0677 + 7.38550i −1.36987 + 0.774210i
\(92\) 1.00000 0.104257
\(93\) 10.4434 18.0884i 1.08293 1.87568i
\(94\) −0.915257 1.58527i −0.0944015 0.163508i
\(95\) 1.00906 + 1.74774i 0.103527 + 0.179314i
\(96\) −1.43049 + 2.47769i −0.145999 + 0.252878i
\(97\) −2.26106 −0.229576 −0.114788 0.993390i \(-0.536619\pi\)
−0.114788 + 0.993390i \(0.536619\pi\)
\(98\) −3.38808 6.12543i −0.342248 0.618762i
\(99\) −12.5557 −1.26190
\(100\) 1.55765 2.69792i 0.155765 0.269792i
\(101\) −6.49720 11.2535i −0.646495 1.11976i −0.983954 0.178423i \(-0.942901\pi\)
0.337458 0.941340i \(-0.390433\pi\)
\(102\) −6.25533 10.8345i −0.619370 1.07278i
\(103\) 7.26881 12.5899i 0.716217 1.24052i −0.246272 0.969201i \(-0.579206\pi\)
0.962488 0.271323i \(-0.0874611\pi\)
\(104\) −5.67338 −0.556321
\(105\) 9.04680 5.11299i 0.882878 0.498977i
\(106\) −4.25519 −0.413301
\(107\) 0.954788 1.65374i 0.0923028 0.159873i −0.816177 0.577802i \(-0.803911\pi\)
0.908480 + 0.417929i \(0.137244\pi\)
\(108\) 3.12597 + 5.41435i 0.300797 + 0.520996i
\(109\) −4.61293 7.98984i −0.441839 0.765288i 0.555987 0.831191i \(-0.312340\pi\)
−0.997826 + 0.0659034i \(0.979007\pi\)
\(110\) −1.66213 + 2.87889i −0.158478 + 0.274491i
\(111\) 12.2166 1.15955
\(112\) 0.0242947 2.64564i 0.00229564 0.249989i
\(113\) −13.3500 −1.25586 −0.627932 0.778269i \(-0.716098\pi\)
−0.627932 + 0.778269i \(0.716098\pi\)
\(114\) 2.10286 3.64226i 0.196951 0.341129i
\(115\) −0.686423 1.18892i −0.0640093 0.110867i
\(116\) −1.53335 2.65585i −0.142368 0.246589i
\(117\) −14.7089 + 25.4766i −1.35984 + 2.35531i
\(118\) −0.832874 −0.0766723
\(119\) 9.96591 + 5.87649i 0.913573 + 0.538697i
\(120\) 3.92769 0.358548
\(121\) 2.56833 4.44847i 0.233484 0.404407i
\(122\) −7.67220 13.2886i −0.694609 1.20310i
\(123\) 9.91002 + 17.1647i 0.893556 + 1.54768i
\(124\) −3.65027 + 6.32245i −0.327804 + 0.567773i
\(125\) −11.1410 −0.996485
\(126\) −11.8174 6.96824i −1.05278 0.620780i
\(127\) 19.2326 1.70662 0.853310 0.521404i \(-0.174592\pi\)
0.853310 + 0.521404i \(0.174592\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −3.42992 5.94079i −0.301987 0.523057i
\(130\) 3.89434 + 6.74519i 0.341556 + 0.591593i
\(131\) −8.58526 + 14.8701i −0.750098 + 1.29921i 0.197677 + 0.980267i \(0.436660\pi\)
−0.947775 + 0.318940i \(0.896673\pi\)
\(132\) 6.92769 0.602978
\(133\) −0.0357138 + 3.88915i −0.00309678 + 0.337233i
\(134\) 9.58296 0.827842
\(135\) 4.29148 7.43306i 0.369352 0.639736i
\(136\) 2.18642 + 3.78700i 0.187484 + 0.324732i
\(137\) −6.87504 11.9079i −0.587375 1.01736i −0.994575 0.104024i \(-0.966828\pi\)
0.407200 0.913339i \(-0.366505\pi\)
\(138\) −1.43049 + 2.47769i −0.121772 + 0.210915i
\(139\) 7.43719 0.630814 0.315407 0.948956i \(-0.397859\pi\)
0.315407 + 0.948956i \(0.397859\pi\)
\(140\) −3.16213 + 1.78714i −0.267249 + 0.151041i
\(141\) 5.23707 0.441041
\(142\) −7.07052 + 12.2465i −0.593345 + 1.02770i
\(143\) 6.86886 + 11.8972i 0.574403 + 0.994896i
\(144\) −2.59262 4.49055i −0.216052 0.374213i
\(145\) −2.10506 + 3.64607i −0.174815 + 0.302789i
\(146\) 4.45767 0.368919
\(147\) 20.0235 + 0.367780i 1.65151 + 0.0303340i
\(148\) −4.27006 −0.350997
\(149\) −3.53997 + 6.13141i −0.290006 + 0.502305i −0.973811 0.227360i \(-0.926991\pi\)
0.683805 + 0.729665i \(0.260324\pi\)
\(150\) 4.45641 + 7.71873i 0.363864 + 0.630231i
\(151\) −7.40958 12.8338i −0.602983 1.04440i −0.992367 0.123321i \(-0.960645\pi\)
0.389384 0.921075i \(-0.372688\pi\)
\(152\) −0.735012 + 1.27308i −0.0596174 + 0.103260i
\(153\) 22.6743 1.83311
\(154\) −5.57738 + 3.15218i −0.449438 + 0.254010i
\(155\) 10.0225 0.805027
\(156\) 8.11574 14.0569i 0.649779 1.12545i
\(157\) 7.06715 + 12.2407i 0.564020 + 0.976911i 0.997140 + 0.0755747i \(0.0240791\pi\)
−0.433120 + 0.901336i \(0.642588\pi\)
\(158\) 7.50508 + 12.9992i 0.597072 + 1.03416i
\(159\) 6.08702 10.5430i 0.482732 0.836116i
\(160\) −1.37285 −0.108533
\(161\) 0.0242947 2.64564i 0.00191469 0.208506i
\(162\) −2.33101 −0.183141
\(163\) −0.544032 + 0.942291i −0.0426119 + 0.0738059i −0.886545 0.462643i \(-0.846901\pi\)
0.843933 + 0.536449i \(0.180235\pi\)
\(164\) −3.46385 5.99956i −0.270481 0.468487i
\(165\) −4.75533 8.23647i −0.370202 0.641208i
\(166\) 2.58194 4.47206i 0.200398 0.347099i
\(167\) −1.86187 −0.144076 −0.0720378 0.997402i \(-0.522950\pi\)
−0.0720378 + 0.997402i \(0.522950\pi\)
\(168\) 6.52031 + 3.84476i 0.503053 + 0.296630i
\(169\) 19.1873 1.47594
\(170\) 3.00162 5.19896i 0.230214 0.398742i
\(171\) 3.81122 + 6.60122i 0.291451 + 0.504808i
\(172\) 1.19886 + 2.07648i 0.0914121 + 0.158330i
\(173\) −5.81695 + 10.0753i −0.442255 + 0.766008i −0.997856 0.0654408i \(-0.979155\pi\)
0.555602 + 0.831449i \(0.312488\pi\)
\(174\) 8.77380 0.665140
\(175\) −7.09989 4.18652i −0.536702 0.316471i
\(176\) −2.42143 −0.182523
\(177\) 1.19142 2.06360i 0.0895527 0.155110i
\(178\) 8.98696 + 15.5659i 0.673601 + 1.16671i
\(179\) 7.07214 + 12.2493i 0.528597 + 0.915557i 0.999444 + 0.0333418i \(0.0106150\pi\)
−0.470847 + 0.882215i \(0.656052\pi\)
\(180\) −3.55927 + 6.16483i −0.265292 + 0.459500i
\(181\) 3.34337 0.248511 0.124255 0.992250i \(-0.460346\pi\)
0.124255 + 0.992250i \(0.460346\pi\)
\(182\) −0.137833 + 15.0097i −0.0102169 + 1.11260i
\(183\) 43.9001 3.24519
\(184\) 0.500000 0.866025i 0.0368605 0.0638442i
\(185\) 2.93107 + 5.07676i 0.215497 + 0.373251i
\(186\) −10.4434 18.0884i −0.765745 1.32631i
\(187\) 5.29428 9.16996i 0.387156 0.670574i
\(188\) −1.83051 −0.133504
\(189\) 14.4004 8.13866i 1.04747 0.592000i
\(190\) 2.01812 0.146410
\(191\) −8.02987 + 13.9081i −0.581021 + 1.00636i 0.414338 + 0.910123i \(0.364013\pi\)
−0.995359 + 0.0962346i \(0.969320\pi\)
\(192\) 1.43049 + 2.47769i 0.103237 + 0.178812i
\(193\) −3.23221 5.59835i −0.232660 0.402978i 0.725930 0.687768i \(-0.241409\pi\)
−0.958590 + 0.284790i \(0.908076\pi\)
\(194\) −1.13053 + 1.95814i −0.0811675 + 0.140586i
\(195\) −22.2833 −1.59574
\(196\) −6.99882 0.128550i −0.499916 0.00918216i
\(197\) 12.7264 0.906716 0.453358 0.891329i \(-0.350226\pi\)
0.453358 + 0.891329i \(0.350226\pi\)
\(198\) −6.27786 + 10.8736i −0.446148 + 0.772752i
\(199\) −7.74465 13.4141i −0.549003 0.950902i −0.998343 0.0575409i \(-0.981674\pi\)
0.449340 0.893361i \(-0.351659\pi\)
\(200\) −1.55765 2.69792i −0.110142 0.190772i
\(201\) −13.7084 + 23.7436i −0.966913 + 1.67474i
\(202\) −12.9944 −0.914283
\(203\) −7.06366 + 3.99218i −0.495772 + 0.280196i
\(204\) −12.5107 −0.875921
\(205\) −4.75533 + 8.23647i −0.332126 + 0.575260i
\(206\) −7.26881 12.5899i −0.506442 0.877183i
\(207\) −2.59262 4.49055i −0.180200 0.312115i
\(208\) −2.83669 + 4.91329i −0.196689 + 0.340676i
\(209\) 3.55957 0.246220
\(210\) 0.0954222 10.3913i 0.00658476 0.717065i
\(211\) −9.32662 −0.642071 −0.321035 0.947067i \(-0.604031\pi\)
−0.321035 + 0.947067i \(0.604031\pi\)
\(212\) −2.12759 + 3.68510i −0.146124 + 0.253094i
\(213\) −20.2287 35.0371i −1.38605 2.40070i
\(214\) −0.954788 1.65374i −0.0652680 0.113047i
\(215\) 1.64585 2.85069i 0.112246 0.194415i
\(216\) 6.25195 0.425391
\(217\) 16.6382 + 9.81090i 1.12948 + 0.666007i
\(218\) −9.22587 −0.624855
\(219\) −6.37666 + 11.0447i −0.430895 + 0.746332i
\(220\) 1.66213 + 2.87889i 0.112061 + 0.194095i
\(221\) −12.4044 21.4851i −0.834411 1.44524i
\(222\) 6.10830 10.5799i 0.409962 0.710075i
\(223\) 22.6719 1.51822 0.759111 0.650961i \(-0.225634\pi\)
0.759111 + 0.650961i \(0.225634\pi\)
\(224\) −2.27904 1.34386i −0.152275 0.0897904i
\(225\) −16.1536 −1.07690
\(226\) −6.67500 + 11.5614i −0.444015 + 0.769056i
\(227\) −2.12435 3.67949i −0.140998 0.244216i 0.786875 0.617113i \(-0.211698\pi\)
−0.927873 + 0.372897i \(0.878365\pi\)
\(228\) −2.10286 3.64226i −0.139265 0.241215i
\(229\) 1.34007 2.32107i 0.0885542 0.153380i −0.818346 0.574726i \(-0.805109\pi\)
0.906900 + 0.421345i \(0.138442\pi\)
\(230\) −1.37285 −0.0905228
\(231\) 0.168306 18.3282i 0.0110737 1.20591i
\(232\) −3.06671 −0.201339
\(233\) −12.2429 + 21.2053i −0.802058 + 1.38921i 0.116201 + 0.993226i \(0.462928\pi\)
−0.918259 + 0.395980i \(0.870405\pi\)
\(234\) 14.7089 + 25.4766i 0.961553 + 1.66546i
\(235\) 1.25651 + 2.17633i 0.0819654 + 0.141968i
\(236\) −0.416437 + 0.721290i −0.0271077 + 0.0469520i
\(237\) −42.9438 −2.78950
\(238\) 10.0721 5.69248i 0.652880 0.368989i
\(239\) −10.1729 −0.658029 −0.329015 0.944325i \(-0.606717\pi\)
−0.329015 + 0.944325i \(0.606717\pi\)
\(240\) 1.96385 3.40148i 0.126766 0.219565i
\(241\) −5.28692 9.15722i −0.340561 0.589868i 0.643976 0.765045i \(-0.277283\pi\)
−0.984537 + 0.175177i \(0.943950\pi\)
\(242\) −2.56833 4.44847i −0.165098 0.285959i
\(243\) −6.04343 + 10.4675i −0.387686 + 0.671492i
\(244\) −15.3444 −0.982325
\(245\) 4.65131 + 8.40927i 0.297161 + 0.537249i
\(246\) 19.8200 1.26368
\(247\) 4.17001 7.22266i 0.265331 0.459567i
\(248\) 3.65027 + 6.32245i 0.231792 + 0.401476i
\(249\) 7.38690 + 12.7945i 0.468126 + 0.810818i
\(250\) −5.57052 + 9.64843i −0.352311 + 0.610220i
\(251\) 20.6497 1.30340 0.651698 0.758479i \(-0.274057\pi\)
0.651698 + 0.758479i \(0.274057\pi\)
\(252\) −11.9434 + 6.75004i −0.752362 + 0.425213i
\(253\) −2.42143 −0.152234
\(254\) 9.61631 16.6559i 0.603381 1.04509i
\(255\) 8.58760 + 14.8742i 0.537776 + 0.931455i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 15.8574 27.4659i 0.989160 1.71328i 0.367413 0.930058i \(-0.380244\pi\)
0.621747 0.783218i \(-0.286423\pi\)
\(258\) −6.85983 −0.427075
\(259\) −0.103740 + 11.2971i −0.00644609 + 0.701965i
\(260\) 7.78868 0.483033
\(261\) −7.95081 + 13.7712i −0.492143 + 0.852416i
\(262\) 8.58526 + 14.8701i 0.530399 + 0.918678i
\(263\) 4.26337 + 7.38437i 0.262890 + 0.455340i 0.967009 0.254743i \(-0.0819909\pi\)
−0.704118 + 0.710083i \(0.748658\pi\)
\(264\) 3.46385 5.99956i 0.213185 0.369247i
\(265\) 5.84172 0.358854
\(266\) 3.35025 + 1.97551i 0.205417 + 0.121126i
\(267\) −51.4231 −3.14705
\(268\) 4.79148 8.29909i 0.292686 0.506947i
\(269\) −14.2688 24.7143i −0.869984 1.50686i −0.862011 0.506889i \(-0.830795\pi\)
−0.00797307 0.999968i \(-0.502538\pi\)
\(270\) −4.29148 7.43306i −0.261171 0.452362i
\(271\) −6.05147 + 10.4815i −0.367601 + 0.636703i −0.989190 0.146640i \(-0.953154\pi\)
0.621589 + 0.783343i \(0.286487\pi\)
\(272\) 4.37285 0.265143
\(273\) −36.9922 21.8128i −2.23887 1.32017i
\(274\) −13.7501 −0.830673
\(275\) −3.77174 + 6.53285i −0.227445 + 0.393946i
\(276\) 1.43049 + 2.47769i 0.0861056 + 0.149139i
\(277\) −1.90670 3.30249i −0.114562 0.198428i 0.803042 0.595922i \(-0.203213\pi\)
−0.917605 + 0.397494i \(0.869880\pi\)
\(278\) 3.71860 6.44080i 0.223027 0.386293i
\(279\) 37.8551 2.26632
\(280\) −0.0333529 + 3.63205i −0.00199322 + 0.217057i
\(281\) 5.02136 0.299549 0.149775 0.988720i \(-0.452145\pi\)
0.149775 + 0.988720i \(0.452145\pi\)
\(282\) 2.61854 4.53544i 0.155932 0.270081i
\(283\) 2.85997 + 4.95361i 0.170008 + 0.294462i 0.938422 0.345491i \(-0.112287\pi\)
−0.768415 + 0.639952i \(0.778954\pi\)
\(284\) 7.07052 + 12.2465i 0.419558 + 0.726696i
\(285\) −2.88690 + 5.00026i −0.171005 + 0.296190i
\(286\) 13.7377 0.812329
\(287\) −15.9568 + 9.01833i −0.941901 + 0.532335i
\(288\) −5.18524 −0.305543
\(289\) −1.06089 + 1.83751i −0.0624052 + 0.108089i
\(290\) 2.10506 + 3.64607i 0.123613 + 0.214104i
\(291\) −3.23444 5.60221i −0.189606 0.328407i
\(292\) 2.22883 3.86045i 0.130433 0.225916i
\(293\) −14.4045 −0.841518 −0.420759 0.907172i \(-0.638236\pi\)
−0.420759 + 0.907172i \(0.638236\pi\)
\(294\) 10.3303 17.1570i 0.602474 1.00062i
\(295\) 1.14341 0.0665718
\(296\) −2.13503 + 3.69798i −0.124096 + 0.214941i
\(297\) −7.56934 13.1105i −0.439218 0.760748i
\(298\) 3.53997 + 6.13141i 0.205065 + 0.355183i
\(299\) −2.83669 + 4.91329i −0.164050 + 0.284143i
\(300\) 8.91282 0.514582
\(301\) 5.52275 3.12130i 0.318326 0.179909i
\(302\) −14.8192 −0.852746
\(303\) 18.5884 32.1960i 1.06788 1.84961i
\(304\) 0.735012 + 1.27308i 0.0421558 + 0.0730161i
\(305\) 10.5327 + 18.2433i 0.603103 + 1.04461i
\(306\) 11.3371 19.6365i 0.648101 1.12254i
\(307\) −10.2596 −0.585545 −0.292773 0.956182i \(-0.594578\pi\)
−0.292773 + 0.956182i \(0.594578\pi\)
\(308\) −0.0588281 + 6.40624i −0.00335204 + 0.365030i
\(309\) 41.5919 2.36608
\(310\) 5.01126 8.67975i 0.284620 0.492977i
\(311\) −15.0500 26.0674i −0.853410 1.47815i −0.878112 0.478454i \(-0.841197\pi\)
0.0247026 0.999695i \(-0.492136\pi\)
\(312\) −8.11574 14.0569i −0.459463 0.795813i
\(313\) 7.85525 13.6057i 0.444005 0.769039i −0.553977 0.832532i \(-0.686891\pi\)
0.997982 + 0.0634927i \(0.0202240\pi\)
\(314\) 14.1343 0.797644
\(315\) 16.2235 + 9.56631i 0.914088 + 0.539001i
\(316\) 15.0102 0.844387
\(317\) 13.6693 23.6760i 0.767746 1.32977i −0.171037 0.985265i \(-0.554712\pi\)
0.938783 0.344510i \(-0.111955\pi\)
\(318\) −6.08702 10.5430i −0.341343 0.591224i
\(319\) 3.71291 + 6.43096i 0.207883 + 0.360064i
\(320\) −0.686423 + 1.18892i −0.0383722 + 0.0664626i
\(321\) 5.46327 0.304930
\(322\) −2.27904 1.34386i −0.127006 0.0748904i
\(323\) −6.42819 −0.357674
\(324\) −1.16551 + 2.01871i −0.0647503 + 0.112151i
\(325\) 8.83713 + 15.3064i 0.490196 + 0.849044i
\(326\) 0.544032 + 0.942291i 0.0301311 + 0.0521886i
\(327\) 13.1975 22.8588i 0.729826 1.26410i
\(328\) −6.92769 −0.382518
\(329\) −0.0444718 + 4.84288i −0.00245181 + 0.266997i
\(330\) −9.51065 −0.523544
\(331\) −11.5219 + 19.9566i −0.633303 + 1.09691i 0.353569 + 0.935408i \(0.384968\pi\)
−0.986872 + 0.161504i \(0.948365\pi\)
\(332\) −2.58194 4.47206i −0.141702 0.245436i
\(333\) 11.0707 + 19.1749i 0.606668 + 1.05078i
\(334\) −0.930933 + 1.61242i −0.0509384 + 0.0882279i
\(335\) −13.1559 −0.718785
\(336\) 6.58982 3.72437i 0.359504 0.203181i
\(337\) 3.30493 0.180031 0.0900155 0.995940i \(-0.471308\pi\)
0.0900155 + 0.995940i \(0.471308\pi\)
\(338\) 9.59364 16.6167i 0.521825 0.903828i
\(339\) −19.0971 33.0771i −1.03721 1.79650i
\(340\) −3.00162 5.19896i −0.162786 0.281953i
\(341\) 8.83889 15.3094i 0.478653 0.829051i
\(342\) 7.62243 0.412174
\(343\) −0.510132 + 18.5132i −0.0275445 + 0.999621i
\(344\) 2.39772 0.129276
\(345\) 1.96385 3.40148i 0.105730 0.183130i
\(346\) 5.81695 + 10.0753i 0.312721 + 0.541649i
\(347\) −8.33781 14.4415i −0.447597 0.775261i 0.550632 0.834748i \(-0.314387\pi\)
−0.998229 + 0.0594869i \(0.981054\pi\)
\(348\) 4.38690 7.59834i 0.235163 0.407314i
\(349\) −23.6991 −1.26859 −0.634293 0.773093i \(-0.718709\pi\)
−0.634293 + 0.773093i \(0.718709\pi\)
\(350\) −7.17558 + 4.05543i −0.383551 + 0.216772i
\(351\) −35.4697 −1.89323
\(352\) −1.21072 + 2.09702i −0.0645315 + 0.111772i
\(353\) −9.23663 15.9983i −0.491616 0.851505i 0.508337 0.861158i \(-0.330260\pi\)
−0.999953 + 0.00965369i \(0.996927\pi\)
\(354\) −1.19142 2.06360i −0.0633233 0.109679i
\(355\) 9.70674 16.8126i 0.515180 0.892318i
\(356\) 17.9739 0.952616
\(357\) −0.303943 + 33.0987i −0.0160864 + 1.75177i
\(358\) 14.1443 0.747549
\(359\) −9.41644 + 16.3097i −0.496981 + 0.860796i −0.999994 0.00348307i \(-0.998891\pi\)
0.503013 + 0.864279i \(0.332225\pi\)
\(360\) 3.55927 + 6.16483i 0.187590 + 0.324915i
\(361\) 8.41951 + 14.5830i 0.443132 + 0.767528i
\(362\) 1.67168 2.89544i 0.0878617 0.152181i
\(363\) 14.6959 0.771334
\(364\) 12.9299 + 7.62423i 0.677710 + 0.399618i
\(365\) −6.11969 −0.320319
\(366\) 21.9501 38.0186i 1.14735 1.98727i
\(367\) −9.58398 16.5999i −0.500279 0.866509i −1.00000 0.000322685i \(-0.999897\pi\)
0.499721 0.866187i \(-0.333436\pi\)
\(368\) −0.500000 0.866025i −0.0260643 0.0451447i
\(369\) −17.9609 + 31.1092i −0.935006 + 1.61948i
\(370\) 5.86214 0.304758
\(371\) 9.69776 + 5.71838i 0.503483 + 0.296883i
\(372\) −20.8867 −1.08293
\(373\) 10.7957 18.6988i 0.558982 0.968185i −0.438600 0.898683i \(-0.644525\pi\)
0.997582 0.0695028i \(-0.0221413\pi\)
\(374\) −5.29428 9.16996i −0.273761 0.474167i
\(375\) −15.9372 27.6040i −0.822993 1.42547i
\(376\) −0.915257 + 1.58527i −0.0472008 + 0.0817541i
\(377\) 17.3986 0.896073
\(378\) 0.151889 16.5404i 0.00781235 0.850747i
\(379\) −36.0921 −1.85393 −0.926964 0.375150i \(-0.877591\pi\)
−0.926964 + 0.375150i \(0.877591\pi\)
\(380\) 1.00906 1.74774i 0.0517636 0.0896572i
\(381\) 27.5121 + 47.6524i 1.40949 + 2.44131i
\(382\) 8.02987 + 13.9081i 0.410844 + 0.711602i
\(383\) 6.79985 11.7777i 0.347456 0.601812i −0.638341 0.769754i \(-0.720379\pi\)
0.985797 + 0.167942i \(0.0537122\pi\)
\(384\) 2.86099 0.145999
\(385\) 7.65689 4.32745i 0.390231 0.220547i
\(386\) −6.46442 −0.329030
\(387\) 6.21637 10.7671i 0.315996 0.547321i
\(388\) 1.13053 + 1.95814i 0.0573941 + 0.0994094i
\(389\) 2.46267 + 4.26546i 0.124862 + 0.216268i 0.921679 0.387953i \(-0.126818\pi\)
−0.796817 + 0.604221i \(0.793484\pi\)
\(390\) −11.1417 + 19.2979i −0.564179 + 0.977187i
\(391\) 4.37285 0.221144
\(392\) −3.61074 + 5.99688i −0.182370 + 0.302888i
\(393\) −49.1246 −2.47801
\(394\) 6.36318 11.0214i 0.320573 0.555248i
\(395\) −10.3033 17.8459i −0.518416 0.897923i
\(396\) 6.27786 + 10.8736i 0.315475 + 0.546418i
\(397\) −15.1636 + 26.2641i −0.761038 + 1.31816i 0.181277 + 0.983432i \(0.441977\pi\)
−0.942316 + 0.334725i \(0.891356\pi\)
\(398\) −15.4893 −0.776408
\(399\) −9.68720 + 5.47492i −0.484966 + 0.274089i
\(400\) −3.11530 −0.155765
\(401\) −1.06882 + 1.85126i −0.0533745 + 0.0924474i −0.891478 0.453064i \(-0.850331\pi\)
0.838104 + 0.545511i \(0.183664\pi\)
\(402\) 13.7084 + 23.7436i 0.683711 + 1.18422i
\(403\) −20.7094 35.8697i −1.03161 1.78680i
\(404\) −6.49720 + 11.2535i −0.323248 + 0.559881i
\(405\) 3.20012 0.159015
\(406\) −0.0745048 + 8.11340i −0.00369761 + 0.402661i
\(407\) 10.3397 0.512519
\(408\) −6.25533 + 10.8345i −0.309685 + 0.536390i
\(409\) 10.8072 + 18.7187i 0.534383 + 0.925579i 0.999193 + 0.0401685i \(0.0127895\pi\)
−0.464810 + 0.885411i \(0.653877\pi\)
\(410\) 4.75533 + 8.23647i 0.234849 + 0.406770i
\(411\) 19.6694 34.0684i 0.970220 1.68047i
\(412\) −14.5376 −0.716217
\(413\) 1.89816 + 1.11927i 0.0934022 + 0.0550755i
\(414\) −5.18524 −0.254841
\(415\) −3.54461 + 6.13944i −0.173998 + 0.301373i
\(416\) 2.83669 + 4.91329i 0.139080 + 0.240894i
\(417\) 10.6388 + 18.4270i 0.520987 + 0.902375i
\(418\) 1.77978 3.08268i 0.0870521 0.150779i
\(419\) −13.1978 −0.644753 −0.322376 0.946612i \(-0.604482\pi\)
−0.322376 + 0.946612i \(0.604482\pi\)
\(420\) −8.95138 5.27827i −0.436783 0.257553i
\(421\) 11.4270 0.556917 0.278458 0.960448i \(-0.410177\pi\)
0.278458 + 0.960448i \(0.410177\pi\)
\(422\) −4.66331 + 8.07709i −0.227006 + 0.393186i
\(423\) 4.74583 + 8.22001i 0.230750 + 0.399671i
\(424\) 2.12759 + 3.68510i 0.103325 + 0.178964i
\(425\) 6.81135 11.7976i 0.330399 0.572268i
\(426\) −40.4573 −1.96016
\(427\) −0.372788 + 40.5958i −0.0180405 + 1.96457i
\(428\) −1.90958 −0.0923028
\(429\) −19.6517 + 34.0378i −0.948794 + 1.64336i
\(430\) −1.64585 2.85069i −0.0793698 0.137473i
\(431\) 10.4265 + 18.0592i 0.502227 + 0.869883i 0.999997 + 0.00257388i \(0.000819293\pi\)
−0.497769 + 0.867309i \(0.665847\pi\)
\(432\) 3.12597 5.41435i 0.150398 0.260498i
\(433\) 2.16152 0.103876 0.0519381 0.998650i \(-0.483460\pi\)
0.0519381 + 0.998650i \(0.483460\pi\)
\(434\) 16.8156 9.50369i 0.807175 0.456192i
\(435\) −12.0451 −0.577517
\(436\) −4.61293 + 7.98984i −0.220919 + 0.382644i
\(437\) 0.735012 + 1.27308i 0.0351604 + 0.0608996i
\(438\) 6.37666 + 11.0447i 0.304689 + 0.527736i
\(439\) 3.90864 6.76996i 0.186549 0.323113i −0.757548 0.652779i \(-0.773603\pi\)
0.944097 + 0.329667i \(0.106936\pi\)
\(440\) 3.32426 0.158478
\(441\) 17.5680 + 31.7618i 0.836573 + 1.51247i
\(442\) −24.8088 −1.18004
\(443\) −5.97290 + 10.3454i −0.283781 + 0.491524i −0.972313 0.233683i \(-0.924922\pi\)
0.688532 + 0.725206i \(0.258256\pi\)
\(444\) −6.10830 10.5799i −0.289887 0.502099i
\(445\) −12.3377 21.3695i −0.584863 1.01301i
\(446\) 11.3360 19.6344i 0.536773 0.929718i
\(447\) −20.2556 −0.958058
\(448\) −2.30334 + 1.30178i −0.108823 + 0.0615033i
\(449\) 7.69249 0.363031 0.181516 0.983388i \(-0.441900\pi\)
0.181516 + 0.983388i \(0.441900\pi\)
\(450\) −8.07678 + 13.9894i −0.380743 + 0.659466i
\(451\) 8.38748 + 14.5275i 0.394951 + 0.684075i
\(452\) 6.67500 + 11.5614i 0.313966 + 0.543805i
\(453\) 21.1987 36.7172i 0.996002 1.72513i
\(454\) −4.24871 −0.199402
\(455\) 0.189224 20.6060i 0.00887095 0.966026i
\(456\) −4.20572 −0.196951
\(457\) 13.2368 22.9269i 0.619194 1.07247i −0.370440 0.928857i \(-0.620793\pi\)
0.989633 0.143618i \(-0.0458737\pi\)
\(458\) −1.34007 2.32107i −0.0626173 0.108456i
\(459\) 13.6694 + 23.6761i 0.638033 + 1.10511i
\(460\) −0.686423 + 1.18892i −0.0320046 + 0.0554336i
\(461\) 9.94208 0.463049 0.231524 0.972829i \(-0.425629\pi\)
0.231524 + 0.972829i \(0.425629\pi\)
\(462\) −15.7885 9.30985i −0.734548 0.433133i
\(463\) −30.3503 −1.41050 −0.705249 0.708960i \(-0.749165\pi\)
−0.705249 + 0.708960i \(0.749165\pi\)
\(464\) −1.53335 + 2.65585i −0.0711841 + 0.123295i
\(465\) 14.3371 + 24.8326i 0.664869 + 1.15159i
\(466\) 12.2429 + 21.2053i 0.567141 + 0.982317i
\(467\) 10.1121 17.5146i 0.467930 0.810479i −0.531398 0.847122i \(-0.678333\pi\)
0.999328 + 0.0366434i \(0.0116666\pi\)
\(468\) 29.4179 1.35984
\(469\) −21.8400 12.8782i −1.00848 0.594658i
\(470\) 2.51301 0.115917
\(471\) −20.2190 + 35.0203i −0.931643 + 1.61365i
\(472\) 0.416437 + 0.721290i 0.0191681 + 0.0332001i
\(473\) −2.90296 5.02807i −0.133478 0.231191i
\(474\) −21.4719 + 37.1905i −0.986238 + 1.70821i
\(475\) 4.57956 0.210125
\(476\) 0.106237 11.5690i 0.00486937 0.530263i
\(477\) 22.0642 1.01025
\(478\) −5.08644 + 8.80998i −0.232648 + 0.402959i
\(479\) −7.49152 12.9757i −0.342296 0.592874i 0.642563 0.766233i \(-0.277871\pi\)
−0.984859 + 0.173359i \(0.944538\pi\)
\(480\) −1.96385 3.40148i −0.0896369 0.155256i
\(481\) 12.1129 20.9801i 0.552299 0.956609i
\(482\) −10.5738 −0.481625
\(483\) 6.58982 3.72437i 0.299847 0.169465i
\(484\) −5.13665 −0.233484
\(485\) 1.55205 2.68822i 0.0704748 0.122066i
\(486\) 6.04343 + 10.4675i 0.274135 + 0.474817i
\(487\) −6.44921 11.1704i −0.292242 0.506178i 0.682098 0.731261i \(-0.261068\pi\)
−0.974339 + 0.225083i \(0.927735\pi\)
\(488\) −7.67220 + 13.2886i −0.347304 + 0.601549i
\(489\) −3.11293 −0.140772
\(490\) 9.60830 + 0.176480i 0.434059 + 0.00797253i
\(491\) 8.82355 0.398201 0.199101 0.979979i \(-0.436198\pi\)
0.199101 + 0.979979i \(0.436198\pi\)
\(492\) 9.91002 17.1647i 0.446778 0.773842i
\(493\) −6.70512 11.6136i −0.301983 0.523050i
\(494\) −4.17001 7.22266i −0.187617 0.324963i
\(495\) 8.61854 14.9277i 0.387374 0.670952i
\(496\) 7.30054 0.327804
\(497\) 32.5716 18.4085i 1.46104 0.825736i
\(498\) 14.7738 0.662030
\(499\) 10.4163 18.0415i 0.466296 0.807649i −0.532963 0.846139i \(-0.678921\pi\)
0.999259 + 0.0384897i \(0.0122547\pi\)
\(500\) 5.57052 + 9.64843i 0.249121 + 0.431491i
\(501\) −2.66339 4.61312i −0.118991 0.206099i
\(502\) 10.3248 17.8831i 0.460820 0.798163i
\(503\) 20.3341 0.906652 0.453326 0.891345i \(-0.350237\pi\)
0.453326 + 0.891345i \(0.350237\pi\)
\(504\) −0.125974 + 13.7183i −0.00561133 + 0.611061i
\(505\) 17.8393 0.793838
\(506\) −1.21072 + 2.09702i −0.0538230 + 0.0932241i
\(507\) 27.4473 + 47.5401i 1.21898 + 2.11133i
\(508\) −9.61631 16.6559i −0.426655 0.738988i
\(509\) −1.59482 + 2.76231i −0.0706891 + 0.122437i −0.899203 0.437531i \(-0.855853\pi\)
0.828514 + 0.559968i \(0.189186\pi\)
\(510\) 17.1752 0.760530
\(511\) −10.1592 5.99048i −0.449417 0.265003i
\(512\) −1.00000 −0.0441942
\(513\) −4.59526 + 7.95922i −0.202886 + 0.351408i
\(514\) −15.8574 27.4659i −0.699442 1.21147i
\(515\) 9.97895 + 17.2840i 0.439725 + 0.761626i
\(516\) −3.42992 + 5.94079i −0.150994 + 0.261529i
\(517\) 4.43247 0.194940
\(518\) 9.73166 + 5.73837i 0.427585 + 0.252129i
\(519\) −33.2845 −1.46103
\(520\) 3.89434 6.74519i 0.170778 0.295796i
\(521\) 5.38616 + 9.32910i 0.235972 + 0.408716i 0.959555 0.281522i \(-0.0908393\pi\)
−0.723583 + 0.690238i \(0.757506\pi\)
\(522\) 7.95081 + 13.7712i 0.347997 + 0.602749i
\(523\) 15.2458 26.4064i 0.666651 1.15467i −0.312184 0.950022i \(-0.601061\pi\)
0.978835 0.204652i \(-0.0656062\pi\)
\(524\) 17.1705 0.750098
\(525\) 0.216534 23.5801i 0.00945034 1.02912i
\(526\) 8.52673 0.371783
\(527\) −15.9621 + 27.6471i −0.695318 + 1.20433i
\(528\) −3.46385 5.99956i −0.150745 0.261097i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) 2.92086 5.05908i 0.126874 0.219752i
\(531\) 4.31865 0.187414
\(532\) 3.38596 1.91365i 0.146800 0.0829672i
\(533\) 39.3035 1.70242
\(534\) −25.7116 + 44.5337i −1.11265 + 1.92716i
\(535\) 1.31078 + 2.27033i 0.0566698 + 0.0981550i
\(536\) −4.79148 8.29909i −0.206960 0.358466i
\(537\) −20.2333 + 35.0451i −0.873132 + 1.51231i
\(538\) −28.5376 −1.23034
\(539\) 16.9472 + 0.311276i 0.729967 + 0.0134076i
\(540\) −8.58296 −0.369352
\(541\) −23.0981 + 40.0071i −0.993065 + 1.72004i −0.394719 + 0.918802i \(0.629158\pi\)
−0.598346 + 0.801238i \(0.704175\pi\)
\(542\) 6.05147 + 10.4815i 0.259933 + 0.450217i
\(543\) 4.78266 + 8.28382i 0.205244 + 0.355493i
\(544\) 2.18642 3.78700i 0.0937421 0.162366i
\(545\) 12.6657 0.542539
\(546\) −37.3866 + 21.1298i −1.60000 + 0.904272i
\(547\) 30.2044 1.29145 0.645723 0.763571i \(-0.276556\pi\)
0.645723 + 0.763571i \(0.276556\pi\)
\(548\) −6.87504 + 11.9079i −0.293687 + 0.508681i
\(549\) 39.7822 + 68.9048i 1.69786 + 2.94079i
\(550\) 3.77174 + 6.53285i 0.160828 + 0.278562i
\(551\) 2.25407 3.90416i 0.0960264 0.166323i
\(552\) 2.86099 0.121772
\(553\) 0.364668 39.7115i 0.0155072 1.68870i
\(554\) −3.81339 −0.162015
\(555\) −8.38575 + 14.5245i −0.355955 + 0.616533i
\(556\) −3.71860 6.44080i −0.157704 0.273151i
\(557\) 19.9208 + 34.5038i 0.844070 + 1.46197i 0.886426 + 0.462870i \(0.153180\pi\)
−0.0423559 + 0.999103i \(0.513486\pi\)
\(558\) 18.9275 32.7834i 0.801266 1.38783i
\(559\) −13.6032 −0.575353
\(560\) 3.12878 + 1.84491i 0.132215 + 0.0779618i
\(561\) 30.2937 1.27900
\(562\) 2.51068 4.34862i 0.105907 0.183436i
\(563\) 8.19098 + 14.1872i 0.345209 + 0.597919i 0.985392 0.170304i \(-0.0544748\pi\)
−0.640183 + 0.768222i \(0.721141\pi\)
\(564\) −2.61854 4.53544i −0.110260 0.190976i
\(565\) 9.16375 15.8721i 0.385522 0.667743i
\(566\) 5.71994 0.240427
\(567\) 5.31248 + 3.13255i 0.223103 + 0.131555i
\(568\) 14.1410 0.593345
\(569\) −2.99775 + 5.19225i −0.125672 + 0.217670i −0.921995 0.387201i \(-0.873442\pi\)
0.796323 + 0.604871i \(0.206775\pi\)
\(570\) 2.88690 + 5.00026i 0.120919 + 0.209438i
\(571\) −1.04571 1.81122i −0.0437616 0.0757973i 0.843315 0.537420i \(-0.180601\pi\)
−0.887077 + 0.461622i \(0.847268\pi\)
\(572\) 6.86886 11.8972i 0.287202 0.497448i
\(573\) −45.9467 −1.91945
\(574\) −0.168306 + 18.3282i −0.00702497 + 0.765003i
\(575\) −3.11530 −0.129917
\(576\) −2.59262 + 4.49055i −0.108026 + 0.187106i
\(577\) −6.27575 10.8699i −0.261263 0.452520i 0.705315 0.708894i \(-0.250806\pi\)
−0.966578 + 0.256374i \(0.917472\pi\)
\(578\) 1.06089 + 1.83751i 0.0441272 + 0.0764305i
\(579\) 9.24731 16.0168i 0.384305 0.665636i
\(580\) 4.21011 0.174815
\(581\) −11.8942 + 6.72224i −0.493454 + 0.278886i
\(582\) −6.46887 −0.268143
\(583\) 5.15183 8.92323i 0.213367 0.369563i
\(584\) −2.22883 3.86045i −0.0922298 0.159747i
\(585\) −20.1931 34.9755i −0.834882 1.44606i
\(586\) −7.20224 + 12.4746i −0.297522 + 0.515323i
\(587\) −13.2722 −0.547803 −0.273901 0.961758i \(-0.588314\pi\)
−0.273901 + 0.961758i \(0.588314\pi\)
\(588\) −9.69326 17.5248i −0.399743 0.722709i
\(589\) −10.7320 −0.442203
\(590\) 0.571704 0.990220i 0.0235367 0.0407667i
\(591\) 18.2050 + 31.5319i 0.748853 + 1.29705i
\(592\) 2.13503 + 3.69798i 0.0877493 + 0.151986i
\(593\) −16.3241 + 28.2743i −0.670352 + 1.16108i 0.307452 + 0.951564i \(0.400524\pi\)
−0.977804 + 0.209521i \(0.932810\pi\)
\(594\) −15.1387 −0.621148
\(595\) −13.8275 + 7.81490i −0.566872 + 0.320380i
\(596\) 7.07994 0.290006
\(597\) 22.1573 38.3776i 0.906839 1.57069i
\(598\) 2.83669 + 4.91329i 0.116001 + 0.200920i
\(599\) −3.72079 6.44460i −0.152027 0.263319i 0.779945 0.625848i \(-0.215247\pi\)
−0.931973 + 0.362529i \(0.881914\pi\)
\(600\) 4.45641 7.71873i 0.181932 0.315116i
\(601\) 13.8561 0.565202 0.282601 0.959237i \(-0.408803\pi\)
0.282601 + 0.959237i \(0.408803\pi\)
\(602\) 0.0582519 6.34349i 0.00237417 0.258542i
\(603\) −49.6900 −2.02353
\(604\) −7.40958 + 12.8338i −0.301491 + 0.522198i
\(605\) 3.52592 + 6.10706i 0.143349 + 0.248287i
\(606\) −18.5884 32.1960i −0.755102 1.30788i
\(607\) −4.16940 + 7.22162i −0.169231 + 0.293116i −0.938150 0.346230i \(-0.887462\pi\)
0.768919 + 0.639346i \(0.220795\pi\)
\(608\) 1.47002 0.0596174
\(609\) −19.9959 11.7908i −0.810274 0.477786i
\(610\) 21.0655 0.852917
\(611\) 5.19260 8.99385i 0.210070 0.363852i
\(612\) −11.3371 19.6365i −0.458276 0.793758i
\(613\) −4.66713 8.08370i −0.188503 0.326498i 0.756248 0.654285i \(-0.227030\pi\)
−0.944751 + 0.327787i \(0.893697\pi\)
\(614\) −5.12979 + 8.88506i −0.207022 + 0.358572i
\(615\) −27.2098 −1.09721
\(616\) 5.51856 + 3.25407i 0.222349 + 0.131110i
\(617\) 14.0901 0.567246 0.283623 0.958936i \(-0.408464\pi\)
0.283623 + 0.958936i \(0.408464\pi\)
\(618\) 20.7960 36.0196i 0.836536 1.44892i
\(619\) 4.55839 + 7.89536i 0.183217 + 0.317341i 0.942974 0.332866i \(-0.108016\pi\)
−0.759757 + 0.650207i \(0.774682\pi\)
\(620\) −5.01126 8.67975i −0.201257 0.348587i
\(621\) 3.12597 5.41435i 0.125441 0.217270i
\(622\) −30.1001 −1.20690
\(623\) 0.436671 47.5525i 0.0174949 1.90515i
\(624\) −16.2315 −0.649779
\(625\) −0.140770 + 0.243822i −0.00563082 + 0.00975286i
\(626\) −7.85525 13.6057i −0.313959 0.543793i
\(627\) 5.09194 + 8.81950i 0.203352 + 0.352217i
\(628\) 7.06715 12.2407i 0.282010 0.488455i
\(629\) −18.6723 −0.744515
\(630\) 16.3964 9.26677i 0.653248 0.369197i
\(631\) −6.19660 −0.246683 −0.123341 0.992364i \(-0.539361\pi\)
−0.123341 + 0.992364i \(0.539361\pi\)
\(632\) 7.50508 12.9992i 0.298536 0.517079i
\(633\) −13.3417 23.1084i −0.530283 0.918478i
\(634\) −13.6693 23.6760i −0.542878 0.940293i
\(635\) −13.2017 + 22.8660i −0.523894 + 0.907411i
\(636\) −12.1740 −0.482732
\(637\) 20.4851 34.0226i 0.811649 1.34802i
\(638\) 7.42583 0.293991
\(639\) 36.6624 63.5011i 1.45034 2.51206i
\(640\) 0.686423 + 1.18892i 0.0271332 + 0.0469962i
\(641\) −19.5246 33.8175i −0.771174 1.33571i −0.936920 0.349544i \(-0.886336\pi\)
0.165746 0.986169i \(-0.446997\pi\)
\(642\) 2.73163 4.73133i 0.107809 0.186731i
\(643\) −35.2213 −1.38899 −0.694495 0.719497i \(-0.744372\pi\)
−0.694495 + 0.719497i \(0.744372\pi\)
\(644\) −2.30334 + 1.30178i −0.0907643 + 0.0512973i
\(645\) 9.41749 0.370813
\(646\) −3.21409 + 5.56698i −0.126457 + 0.219030i
\(647\) 2.95300 + 5.11475i 0.116095 + 0.201082i 0.918217 0.396078i \(-0.129629\pi\)
−0.802122 + 0.597160i \(0.796296\pi\)
\(648\) 1.16551 + 2.01871i 0.0457854 + 0.0793026i
\(649\) 1.00838 1.74656i 0.0395822 0.0685584i
\(650\) 17.6743 0.693242
\(651\) −0.507438 + 55.2588i −0.0198880 + 2.16576i
\(652\) 1.08806 0.0426119
\(653\) −0.936095 + 1.62136i −0.0366322 + 0.0634489i −0.883760 0.467940i \(-0.844996\pi\)
0.847128 + 0.531389i \(0.178330\pi\)
\(654\) −13.1975 22.8588i −0.516065 0.893850i
\(655\) −11.7862 20.4144i −0.460526 0.797655i
\(656\) −3.46385 + 5.99956i −0.135240 + 0.234243i
\(657\) −23.1141 −0.901766
\(658\) 4.17182 + 2.45995i 0.162634 + 0.0958989i
\(659\) 8.71358 0.339433 0.169716 0.985493i \(-0.445715\pi\)
0.169716 + 0.985493i \(0.445715\pi\)
\(660\) −4.75533 + 8.23647i −0.185101 + 0.320604i
\(661\) 11.4035 + 19.7514i 0.443544 + 0.768240i 0.997950 0.0640061i \(-0.0203877\pi\)
−0.554406 + 0.832247i \(0.687054\pi\)
\(662\) 11.5219 + 19.9566i 0.447813 + 0.775634i
\(663\) 35.4889 61.4685i 1.37827 2.38724i
\(664\) −5.16388 −0.200398
\(665\) −4.59938 2.71207i −0.178356 0.105169i
\(666\) 22.1413 0.857959
\(667\) −1.53335 + 2.65585i −0.0593717 + 0.102835i
\(668\) 0.930933 + 1.61242i 0.0360189 + 0.0623865i
\(669\) 32.4320 + 56.1739i 1.25389 + 2.17181i
\(670\) −6.57796 + 11.3934i −0.254129 + 0.440164i
\(671\) 37.1555 1.43437
\(672\) 0.0695069 7.56914i 0.00268129 0.291986i
\(673\) −1.44855 −0.0558376 −0.0279188 0.999610i \(-0.508888\pi\)
−0.0279188 + 0.999610i \(0.508888\pi\)
\(674\) 1.65247 2.86215i 0.0636506 0.110246i
\(675\) −9.73833 16.8673i −0.374829 0.649222i
\(676\) −9.59364 16.6167i −0.368986 0.639103i
\(677\) −10.8383 + 18.7725i −0.416550 + 0.721486i −0.995590 0.0938133i \(-0.970094\pi\)
0.579040 + 0.815299i \(0.303428\pi\)
\(678\) −38.1942 −1.46684
\(679\) 5.20800 2.94341i 0.199865 0.112958i
\(680\) −6.00324 −0.230214
\(681\) 6.07775 10.5270i 0.232900 0.403394i
\(682\) −8.83889 15.3094i −0.338459 0.586227i
\(683\) −15.4502 26.7605i −0.591186 1.02396i −0.994073 0.108714i \(-0.965327\pi\)
0.402888 0.915249i \(-0.368007\pi\)
\(684\) 3.81122 6.60122i 0.145725 0.252404i
\(685\) 18.8767 0.721243
\(686\) 15.7779 + 9.69840i 0.602402 + 0.370287i
\(687\) 7.66784 0.292546
\(688\) 1.19886 2.07648i 0.0457060 0.0791652i
\(689\) −12.0707 20.9070i −0.459855 0.796493i
\(690\) −1.96385 3.40148i −0.0747623 0.129492i
\(691\) −15.2567 + 26.4254i −0.580392 + 1.00527i 0.415040 + 0.909803i \(0.363767\pi\)
−0.995433 + 0.0954660i \(0.969566\pi\)
\(692\) 11.6339 0.442255
\(693\) 28.9201 16.3448i 1.09858 0.620887i
\(694\) −16.6756 −0.632998
\(695\) −5.10506 + 8.84222i −0.193646 + 0.335404i
\(696\) −4.38690 7.59834i −0.166285 0.288014i
\(697\) −15.1469 26.2351i −0.573728 0.993727i
\(698\) −11.8496 + 20.5241i −0.448513 + 0.776847i
\(699\) −70.0535 −2.64967
\(700\) −0.0756852 + 8.24195i −0.00286063 + 0.311516i
\(701\) 4.10294 0.154966 0.0774829 0.996994i \(-0.475312\pi\)
0.0774829 + 0.996994i \(0.475312\pi\)
\(702\) −17.7348 + 30.7177i −0.669359 + 1.15936i
\(703\) −3.13855 5.43613i −0.118373 0.205027i
\(704\) 1.21072 + 2.09702i 0.0456306 + 0.0790346i
\(705\) −3.59485 + 6.22646i −0.135390 + 0.234502i
\(706\) −18.4733 −0.695251
\(707\) 29.6148 + 17.4626i 1.11378 + 0.656750i
\(708\) −2.38284 −0.0895527
\(709\) −18.8288 + 32.6124i −0.707130 + 1.22478i 0.258787 + 0.965934i \(0.416677\pi\)
−0.965917 + 0.258851i \(0.916656\pi\)
\(710\) −9.70674 16.8126i −0.364287 0.630964i
\(711\) −38.9156 67.4039i −1.45945 2.52784i
\(712\) 8.98696 15.5659i 0.336801 0.583356i
\(713\) 7.30054 0.273407
\(714\) 28.5123 + 16.8126i 1.06705 + 0.629194i
\(715\) −18.8598 −0.705316
\(716\) 7.07214 12.2493i 0.264298 0.457778i
\(717\) −14.5522 25.2052i −0.543463 0.941306i
\(718\) 9.41644 + 16.3097i 0.351418 + 0.608674i
\(719\) −6.16051 + 10.6703i −0.229748 + 0.397935i −0.957733 0.287657i \(-0.907124\pi\)
0.727985 + 0.685593i \(0.240457\pi\)
\(720\) 7.11854 0.265292
\(721\) −0.353187 + 38.4613i −0.0131534 + 1.43237i
\(722\) 16.8390 0.626684
\(723\) 15.1258 26.1987i 0.562535 0.974339i
\(724\) −1.67168 2.89544i −0.0621276 0.107608i
\(725\) 4.77685 + 8.27374i 0.177408 + 0.307279i
\(726\) 7.34795 12.7270i 0.272708 0.472344i
\(727\) 24.7221 0.916893 0.458447 0.888722i \(-0.348406\pi\)
0.458447 + 0.888722i \(0.348406\pi\)
\(728\) 13.0677 7.38550i 0.484322 0.273725i
\(729\) −41.5734 −1.53975
\(730\) −3.05984 + 5.29981i −0.113250 + 0.196155i
\(731\) 5.24242 + 9.08014i 0.193898 + 0.335841i
\(732\) −21.9501 38.0186i −0.811298 1.40521i
\(733\) −23.5240 + 40.7447i −0.868878 + 1.50494i −0.00573271 + 0.999984i \(0.501825\pi\)
−0.863145 + 0.504956i \(0.831509\pi\)
\(734\) −19.1680 −0.707502
\(735\) −14.1819 + 23.5539i −0.523106 + 0.868799i
\(736\) −1.00000 −0.0368605
\(737\) −11.6023 + 20.0957i −0.427375 + 0.740234i
\(738\) 17.9609 + 31.1092i 0.661149 + 1.14514i
\(739\) −0.875149 1.51580i −0.0321929 0.0557597i 0.849480 0.527621i \(-0.176916\pi\)
−0.881673 + 0.471861i \(0.843582\pi\)
\(740\) 2.93107 5.07676i 0.107748 0.186625i
\(741\) 23.8607 0.876543
\(742\) 9.80114 5.53932i 0.359811 0.203355i
\(743\) 40.0900 1.47076 0.735380 0.677654i \(-0.237003\pi\)
0.735380 + 0.677654i \(0.237003\pi\)
\(744\) −10.4434 + 18.0884i −0.382872 + 0.663155i
\(745\) −4.85983 8.41748i −0.178051 0.308393i
\(746\) −10.7957 18.6988i −0.395260 0.684610i
\(747\) −13.3880 + 23.1887i −0.489841 + 0.848430i
\(748\) −10.5886 −0.387156
\(749\) −0.0463926 + 5.05205i −0.00169515 + 0.184598i
\(750\) −31.8744 −1.16389
\(751\) −8.75171 + 15.1584i −0.319354 + 0.553138i −0.980353 0.197249i \(-0.936799\pi\)
0.660999 + 0.750387i \(0.270133\pi\)
\(752\) 0.915257 + 1.58527i 0.0333760 + 0.0578089i
\(753\) 29.5392 + 51.1634i 1.07647 + 1.86450i
\(754\) 8.69930 15.0676i 0.316810 0.548731i
\(755\) 20.3444 0.740409
\(756\) −14.2485 8.40174i −0.518212 0.305568i
\(757\) 19.7164 0.716604 0.358302 0.933606i \(-0.383356\pi\)
0.358302 + 0.933606i \(0.383356\pi\)
\(758\) −18.0461 + 31.2567i −0.655463 + 1.13529i
\(759\) −3.46385 5.99956i −0.125730 0.217770i
\(760\) −1.00906 1.74774i −0.0366024 0.0633972i
\(761\) −1.61079 + 2.78998i −0.0583913 + 0.101137i −0.893743 0.448579i \(-0.851930\pi\)
0.835352 + 0.549715i \(0.185264\pi\)
\(762\) 55.0243 1.99332
\(763\) 21.0262 + 12.3983i 0.761198 + 0.448848i
\(764\) 16.0597 0.581021
\(765\) −15.5641 + 26.9579i −0.562722 + 0.974664i
\(766\) −6.79985 11.7777i −0.245689 0.425545i
\(767\) −2.36261 4.09216i −0.0853088 0.147759i
\(768\) 1.43049 2.47769i 0.0516185 0.0894058i
\(769\) 31.8342 1.14797 0.573985 0.818866i \(-0.305397\pi\)
0.573985 + 0.818866i \(0.305397\pi\)
\(770\) 0.0807619 8.79478i 0.00291046 0.316942i