Properties

Label 322.2.e.c.277.3
Level $322$
Weight $2$
Character 322.277
Analytic conductor $2.571$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,2,Mod(93,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 322.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.57118294509\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1767277521.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + x^{6} - 10x^{5} + 38x^{4} - 40x^{3} + 64x^{2} - 38x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.3
Root \(0.0512865 - 1.21608i\) of defining polynomial
Character \(\chi\) \(=\) 322.277
Dual form 322.2.e.c.93.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(0.319548 - 0.553474i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.268262 + 0.464643i) q^{5} +0.639096 q^{6} +(0.716975 + 2.54675i) q^{7} -1.00000 q^{8} +(1.29578 + 2.24435i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(0.319548 - 0.553474i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.268262 + 0.464643i) q^{5} +0.639096 q^{6} +(0.716975 + 2.54675i) q^{7} -1.00000 q^{8} +(1.29578 + 2.24435i) q^{9} +(-0.268262 + 0.464643i) q^{10} +(2.07880 - 3.60059i) q^{11} +(0.319548 + 0.553474i) q^{12} -2.41594 q^{13} +(-1.84706 + 1.89429i) q^{14} +0.342890 q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.23174 + 2.13343i) q^{17} +(-1.29578 + 2.24435i) q^{18} +(3.42587 + 5.93378i) q^{19} -0.536523 q^{20} +(1.63867 + 0.416983i) q^{21} +4.15761 q^{22} +(-0.500000 - 0.866025i) q^{23} +(-0.319548 + 0.553474i) q^{24} +(2.35607 - 4.08084i) q^{25} +(-1.20797 - 2.09226i) q^{26} +3.57354 q^{27} +(-2.56404 - 0.652457i) q^{28} +1.01801 q^{29} +(0.171445 + 0.296951i) q^{30} +(-0.560293 + 0.970457i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-1.32856 - 2.30112i) q^{33} -2.46348 q^{34} +(-0.990993 + 1.01633i) q^{35} -2.59156 q^{36} +(-5.62483 - 9.74249i) q^{37} +(-3.42587 + 5.93378i) q^{38} +(-0.772008 + 1.33716i) q^{39} +(-0.268262 - 0.464643i) q^{40} +2.65711 q^{41} +(0.458216 + 1.62762i) q^{42} -3.50884 q^{43} +(2.07880 + 3.60059i) q^{44} +(-0.695215 + 1.20415i) q^{45} +(0.500000 - 0.866025i) q^{46} +(-4.86557 - 8.42742i) q^{47} -0.639096 q^{48} +(-5.97189 + 3.65192i) q^{49} +4.71214 q^{50} +(0.787199 + 1.36347i) q^{51} +(1.20797 - 2.09226i) q^{52} +(6.44763 - 11.1676i) q^{53} +(1.78677 + 3.09478i) q^{54} +2.23065 q^{55} +(-0.716975 - 2.54675i) q^{56} +4.37892 q^{57} +(0.509007 + 0.881626i) q^{58} +(-1.45772 + 2.52485i) q^{59} +(-0.171445 + 0.296951i) q^{60} +(-7.23923 - 12.5387i) q^{61} -1.12059 q^{62} +(-4.78677 + 4.90917i) q^{63} +1.00000 q^{64} +(-0.648103 - 1.12255i) q^{65} +(1.32856 - 2.30112i) q^{66} +(1.45864 - 2.52645i) q^{67} +(-1.23174 - 2.13343i) q^{68} -0.639096 q^{69} +(-1.37567 - 0.350059i) q^{70} +2.21079 q^{71} +(-1.29578 - 2.24435i) q^{72} +(-2.59731 + 4.49868i) q^{73} +(5.62483 - 9.74249i) q^{74} +(-1.50576 - 2.60805i) q^{75} -6.85173 q^{76} +(10.6603 + 2.71266i) q^{77} -1.54402 q^{78} +(5.32379 + 9.22107i) q^{79} +(0.268262 - 0.464643i) q^{80} +(-2.74542 + 4.75520i) q^{81} +(1.32856 + 2.30112i) q^{82} +10.4063 q^{83} +(-1.18045 + 1.21064i) q^{84} -1.32171 q^{85} +(-1.75442 - 3.03875i) q^{86} +(0.325304 - 0.563444i) q^{87} +(-2.07880 + 3.60059i) q^{88} +(-1.85233 - 3.20832i) q^{89} -1.39043 q^{90} +(-1.73217 - 6.15279i) q^{91} +1.00000 q^{92} +(0.358081 + 0.620215i) q^{93} +(4.86557 - 8.42742i) q^{94} +(-1.83806 + 3.18361i) q^{95} +(-0.319548 - 0.553474i) q^{96} -14.7945 q^{97} +(-6.14860 - 3.34585i) q^{98} +10.7747 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - q^{3} - 4 q^{4} - 3 q^{5} - 2 q^{6} - q^{7} - 8 q^{8} - 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} - q^{3} - 4 q^{4} - 3 q^{5} - 2 q^{6} - q^{7} - 8 q^{8} - 7 q^{9} + 3 q^{10} + 6 q^{11} - q^{12} - 2 q^{13} + q^{14} + 6 q^{15} - 4 q^{16} - 15 q^{17} + 7 q^{18} + q^{19} + 6 q^{20} - q^{21} + 12 q^{22} - 4 q^{23} + q^{24} + 5 q^{25} - q^{26} - 10 q^{27} + 2 q^{28} + 12 q^{29} + 3 q^{30} - 8 q^{31} + 4 q^{32} - 9 q^{33} - 30 q^{34} - 6 q^{35} + 14 q^{36} - 8 q^{37} - q^{38} + 25 q^{39} + 3 q^{40} + 18 q^{41} - 14 q^{42} + 28 q^{43} + 6 q^{44} - 21 q^{45} + 4 q^{46} - 9 q^{47} + 2 q^{48} + 5 q^{49} + 10 q^{50} - 6 q^{51} + q^{52} + 3 q^{53} - 5 q^{54} - 24 q^{55} + q^{56} + 46 q^{57} + 6 q^{58} - 12 q^{59} - 3 q^{60} - 11 q^{61} - 16 q^{62} - 19 q^{63} + 8 q^{64} + 9 q^{66} + q^{67} - 15 q^{68} + 2 q^{69} - 30 q^{70} - 6 q^{71} + 7 q^{72} + 4 q^{73} + 8 q^{74} - 22 q^{75} - 2 q^{76} - 9 q^{77} + 50 q^{78} - 5 q^{79} - 3 q^{80} + 8 q^{81} + 9 q^{82} + 24 q^{83} - 13 q^{84} + 48 q^{85} + 14 q^{86} + 9 q^{87} - 6 q^{88} - 27 q^{89} - 42 q^{90} - 26 q^{91} + 8 q^{92} + 25 q^{93} + 9 q^{94} + 3 q^{95} + q^{96} + 4 q^{97} - 26 q^{98} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0.319548 0.553474i 0.184491 0.319548i −0.758914 0.651191i \(-0.774270\pi\)
0.943405 + 0.331643i \(0.107603\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.268262 + 0.464643i 0.119970 + 0.207795i 0.919756 0.392491i \(-0.128387\pi\)
−0.799785 + 0.600286i \(0.795053\pi\)
\(6\) 0.639096 0.260910
\(7\) 0.716975 + 2.54675i 0.270991 + 0.962582i
\(8\) −1.00000 −0.353553
\(9\) 1.29578 + 2.24435i 0.431926 + 0.748118i
\(10\) −0.268262 + 0.464643i −0.0848318 + 0.146933i
\(11\) 2.07880 3.60059i 0.626783 1.08562i −0.361411 0.932407i \(-0.617705\pi\)
0.988193 0.153213i \(-0.0489619\pi\)
\(12\) 0.319548 + 0.553474i 0.0922456 + 0.159774i
\(13\) −2.41594 −0.670060 −0.335030 0.942207i \(-0.608746\pi\)
−0.335030 + 0.942207i \(0.608746\pi\)
\(14\) −1.84706 + 1.89429i −0.493649 + 0.506272i
\(15\) 0.342890 0.0885338
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.23174 + 2.13343i −0.298740 + 0.517434i −0.975848 0.218450i \(-0.929900\pi\)
0.677108 + 0.735884i \(0.263233\pi\)
\(18\) −1.29578 + 2.24435i −0.305418 + 0.528999i
\(19\) 3.42587 + 5.93378i 0.785948 + 1.36130i 0.928431 + 0.371504i \(0.121158\pi\)
−0.142483 + 0.989797i \(0.545509\pi\)
\(20\) −0.536523 −0.119970
\(21\) 1.63867 + 0.416983i 0.357587 + 0.0909932i
\(22\) 4.15761 0.886405
\(23\) −0.500000 0.866025i −0.104257 0.180579i
\(24\) −0.319548 + 0.553474i −0.0652275 + 0.112977i
\(25\) 2.35607 4.08084i 0.471214 0.816167i
\(26\) −1.20797 2.09226i −0.236902 0.410326i
\(27\) 3.57354 0.687729
\(28\) −2.56404 0.652457i −0.484558 0.123303i
\(29\) 1.01801 0.189040 0.0945202 0.995523i \(-0.469868\pi\)
0.0945202 + 0.995523i \(0.469868\pi\)
\(30\) 0.171445 + 0.296951i 0.0313014 + 0.0542157i
\(31\) −0.560293 + 0.970457i −0.100632 + 0.174299i −0.911945 0.410312i \(-0.865420\pi\)
0.811313 + 0.584611i \(0.198753\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −1.32856 2.30112i −0.231272 0.400574i
\(34\) −2.46348 −0.422483
\(35\) −0.990993 + 1.01633i −0.167508 + 0.171792i
\(36\) −2.59156 −0.431926
\(37\) −5.62483 9.74249i −0.924716 1.60166i −0.792017 0.610499i \(-0.790969\pi\)
−0.132699 0.991156i \(-0.542364\pi\)
\(38\) −3.42587 + 5.93378i −0.555749 + 0.962586i
\(39\) −0.772008 + 1.33716i −0.123620 + 0.214116i
\(40\) −0.268262 0.464643i −0.0424159 0.0734665i
\(41\) 2.65711 0.414971 0.207485 0.978238i \(-0.433472\pi\)
0.207485 + 0.978238i \(0.433472\pi\)
\(42\) 0.458216 + 1.62762i 0.0707043 + 0.251147i
\(43\) −3.50884 −0.535094 −0.267547 0.963545i \(-0.586213\pi\)
−0.267547 + 0.963545i \(0.586213\pi\)
\(44\) 2.07880 + 3.60059i 0.313391 + 0.542810i
\(45\) −0.695215 + 1.20415i −0.103637 + 0.179504i
\(46\) 0.500000 0.866025i 0.0737210 0.127688i
\(47\) −4.86557 8.42742i −0.709717 1.22927i −0.964962 0.262389i \(-0.915490\pi\)
0.255245 0.966876i \(-0.417844\pi\)
\(48\) −0.639096 −0.0922456
\(49\) −5.97189 + 3.65192i −0.853128 + 0.521702i
\(50\) 4.71214 0.666398
\(51\) 0.787199 + 1.36347i 0.110230 + 0.190924i
\(52\) 1.20797 2.09226i 0.167515 0.290145i
\(53\) 6.44763 11.1676i 0.885650 1.53399i 0.0406826 0.999172i \(-0.487047\pi\)
0.844967 0.534818i \(-0.179620\pi\)
\(54\) 1.78677 + 3.09478i 0.243149 + 0.421146i
\(55\) 2.23065 0.300781
\(56\) −0.716975 2.54675i −0.0958098 0.340324i
\(57\) 4.37892 0.580002
\(58\) 0.509007 + 0.881626i 0.0668359 + 0.115763i
\(59\) −1.45772 + 2.52485i −0.189779 + 0.328707i −0.945176 0.326560i \(-0.894110\pi\)
0.755397 + 0.655267i \(0.227444\pi\)
\(60\) −0.171445 + 0.296951i −0.0221335 + 0.0383363i
\(61\) −7.23923 12.5387i −0.926889 1.60542i −0.788495 0.615041i \(-0.789140\pi\)
−0.138393 0.990377i \(-0.544194\pi\)
\(62\) −1.12059 −0.142315
\(63\) −4.78677 + 4.90917i −0.603076 + 0.618497i
\(64\) 1.00000 0.125000
\(65\) −0.648103 1.12255i −0.0803873 0.139235i
\(66\) 1.32856 2.30112i 0.163534 0.283249i
\(67\) 1.45864 2.52645i 0.178202 0.308655i −0.763063 0.646324i \(-0.776305\pi\)
0.941265 + 0.337670i \(0.109639\pi\)
\(68\) −1.23174 2.13343i −0.149370 0.258717i
\(69\) −0.639096 −0.0769381
\(70\) −1.37567 0.350059i −0.164424 0.0418400i
\(71\) 2.21079 0.262373 0.131186 0.991358i \(-0.458121\pi\)
0.131186 + 0.991358i \(0.458121\pi\)
\(72\) −1.29578 2.24435i −0.152709 0.264500i
\(73\) −2.59731 + 4.49868i −0.303992 + 0.526530i −0.977036 0.213072i \(-0.931653\pi\)
0.673044 + 0.739602i \(0.264986\pi\)
\(74\) 5.62483 9.74249i 0.653873 1.13254i
\(75\) −1.50576 2.60805i −0.173870 0.301151i
\(76\) −6.85173 −0.785948
\(77\) 10.6603 + 2.71266i 1.21485 + 0.309136i
\(78\) −1.54402 −0.174825
\(79\) 5.32379 + 9.22107i 0.598973 + 1.03745i 0.992973 + 0.118341i \(0.0377577\pi\)
−0.394000 + 0.919111i \(0.628909\pi\)
\(80\) 0.268262 0.464643i 0.0299926 0.0519486i
\(81\) −2.74542 + 4.75520i −0.305046 + 0.528355i
\(82\) 1.32856 + 2.30112i 0.146714 + 0.254117i
\(83\) 10.4063 1.14224 0.571118 0.820868i \(-0.306510\pi\)
0.571118 + 0.820868i \(0.306510\pi\)
\(84\) −1.18045 + 1.21064i −0.128798 + 0.132091i
\(85\) −1.32171 −0.143360
\(86\) −1.75442 3.03875i −0.189184 0.327677i
\(87\) 0.325304 0.563444i 0.0348763 0.0604075i
\(88\) −2.07880 + 3.60059i −0.221601 + 0.383824i
\(89\) −1.85233 3.20832i −0.196346 0.340081i 0.750995 0.660308i \(-0.229574\pi\)
−0.947341 + 0.320227i \(0.896241\pi\)
\(90\) −1.39043 −0.146564
\(91\) −1.73217 6.15279i −0.181580 0.644988i
\(92\) 1.00000 0.104257
\(93\) 0.358081 + 0.620215i 0.0371313 + 0.0643133i
\(94\) 4.86557 8.42742i 0.501846 0.869222i
\(95\) −1.83806 + 3.18361i −0.188581 + 0.326631i
\(96\) −0.319548 0.553474i −0.0326137 0.0564887i
\(97\) −14.7945 −1.50216 −0.751078 0.660213i \(-0.770466\pi\)
−0.751078 + 0.660213i \(0.770466\pi\)
\(98\) −6.14860 3.34585i −0.621102 0.337982i
\(99\) 10.7747 1.08289
\(100\) 2.35607 + 4.08084i 0.235607 + 0.408084i
\(101\) −3.33756 + 5.78083i −0.332100 + 0.575214i −0.982923 0.184015i \(-0.941090\pi\)
0.650824 + 0.759229i \(0.274424\pi\)
\(102\) −0.787199 + 1.36347i −0.0779443 + 0.135004i
\(103\) −1.54928 2.68343i −0.152655 0.264406i 0.779548 0.626343i \(-0.215449\pi\)
−0.932203 + 0.361937i \(0.882116\pi\)
\(104\) 2.41594 0.236902
\(105\) 0.245844 + 0.873256i 0.0239919 + 0.0852210i
\(106\) 12.8953 1.25250
\(107\) 1.66661 + 2.88666i 0.161118 + 0.279064i 0.935270 0.353936i \(-0.115157\pi\)
−0.774152 + 0.632999i \(0.781824\pi\)
\(108\) −1.78677 + 3.09478i −0.171932 + 0.297795i
\(109\) 7.43445 12.8768i 0.712091 1.23338i −0.251980 0.967732i \(-0.581082\pi\)
0.964071 0.265645i \(-0.0855849\pi\)
\(110\) 1.11533 + 1.93180i 0.106342 + 0.184190i
\(111\) −7.18961 −0.682408
\(112\) 1.84706 1.89429i 0.174531 0.178994i
\(113\) 10.1536 0.955169 0.477584 0.878586i \(-0.341512\pi\)
0.477584 + 0.878586i \(0.341512\pi\)
\(114\) 2.18946 + 3.79225i 0.205062 + 0.355177i
\(115\) 0.268262 0.464643i 0.0250155 0.0433282i
\(116\) −0.509007 + 0.881626i −0.0472601 + 0.0818569i
\(117\) −3.13052 5.42222i −0.289416 0.501284i
\(118\) −2.91544 −0.268388
\(119\) −6.31645 1.60731i −0.579028 0.147342i
\(120\) −0.342890 −0.0313014
\(121\) −3.14284 5.44356i −0.285713 0.494869i
\(122\) 7.23923 12.5387i 0.655409 1.13520i
\(123\) 0.849074 1.47064i 0.0765585 0.132603i
\(124\) −0.560293 0.970457i −0.0503158 0.0871496i
\(125\) 5.21079 0.466067
\(126\) −6.64485 1.69088i −0.591971 0.150636i
\(127\) 3.85259 0.341862 0.170931 0.985283i \(-0.445322\pi\)
0.170931 + 0.985283i \(0.445322\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −1.12124 + 1.94205i −0.0987201 + 0.170988i
\(130\) 0.648103 1.12255i 0.0568424 0.0984539i
\(131\) 9.64225 + 16.7009i 0.842447 + 1.45916i 0.887820 + 0.460192i \(0.152219\pi\)
−0.0453721 + 0.998970i \(0.514447\pi\)
\(132\) 2.65711 0.231272
\(133\) −12.6556 + 12.9792i −1.09738 + 1.12544i
\(134\) 2.91729 0.252015
\(135\) 0.958644 + 1.66042i 0.0825070 + 0.142906i
\(136\) 1.23174 2.13343i 0.105621 0.182940i
\(137\) −2.50092 + 4.33173i −0.213668 + 0.370084i −0.952860 0.303411i \(-0.901875\pi\)
0.739191 + 0.673495i \(0.235208\pi\)
\(138\) −0.319548 0.553474i −0.0272017 0.0471148i
\(139\) −10.1651 −0.862192 −0.431096 0.902306i \(-0.641873\pi\)
−0.431096 + 0.902306i \(0.641873\pi\)
\(140\) −0.384674 1.36639i −0.0325109 0.115481i
\(141\) −6.21914 −0.523746
\(142\) 1.10540 + 1.91460i 0.0927627 + 0.160670i
\(143\) −5.02226 + 8.69880i −0.419982 + 0.727430i
\(144\) 1.29578 2.24435i 0.107982 0.187029i
\(145\) 0.273094 + 0.473013i 0.0226792 + 0.0392816i
\(146\) −5.19462 −0.429910
\(147\) 0.112932 + 4.47225i 0.00931446 + 0.368865i
\(148\) 11.2497 0.924716
\(149\) 0.451964 + 0.782825i 0.0370263 + 0.0641315i 0.883945 0.467591i \(-0.154878\pi\)
−0.846918 + 0.531723i \(0.821545\pi\)
\(150\) 1.50576 2.60805i 0.122944 0.212946i
\(151\) −8.83323 + 15.2996i −0.718838 + 1.24506i 0.242623 + 0.970121i \(0.421992\pi\)
−0.961461 + 0.274943i \(0.911341\pi\)
\(152\) −3.42587 5.93378i −0.277875 0.481293i
\(153\) −6.38424 −0.516135
\(154\) 2.98090 + 10.5884i 0.240208 + 0.853237i
\(155\) −0.601221 −0.0482912
\(156\) −0.772008 1.33716i −0.0618101 0.107058i
\(157\) −5.46614 + 9.46763i −0.436245 + 0.755599i −0.997396 0.0721145i \(-0.977025\pi\)
0.561151 + 0.827713i \(0.310359\pi\)
\(158\) −5.32379 + 9.22107i −0.423538 + 0.733589i
\(159\) −4.12065 7.13718i −0.326789 0.566015i
\(160\) 0.536523 0.0424159
\(161\) 1.84706 1.89429i 0.145569 0.149291i
\(162\) −5.49083 −0.431400
\(163\) 6.98991 + 12.1069i 0.547492 + 0.948284i 0.998446 + 0.0557362i \(0.0177506\pi\)
−0.450954 + 0.892547i \(0.648916\pi\)
\(164\) −1.32856 + 2.30112i −0.103743 + 0.179688i
\(165\) 0.712801 1.23461i 0.0554915 0.0961140i
\(166\) 5.20314 + 9.01210i 0.403842 + 0.699474i
\(167\) 21.3292 1.65050 0.825252 0.564765i \(-0.191033\pi\)
0.825252 + 0.564765i \(0.191033\pi\)
\(168\) −1.63867 0.416983i −0.126426 0.0321709i
\(169\) −7.16325 −0.551019
\(170\) −0.660856 1.14464i −0.0506854 0.0877896i
\(171\) −8.87833 + 15.3777i −0.678943 + 1.17596i
\(172\) 1.75442 3.03875i 0.133773 0.231702i
\(173\) −11.1290 19.2760i −0.846122 1.46553i −0.884643 0.466269i \(-0.845598\pi\)
0.0385204 0.999258i \(-0.487736\pi\)
\(174\) 0.650609 0.0493225
\(175\) 12.0821 + 3.07447i 0.913322 + 0.232408i
\(176\) −4.15761 −0.313391
\(177\) 0.931624 + 1.61362i 0.0700251 + 0.121287i
\(178\) 1.85233 3.20832i 0.138838 0.240474i
\(179\) −4.76625 + 8.25539i −0.356246 + 0.617037i −0.987330 0.158678i \(-0.949277\pi\)
0.631084 + 0.775714i \(0.282610\pi\)
\(180\) −0.695215 1.20415i −0.0518183 0.0897519i
\(181\) 21.5372 1.60085 0.800423 0.599435i \(-0.204608\pi\)
0.800423 + 0.599435i \(0.204608\pi\)
\(182\) 4.46239 4.57650i 0.330774 0.339232i
\(183\) −9.25313 −0.684011
\(184\) 0.500000 + 0.866025i 0.0368605 + 0.0638442i
\(185\) 3.01785 5.22707i 0.221877 0.384302i
\(186\) −0.358081 + 0.620215i −0.0262558 + 0.0454764i
\(187\) 5.12108 + 8.86997i 0.374491 + 0.648637i
\(188\) 9.73115 0.709717
\(189\) 2.56214 + 9.10093i 0.186368 + 0.661995i
\(190\) −3.67612 −0.266693
\(191\) −11.7453 20.3434i −0.849857 1.47199i −0.881336 0.472491i \(-0.843355\pi\)
0.0314790 0.999504i \(-0.489978\pi\)
\(192\) 0.319548 0.553474i 0.0230614 0.0399435i
\(193\) −2.76343 + 4.78640i −0.198916 + 0.344533i −0.948177 0.317742i \(-0.897075\pi\)
0.749261 + 0.662275i \(0.230409\pi\)
\(194\) −7.39726 12.8124i −0.531093 0.919879i
\(195\) −0.828400 −0.0593230
\(196\) −0.176706 6.99777i −0.0126218 0.499841i
\(197\) 3.35309 0.238898 0.119449 0.992840i \(-0.461887\pi\)
0.119449 + 0.992840i \(0.461887\pi\)
\(198\) 5.38733 + 9.33114i 0.382861 + 0.663135i
\(199\) −8.78611 + 15.2180i −0.622831 + 1.07878i 0.366125 + 0.930566i \(0.380684\pi\)
−0.988956 + 0.148209i \(0.952649\pi\)
\(200\) −2.35607 + 4.08084i −0.166599 + 0.288559i
\(201\) −0.932214 1.61464i −0.0657533 0.113888i
\(202\) −6.67512 −0.469660
\(203\) 0.729891 + 2.59263i 0.0512283 + 0.181967i
\(204\) −1.57440 −0.110230
\(205\) 0.712801 + 1.23461i 0.0497842 + 0.0862287i
\(206\) 1.54928 2.68343i 0.107943 0.186963i
\(207\) 1.29578 2.24435i 0.0900628 0.155993i
\(208\) 1.20797 + 2.09226i 0.0837575 + 0.145072i
\(209\) 28.4868 1.97047
\(210\) −0.633340 + 0.649535i −0.0437046 + 0.0448222i
\(211\) −17.4159 −1.19896 −0.599481 0.800389i \(-0.704626\pi\)
−0.599481 + 0.800389i \(0.704626\pi\)
\(212\) 6.44763 + 11.1676i 0.442825 + 0.766995i
\(213\) 0.706454 1.22361i 0.0484054 0.0838407i
\(214\) −1.66661 + 2.88666i −0.113927 + 0.197328i
\(215\) −0.941288 1.63036i −0.0641953 0.111190i
\(216\) −3.57354 −0.243149
\(217\) −2.87323 0.731135i −0.195047 0.0496327i
\(218\) 14.8689 1.00705
\(219\) 1.65993 + 2.87509i 0.112168 + 0.194280i
\(220\) −1.11533 + 1.93180i −0.0751953 + 0.130242i
\(221\) 2.97580 5.15424i 0.200174 0.346712i
\(222\) −3.59481 6.22639i −0.241268 0.417888i
\(223\) −20.0308 −1.34136 −0.670682 0.741745i \(-0.733998\pi\)
−0.670682 + 0.741745i \(0.733998\pi\)
\(224\) 2.56404 + 0.652457i 0.171317 + 0.0435941i
\(225\) 12.2118 0.814119
\(226\) 5.07679 + 8.79326i 0.337703 + 0.584919i
\(227\) −0.874085 + 1.51396i −0.0580151 + 0.100485i −0.893574 0.448915i \(-0.851810\pi\)
0.835559 + 0.549400i \(0.185144\pi\)
\(228\) −2.18946 + 3.79225i −0.145000 + 0.251148i
\(229\) 1.65277 + 2.86269i 0.109218 + 0.189172i 0.915454 0.402423i \(-0.131832\pi\)
−0.806235 + 0.591595i \(0.798499\pi\)
\(230\) 0.536523 0.0353773
\(231\) 4.90785 5.03335i 0.322913 0.331170i
\(232\) −1.01801 −0.0668359
\(233\) −5.26452 9.11841i −0.344890 0.597367i 0.640444 0.768005i \(-0.278750\pi\)
−0.985334 + 0.170638i \(0.945417\pi\)
\(234\) 3.13052 5.42222i 0.204648 0.354461i
\(235\) 2.61049 4.52151i 0.170290 0.294951i
\(236\) −1.45772 2.52485i −0.0948895 0.164353i
\(237\) 6.80483 0.442021
\(238\) −1.76625 6.27386i −0.114489 0.406674i
\(239\) 12.6379 0.817479 0.408739 0.912651i \(-0.365969\pi\)
0.408739 + 0.912651i \(0.365969\pi\)
\(240\) −0.171445 0.296951i −0.0110667 0.0191681i
\(241\) 9.22539 15.9788i 0.594260 1.02929i −0.399391 0.916781i \(-0.630778\pi\)
0.993651 0.112507i \(-0.0358882\pi\)
\(242\) 3.14284 5.44356i 0.202030 0.349925i
\(243\) 7.11490 + 12.3234i 0.456421 + 0.790544i
\(244\) 14.4785 0.926889
\(245\) −3.29887 1.79513i −0.210757 0.114687i
\(246\) 1.69815 0.108270
\(247\) −8.27668 14.3356i −0.526632 0.912154i
\(248\) 0.560293 0.970457i 0.0355787 0.0616241i
\(249\) 3.32530 5.75960i 0.210733 0.365000i
\(250\) 2.60540 + 4.51268i 0.164780 + 0.285407i
\(251\) 11.9353 0.753350 0.376675 0.926346i \(-0.377067\pi\)
0.376675 + 0.926346i \(0.377067\pi\)
\(252\) −1.85808 6.60005i −0.117048 0.415764i
\(253\) −4.15761 −0.261386
\(254\) 1.92630 + 3.33644i 0.120867 + 0.209347i
\(255\) −0.422351 + 0.731533i −0.0264486 + 0.0458104i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −6.83079 11.8313i −0.426093 0.738014i 0.570429 0.821347i \(-0.306777\pi\)
−0.996522 + 0.0833326i \(0.973444\pi\)
\(258\) −2.24249 −0.139611
\(259\) 20.7788 21.3102i 1.29113 1.32415i
\(260\) 1.29621 0.0803873
\(261\) 1.31912 + 2.28478i 0.0816515 + 0.141424i
\(262\) −9.64225 + 16.7009i −0.595700 + 1.03178i
\(263\) 5.23499 9.06727i 0.322803 0.559112i −0.658262 0.752789i \(-0.728708\pi\)
0.981065 + 0.193677i \(0.0620415\pi\)
\(264\) 1.32856 + 2.30112i 0.0817669 + 0.141624i
\(265\) 6.91860 0.425006
\(266\) −17.5681 4.47046i −1.07717 0.274102i
\(267\) −2.36763 −0.144896
\(268\) 1.45864 + 2.52645i 0.0891009 + 0.154327i
\(269\) −5.45072 + 9.44093i −0.332336 + 0.575624i −0.982970 0.183769i \(-0.941170\pi\)
0.650633 + 0.759392i \(0.274504\pi\)
\(270\) −0.958644 + 1.66042i −0.0583412 + 0.101050i
\(271\) 0.667108 + 1.15547i 0.0405239 + 0.0701895i 0.885576 0.464495i \(-0.153764\pi\)
−0.845052 + 0.534684i \(0.820431\pi\)
\(272\) 2.46348 0.149370
\(273\) −3.95892 1.00740i −0.239605 0.0609709i
\(274\) −5.00185 −0.302173
\(275\) −9.79562 16.9665i −0.590698 1.02312i
\(276\) 0.319548 0.553474i 0.0192345 0.0333152i
\(277\) −13.6945 + 23.7195i −0.822820 + 1.42517i 0.0807532 + 0.996734i \(0.474267\pi\)
−0.903574 + 0.428433i \(0.859066\pi\)
\(278\) −5.08255 8.80323i −0.304831 0.527983i
\(279\) −2.90406 −0.173862
\(280\) 0.990993 1.01633i 0.0592232 0.0607375i
\(281\) −7.99783 −0.477110 −0.238555 0.971129i \(-0.576674\pi\)
−0.238555 + 0.971129i \(0.576674\pi\)
\(282\) −3.10957 5.38593i −0.185172 0.320728i
\(283\) 9.92494 17.1905i 0.589977 1.02187i −0.404258 0.914645i \(-0.632470\pi\)
0.994235 0.107225i \(-0.0341964\pi\)
\(284\) −1.10540 + 1.91460i −0.0655931 + 0.113611i
\(285\) 1.17470 + 2.03463i 0.0695830 + 0.120521i
\(286\) −10.0445 −0.593944
\(287\) 1.90508 + 6.76700i 0.112453 + 0.399443i
\(288\) 2.59156 0.152709
\(289\) 5.46564 + 9.46677i 0.321508 + 0.556869i
\(290\) −0.273094 + 0.473013i −0.0160366 + 0.0277763i
\(291\) −4.72756 + 8.18838i −0.277135 + 0.480011i
\(292\) −2.59731 4.49868i −0.151996 0.263265i
\(293\) −24.2303 −1.41555 −0.707775 0.706437i \(-0.750301\pi\)
−0.707775 + 0.706437i \(0.750301\pi\)
\(294\) −3.81661 + 2.33393i −0.222589 + 0.136117i
\(295\) −1.56420 −0.0910714
\(296\) 5.62483 + 9.74249i 0.326937 + 0.566271i
\(297\) 7.42869 12.8669i 0.431056 0.746611i
\(298\) −0.451964 + 0.782825i −0.0261816 + 0.0453478i
\(299\) 1.20797 + 2.09226i 0.0698586 + 0.120999i
\(300\) 3.01151 0.173870
\(301\) −2.51575 8.93616i −0.145006 0.515072i
\(302\) −17.6665 −1.01659
\(303\) 2.13302 + 3.69450i 0.122539 + 0.212244i
\(304\) 3.42587 5.93378i 0.196487 0.340325i
\(305\) 3.88402 6.72731i 0.222398 0.385205i
\(306\) −3.19212 5.52891i −0.182481 0.316067i
\(307\) 11.8204 0.674624 0.337312 0.941393i \(-0.390482\pi\)
0.337312 + 0.941393i \(0.390482\pi\)
\(308\) −7.67937 + 7.87573i −0.437572 + 0.448761i
\(309\) −1.98027 −0.112654
\(310\) −0.300610 0.520673i −0.0170735 0.0295722i
\(311\) 1.07587 1.86346i 0.0610069 0.105667i −0.833909 0.551902i \(-0.813902\pi\)
0.894916 + 0.446235i \(0.147235\pi\)
\(312\) 0.772008 1.33716i 0.0437063 0.0757016i
\(313\) −12.3682 21.4224i −0.699094 1.21087i −0.968781 0.247918i \(-0.920254\pi\)
0.269687 0.962948i \(-0.413080\pi\)
\(314\) −10.9323 −0.616944
\(315\) −3.56512 0.907196i −0.200872 0.0511147i
\(316\) −10.6476 −0.598973
\(317\) 9.12201 + 15.7998i 0.512343 + 0.887404i 0.999898 + 0.0143115i \(0.00455565\pi\)
−0.487555 + 0.873092i \(0.662111\pi\)
\(318\) 4.12065 7.13718i 0.231075 0.400233i
\(319\) 2.11625 3.66545i 0.118487 0.205226i
\(320\) 0.268262 + 0.464643i 0.0149963 + 0.0259743i
\(321\) 2.13025 0.118899
\(322\) 2.56404 + 0.652457i 0.142888 + 0.0363600i
\(323\) −16.8791 −0.939178
\(324\) −2.74542 4.75520i −0.152523 0.264178i
\(325\) −5.69212 + 9.85904i −0.315742 + 0.546881i
\(326\) −6.98991 + 12.1069i −0.387135 + 0.670538i
\(327\) −4.75133 8.22954i −0.262749 0.455095i
\(328\) −2.65711 −0.146714
\(329\) 17.9741 18.4337i 0.990942 1.01628i
\(330\) 1.42560 0.0784768
\(331\) 0.299524 + 0.518791i 0.0164633 + 0.0285154i 0.874140 0.485675i \(-0.161426\pi\)
−0.857676 + 0.514190i \(0.828093\pi\)
\(332\) −5.20314 + 9.01210i −0.285559 + 0.494603i
\(333\) 14.5771 25.2482i 0.798818 1.38359i
\(334\) 10.6646 + 18.4716i 0.583541 + 1.01072i
\(335\) 1.56519 0.0855156
\(336\) −0.458216 1.62762i −0.0249977 0.0887939i
\(337\) −7.80452 −0.425139 −0.212570 0.977146i \(-0.568183\pi\)
−0.212570 + 0.977146i \(0.568183\pi\)
\(338\) −3.58163 6.20356i −0.194815 0.337429i
\(339\) 3.24456 5.61974i 0.176220 0.305222i
\(340\) 0.660856 1.14464i 0.0358400 0.0620766i
\(341\) 2.32948 + 4.03478i 0.126148 + 0.218495i
\(342\) −17.7567 −0.960170
\(343\) −13.5822 12.5906i −0.733371 0.679828i
\(344\) 3.50884 0.189184
\(345\) −0.171445 0.296951i −0.00923029 0.0159873i
\(346\) 11.1290 19.2760i 0.598299 1.03628i
\(347\) 14.0908 24.4060i 0.756434 1.31018i −0.188224 0.982126i \(-0.560273\pi\)
0.944658 0.328056i \(-0.106393\pi\)
\(348\) 0.325304 + 0.563444i 0.0174381 + 0.0302038i
\(349\) 2.33887 0.125197 0.0625984 0.998039i \(-0.480061\pi\)
0.0625984 + 0.998039i \(0.480061\pi\)
\(350\) 3.37849 + 12.0007i 0.180588 + 0.641462i
\(351\) −8.63345 −0.460820
\(352\) −2.07880 3.60059i −0.110801 0.191912i
\(353\) −8.26501 + 14.3154i −0.439902 + 0.761933i −0.997681 0.0680564i \(-0.978320\pi\)
0.557779 + 0.829989i \(0.311654\pi\)
\(354\) −0.931624 + 1.61362i −0.0495152 + 0.0857629i
\(355\) 0.593070 + 1.02723i 0.0314769 + 0.0545196i
\(356\) 3.70465 0.196346
\(357\) −2.90802 + 2.98238i −0.153909 + 0.157844i
\(358\) −9.53250 −0.503808
\(359\) −10.4577 18.1133i −0.551937 0.955984i −0.998135 0.0610490i \(-0.980555\pi\)
0.446197 0.894935i \(-0.352778\pi\)
\(360\) 0.695215 1.20415i 0.0366411 0.0634642i
\(361\) −13.9731 + 24.2022i −0.735428 + 1.27380i
\(362\) 10.7686 + 18.6518i 0.565985 + 0.980314i
\(363\) −4.01716 −0.210846
\(364\) 6.19456 + 1.57630i 0.324683 + 0.0826203i
\(365\) −2.78704 −0.145880
\(366\) −4.62657 8.01345i −0.241834 0.418870i
\(367\) 6.36856 11.0307i 0.332436 0.575796i −0.650553 0.759461i \(-0.725463\pi\)
0.982989 + 0.183665i \(0.0587961\pi\)
\(368\) −0.500000 + 0.866025i −0.0260643 + 0.0451447i
\(369\) 3.44302 + 5.96349i 0.179237 + 0.310447i
\(370\) 6.03570 0.313781
\(371\) 33.0639 + 8.41360i 1.71659 + 0.436813i
\(372\) −0.716163 −0.0371313
\(373\) −9.14892 15.8464i −0.473713 0.820495i 0.525834 0.850587i \(-0.323753\pi\)
−0.999547 + 0.0300923i \(0.990420\pi\)
\(374\) −5.12108 + 8.86997i −0.264805 + 0.458655i
\(375\) 1.66510 2.88403i 0.0859853 0.148931i
\(376\) 4.86557 + 8.42742i 0.250923 + 0.434611i
\(377\) −2.45946 −0.126668
\(378\) −6.60056 + 6.76934i −0.339496 + 0.348177i
\(379\) 16.1232 0.828193 0.414097 0.910233i \(-0.364098\pi\)
0.414097 + 0.910233i \(0.364098\pi\)
\(380\) −1.83806 3.18361i −0.0942904 0.163316i
\(381\) 1.23109 2.13231i 0.0630706 0.109241i
\(382\) 11.7453 20.3434i 0.600939 1.04086i
\(383\) 8.51927 + 14.7558i 0.435314 + 0.753987i 0.997321 0.0731459i \(-0.0233039\pi\)
−0.562007 + 0.827133i \(0.689971\pi\)
\(384\) 0.639096 0.0326137
\(385\) 1.59932 + 5.68092i 0.0815090 + 0.289526i
\(386\) −5.52686 −0.281310
\(387\) −4.54668 7.87509i −0.231121 0.400313i
\(388\) 7.39726 12.8124i 0.375539 0.650453i
\(389\) −6.49474 + 11.2492i −0.329296 + 0.570358i −0.982372 0.186934i \(-0.940145\pi\)
0.653076 + 0.757292i \(0.273478\pi\)
\(390\) −0.414200 0.717416i −0.0209738 0.0363278i
\(391\) 2.46348 0.124583
\(392\) 5.97189 3.65192i 0.301626 0.184450i
\(393\) 12.3247 0.621697
\(394\) 1.67654 + 2.90386i 0.0844630 + 0.146294i
\(395\) −2.85634 + 4.94732i −0.143718 + 0.248927i
\(396\) −5.38733 + 9.33114i −0.270724 + 0.468907i
\(397\) 7.38532 + 12.7918i 0.370659 + 0.642000i 0.989667 0.143385i \(-0.0457986\pi\)
−0.619008 + 0.785384i \(0.712465\pi\)
\(398\) −17.5722 −0.880816
\(399\) 3.13958 + 11.1520i 0.157175 + 0.558299i
\(400\) −4.71214 −0.235607
\(401\) −10.0791 17.4576i −0.503328 0.871790i −0.999993 0.00384717i \(-0.998775\pi\)
0.496665 0.867943i \(-0.334558\pi\)
\(402\) 0.932214 1.61464i 0.0464946 0.0805310i
\(403\) 1.35363 2.34456i 0.0674293 0.116791i
\(404\) −3.33756 5.78083i −0.166050 0.287607i
\(405\) −2.94596 −0.146386
\(406\) −1.88034 + 1.92842i −0.0933196 + 0.0957058i
\(407\) −46.7716 −2.31838
\(408\) −0.787199 1.36347i −0.0389722 0.0675018i
\(409\) −11.8641 + 20.5492i −0.586640 + 1.01609i 0.408029 + 0.912969i \(0.366216\pi\)
−0.994669 + 0.103121i \(0.967117\pi\)
\(410\) −0.712801 + 1.23461i −0.0352027 + 0.0609729i
\(411\) 1.59833 + 2.76839i 0.0788399 + 0.136555i
\(412\) 3.09855 0.152655
\(413\) −7.47531 1.90220i −0.367836 0.0936012i
\(414\) 2.59156 0.127368
\(415\) 2.79160 + 4.83520i 0.137034 + 0.237351i
\(416\) −1.20797 + 2.09226i −0.0592255 + 0.102582i
\(417\) −3.24824 + 5.62611i −0.159067 + 0.275512i
\(418\) 14.2434 + 24.6703i 0.696668 + 1.20666i
\(419\) 6.59255 0.322067 0.161034 0.986949i \(-0.448517\pi\)
0.161034 + 0.986949i \(0.448517\pi\)
\(420\) −0.879184 0.223721i −0.0428998 0.0109165i
\(421\) 10.6291 0.518031 0.259015 0.965873i \(-0.416602\pi\)
0.259015 + 0.965873i \(0.416602\pi\)
\(422\) −8.70797 15.0826i −0.423897 0.734212i
\(423\) 12.6094 21.8401i 0.613090 1.06190i
\(424\) −6.44763 + 11.1676i −0.313124 + 0.542347i
\(425\) 5.80413 + 10.0530i 0.281542 + 0.487644i
\(426\) 1.41291 0.0684556
\(427\) 26.7427 27.4265i 1.29417 1.32726i
\(428\) −3.33323 −0.161118
\(429\) 3.20970 + 5.55937i 0.154966 + 0.268409i
\(430\) 0.941288 1.63036i 0.0453930 0.0786229i
\(431\) −0.666184 + 1.15387i −0.0320890 + 0.0555797i −0.881624 0.471953i \(-0.843549\pi\)
0.849535 + 0.527532i \(0.176883\pi\)
\(432\) −1.78677 3.09478i −0.0859661 0.148898i
\(433\) −6.24032 −0.299891 −0.149945 0.988694i \(-0.547910\pi\)
−0.149945 + 0.988694i \(0.547910\pi\)
\(434\) −0.803433 2.85386i −0.0385660 0.136990i
\(435\) 0.349067 0.0167365
\(436\) 7.43445 + 12.8768i 0.356045 + 0.616689i
\(437\) 3.42587 5.93378i 0.163881 0.283851i
\(438\) −1.65993 + 2.87509i −0.0793146 + 0.137377i
\(439\) 1.09540 + 1.89728i 0.0522805 + 0.0905524i 0.890981 0.454040i \(-0.150018\pi\)
−0.838701 + 0.544592i \(0.816684\pi\)
\(440\) −2.23065 −0.106342
\(441\) −15.9344 8.67097i −0.758783 0.412903i
\(442\) 5.95160 0.283089
\(443\) −0.990497 1.71559i −0.0470600 0.0815102i 0.841536 0.540201i \(-0.181652\pi\)
−0.888596 + 0.458691i \(0.848319\pi\)
\(444\) 3.59481 6.22639i 0.170602 0.295491i
\(445\) 0.993816 1.72134i 0.0471114 0.0815993i
\(446\) −10.0154 17.3472i −0.474244 0.821414i
\(447\) 0.577697 0.0273241
\(448\) 0.716975 + 2.54675i 0.0338739 + 0.120323i
\(449\) 23.3519 1.10204 0.551022 0.834491i \(-0.314238\pi\)
0.551022 + 0.834491i \(0.314238\pi\)
\(450\) 6.10589 + 10.5757i 0.287834 + 0.498544i
\(451\) 5.52361 9.56717i 0.260097 0.450500i
\(452\) −5.07679 + 8.79326i −0.238792 + 0.413600i
\(453\) 5.64528 + 9.77791i 0.265238 + 0.459406i
\(454\) −1.74817 −0.0820457
\(455\) 2.39418 2.45540i 0.112241 0.115111i
\(456\) −4.37892 −0.205062
\(457\) 10.4238 + 18.0545i 0.487604 + 0.844555i 0.999898 0.0142546i \(-0.00453754\pi\)
−0.512294 + 0.858810i \(0.671204\pi\)
\(458\) −1.65277 + 2.86269i −0.0772290 + 0.133765i
\(459\) −4.40167 + 7.62391i −0.205452 + 0.355854i
\(460\) 0.268262 + 0.464643i 0.0125078 + 0.0216641i
\(461\) 2.13177 0.0992867 0.0496433 0.998767i \(-0.484192\pi\)
0.0496433 + 0.998767i \(0.484192\pi\)
\(462\) 6.81294 + 1.73365i 0.316966 + 0.0806567i
\(463\) −30.2113 −1.40404 −0.702020 0.712158i \(-0.747718\pi\)
−0.702020 + 0.712158i \(0.747718\pi\)
\(464\) −0.509007 0.881626i −0.0236301 0.0409285i
\(465\) −0.192119 + 0.332760i −0.00890930 + 0.0154314i
\(466\) 5.26452 9.11841i 0.243874 0.422402i
\(467\) 19.0339 + 32.9676i 0.880782 + 1.52556i 0.850473 + 0.526018i \(0.176316\pi\)
0.0303085 + 0.999541i \(0.490351\pi\)
\(468\) 6.26103 0.289416
\(469\) 7.48004 + 1.90341i 0.345396 + 0.0878911i
\(470\) 5.22099 0.240826
\(471\) 3.49339 + 6.05072i 0.160967 + 0.278803i
\(472\) 1.45772 2.52485i 0.0670970 0.116215i
\(473\) −7.29420 + 12.6339i −0.335388 + 0.580908i
\(474\) 3.40241 + 5.89315i 0.156278 + 0.270682i
\(475\) 32.2864 1.48140
\(476\) 4.55020 4.66655i 0.208558 0.213891i
\(477\) 33.4188 1.53014
\(478\) 6.31896 + 10.9448i 0.289022 + 0.500601i
\(479\) −11.5364 + 19.9816i −0.527110 + 0.912981i 0.472391 + 0.881389i \(0.343391\pi\)
−0.999501 + 0.0315919i \(0.989942\pi\)
\(480\) 0.171445 0.296951i 0.00782536 0.0135539i
\(481\) 13.5892 + 23.5372i 0.619616 + 1.07321i
\(482\) 18.4508 0.840410
\(483\) −0.458216 1.62762i −0.0208496 0.0740593i
\(484\) 6.28569 0.285713
\(485\) −3.96880 6.87417i −0.180214 0.312140i
\(486\) −7.11490 + 12.3234i −0.322738 + 0.558999i
\(487\) −5.26842 + 9.12518i −0.238735 + 0.413501i −0.960352 0.278792i \(-0.910066\pi\)
0.721617 + 0.692293i \(0.243399\pi\)
\(488\) 7.23923 + 12.5387i 0.327705 + 0.567601i
\(489\) 8.93445 0.404030
\(490\) −0.0948067 3.75447i −0.00428293 0.169609i
\(491\) 6.74134 0.304233 0.152116 0.988363i \(-0.451391\pi\)
0.152116 + 0.988363i \(0.451391\pi\)
\(492\) 0.849074 + 1.47064i 0.0382792 + 0.0663016i
\(493\) −1.25393 + 2.17186i −0.0564740 + 0.0978159i
\(494\) 8.27668 14.3356i 0.372385 0.644990i
\(495\) 2.89043 + 5.00637i 0.129915 + 0.225020i
\(496\) 1.12059 0.0503158
\(497\) 1.58508 + 5.63034i 0.0711006 + 0.252555i
\(498\) 6.65061 0.298021
\(499\) −4.65142 8.05650i −0.208226 0.360658i 0.742930 0.669370i \(-0.233436\pi\)
−0.951156 + 0.308711i \(0.900102\pi\)
\(500\) −2.60540 + 4.51268i −0.116517 + 0.201813i
\(501\) 6.81571 11.8052i 0.304503 0.527415i
\(502\) 5.96765 + 10.3363i 0.266349 + 0.461331i
\(503\) −43.0965 −1.92158 −0.960789 0.277279i \(-0.910567\pi\)
−0.960789 + 0.277279i \(0.910567\pi\)
\(504\) 4.78677 4.90917i 0.213220 0.218672i
\(505\) −3.58136 −0.159368
\(506\) −2.07880 3.60059i −0.0924141 0.160066i
\(507\) −2.28900 + 3.96467i −0.101658 + 0.176077i
\(508\) −1.92630 + 3.33644i −0.0854655 + 0.148031i
\(509\) 4.75833 + 8.24167i 0.210909 + 0.365306i 0.951999 0.306100i \(-0.0990242\pi\)
−0.741090 + 0.671406i \(0.765691\pi\)
\(510\) −0.844702 −0.0374040
\(511\) −13.3192 3.38927i −0.589208 0.149933i
\(512\) −1.00000 −0.0441942
\(513\) 12.2425 + 21.2046i 0.540519 + 0.936206i
\(514\) 6.83079 11.8313i 0.301293 0.521855i
\(515\) 0.831223 1.43972i 0.0366281 0.0634417i
\(516\) −1.12124 1.94205i −0.0493600 0.0854941i
\(517\) −40.4583 −1.77935
\(518\) 28.8446 + 7.33992i 1.26736 + 0.322498i
\(519\) −14.2250 −0.624409
\(520\) 0.648103 + 1.12255i 0.0284212 + 0.0492270i
\(521\) −15.9821 + 27.6819i −0.700190 + 1.21277i 0.268209 + 0.963361i \(0.413568\pi\)
−0.968399 + 0.249404i \(0.919765\pi\)
\(522\) −1.31912 + 2.28478i −0.0577363 + 0.100002i
\(523\) −2.09672 3.63163i −0.0916832 0.158800i 0.816536 0.577294i \(-0.195891\pi\)
−0.908220 + 0.418494i \(0.862558\pi\)
\(524\) −19.2845 −0.842447
\(525\) 5.56246 5.70469i 0.242766 0.248973i
\(526\) 10.4700 0.456513
\(527\) −1.38027 2.39070i −0.0601255 0.104140i
\(528\) −1.32856 + 2.30112i −0.0578179 + 0.100144i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) 3.45930 + 5.99169i 0.150262 + 0.260262i
\(531\) −7.55553 −0.327882
\(532\) −4.91252 17.4497i −0.212985 0.756539i
\(533\) −6.41941 −0.278055
\(534\) −1.18381 2.05043i −0.0512286 0.0887306i
\(535\) −0.894176 + 1.54876i −0.0386586 + 0.0669587i
\(536\) −1.45864 + 2.52645i −0.0630038 + 0.109126i
\(537\) 3.04609 + 5.27599i 0.131449 + 0.227676i
\(538\) −10.9014 −0.469995
\(539\) 0.734672 + 29.0940i 0.0316446 + 1.25317i
\(540\) −1.91729 −0.0825070
\(541\) 8.53041 + 14.7751i 0.366751 + 0.635231i 0.989055 0.147544i \(-0.0471368\pi\)
−0.622305 + 0.782775i \(0.713803\pi\)
\(542\) −0.667108 + 1.15547i −0.0286548 + 0.0496315i
\(543\) 6.88217 11.9203i 0.295342 0.511548i
\(544\) 1.23174 + 2.13343i 0.0528103 + 0.0914702i
\(545\) 7.97751 0.341719
\(546\) −1.10702 3.93223i −0.0473761 0.168284i
\(547\) −31.2833 −1.33758 −0.668789 0.743452i \(-0.733187\pi\)
−0.668789 + 0.743452i \(0.733187\pi\)
\(548\) −2.50092 4.33173i −0.106834 0.185042i
\(549\) 18.7609 32.4948i 0.800695 1.38684i
\(550\) 9.79562 16.9665i 0.417686 0.723454i
\(551\) 3.48758 + 6.04067i 0.148576 + 0.257341i
\(552\) 0.639096 0.0272017
\(553\) −19.6668 + 20.1697i −0.836316 + 0.857701i
\(554\) −27.3889 −1.16364
\(555\) −1.92870 3.34060i −0.0818686 0.141801i
\(556\) 5.08255 8.80323i 0.215548 0.373340i
\(557\) −9.17351 + 15.8890i −0.388694 + 0.673238i −0.992274 0.124064i \(-0.960407\pi\)
0.603580 + 0.797303i \(0.293740\pi\)
\(558\) −1.45203 2.51499i −0.0614694 0.106468i
\(559\) 8.47715 0.358545
\(560\) 1.37567 + 0.350059i 0.0581325 + 0.0147927i
\(561\) 6.54573 0.276361
\(562\) −3.99891 6.92632i −0.168684 0.292169i
\(563\) 18.4158 31.8971i 0.776132 1.34430i −0.158023 0.987435i \(-0.550512\pi\)
0.934156 0.356865i \(-0.116154\pi\)
\(564\) 3.10957 5.38593i 0.130937 0.226789i
\(565\) 2.72382 + 4.71779i 0.114592 + 0.198479i
\(566\) 19.8499 0.834353
\(567\) −14.0787 3.58253i −0.591250 0.150452i
\(568\) −2.21079 −0.0927627
\(569\) 19.7436 + 34.1969i 0.827694 + 1.43361i 0.899843 + 0.436214i \(0.143681\pi\)
−0.0721492 + 0.997394i \(0.522986\pi\)
\(570\) −1.17470 + 2.03463i −0.0492026 + 0.0852214i
\(571\) −15.0554 + 26.0767i −0.630047 + 1.09127i 0.357494 + 0.933915i \(0.383631\pi\)
−0.987541 + 0.157359i \(0.949702\pi\)
\(572\) −5.02226 8.69880i −0.209991 0.363715i
\(573\) −15.0127 −0.627164
\(574\) −4.90785 + 5.03335i −0.204850 + 0.210088i
\(575\) −4.71214 −0.196510
\(576\) 1.29578 + 2.24435i 0.0539908 + 0.0935147i
\(577\) 16.4485 28.4896i 0.684758 1.18604i −0.288755 0.957403i \(-0.593241\pi\)
0.973513 0.228633i \(-0.0734255\pi\)
\(578\) −5.46564 + 9.46677i −0.227341 + 0.393766i
\(579\) 1.76610 + 3.05897i 0.0733965 + 0.127126i
\(580\) −0.546188 −0.0226792
\(581\) 7.46104 + 26.5022i 0.309536 + 1.09950i
\(582\) −9.45513 −0.391928
\(583\) −26.8067 46.4306i −1.11022 1.92296i
\(584\) 2.59731 4.49868i 0.107478 0.186157i
\(585\) 1.67960 2.90914i 0.0694427 0.120278i
\(586\) −12.1152 20.9841i −0.500473 0.866844i
\(587\) −29.5909 −1.22135 −0.610674 0.791882i \(-0.709101\pi\)
−0.610674 + 0.791882i \(0.709101\pi\)
\(588\) −3.92955 2.13832i −0.162052 0.0881829i
\(589\) −7.67796 −0.316365
\(590\) −0.782101 1.35464i −0.0321986 0.0557696i
\(591\) 1.07147 1.85584i 0.0440745 0.0763393i
\(592\) −5.62483 + 9.74249i −0.231179 + 0.400414i
\(593\) −19.8663 34.4095i −0.815813 1.41303i −0.908743 0.417356i \(-0.862957\pi\)
0.0929303 0.995673i \(-0.470377\pi\)
\(594\) 14.8574 0.609606
\(595\) −0.947635 3.36607i −0.0388493 0.137996i
\(596\) −0.903928 −0.0370263
\(597\) 5.61517 + 9.72576i 0.229814 + 0.398049i
\(598\) −1.20797 + 2.09226i −0.0493975 + 0.0855590i
\(599\) 7.54510 13.0685i 0.308285 0.533964i −0.669703 0.742629i \(-0.733578\pi\)
0.977987 + 0.208665i \(0.0669118\pi\)
\(600\) 1.50576 + 2.60805i 0.0614722 + 0.106473i
\(601\) 11.3933 0.464741 0.232371 0.972627i \(-0.425352\pi\)
0.232371 + 0.972627i \(0.425352\pi\)
\(602\) 6.48106 6.64679i 0.264148 0.270903i
\(603\) 7.56032 0.307880
\(604\) −8.83323 15.2996i −0.359419 0.622532i
\(605\) 1.68621 2.92060i 0.0685541 0.118739i
\(606\) −2.13302 + 3.69450i −0.0866481 + 0.150079i
\(607\) 13.9017 + 24.0784i 0.564251 + 0.977312i 0.997119 + 0.0758545i \(0.0241684\pi\)
−0.432868 + 0.901458i \(0.642498\pi\)
\(608\) 6.85173 0.277875
\(609\) 1.66819 + 0.424494i 0.0675983 + 0.0172014i
\(610\) 7.76803 0.314518
\(611\) 11.7549 + 20.3601i 0.475553 + 0.823682i
\(612\) 3.19212 5.52891i 0.129034 0.223493i
\(613\) −2.58456 + 4.47659i −0.104389 + 0.180808i −0.913489 0.406864i \(-0.866622\pi\)
0.809099 + 0.587672i \(0.199955\pi\)
\(614\) 5.91018 + 10.2367i 0.238515 + 0.413121i
\(615\) 0.911096 0.0367390
\(616\) −10.6603 2.71266i −0.429514 0.109296i
\(617\) −19.5515 −0.787114 −0.393557 0.919300i \(-0.628756\pi\)
−0.393557 + 0.919300i \(0.628756\pi\)
\(618\) −0.990137 1.71497i −0.0398291 0.0689861i
\(619\) 22.6635 39.2544i 0.910924 1.57777i 0.0981614 0.995171i \(-0.468704\pi\)
0.812762 0.582596i \(-0.197963\pi\)
\(620\) 0.300610 0.520673i 0.0120728 0.0209107i
\(621\) −1.78677 3.09478i −0.0717007 0.124189i
\(622\) 2.15174 0.0862768
\(623\) 6.84273 7.01770i 0.274148 0.281158i
\(624\) 1.54402 0.0618101
\(625\) −10.3825 17.9830i −0.415300 0.719321i
\(626\) 12.3682 21.4224i 0.494334 0.856212i
\(627\) 9.10291 15.7667i 0.363535 0.629661i
\(628\) −5.46614 9.46763i −0.218123 0.377799i
\(629\) 27.7133 1.10500
\(630\) −0.996904 3.54108i −0.0397176 0.141080i
\(631\) 15.9892 0.636518 0.318259 0.948004i \(-0.396902\pi\)
0.318259 + 0.948004i \(0.396902\pi\)
\(632\) −5.32379 9.22107i −0.211769 0.366795i
\(633\) −5.56523 + 9.63926i −0.221198 + 0.383126i
\(634\) −9.12201 + 15.7998i −0.362281 + 0.627489i
\(635\) 1.03350 + 1.79008i 0.0410133 + 0.0710371i
\(636\) 8.24131 0.326789
\(637\) 14.4277 8.82280i 0.571647 0.349572i
\(638\) 4.23250 0.167566
\(639\) 2.86469 + 4.96180i 0.113326 + 0.196286i
\(640\) −0.268262 + 0.464643i −0.0106040 + 0.0183666i
\(641\) 5.24623 9.08673i 0.207214 0.358904i −0.743622 0.668600i \(-0.766894\pi\)
0.950836 + 0.309696i \(0.100227\pi\)
\(642\) 1.06513 + 1.84485i 0.0420372 + 0.0728105i
\(643\) −34.2502 −1.35070 −0.675348 0.737499i \(-0.736006\pi\)
−0.675348 + 0.737499i \(0.736006\pi\)
\(644\) 0.716975 + 2.54675i 0.0282528 + 0.100356i
\(645\) −1.20315 −0.0473739
\(646\) −8.43954 14.6177i −0.332049 0.575126i
\(647\) −8.78167 + 15.2103i −0.345243 + 0.597979i −0.985398 0.170267i \(-0.945537\pi\)
0.640155 + 0.768246i \(0.278870\pi\)
\(648\) 2.74542 4.75520i 0.107850 0.186802i
\(649\) 6.06063 + 10.4973i 0.237900 + 0.412056i
\(650\) −11.3842 −0.446527
\(651\) −1.32280 + 1.35662i −0.0518446 + 0.0531703i
\(652\) −13.9798 −0.547492
\(653\) −6.14442 10.6425i −0.240450 0.416471i 0.720393 0.693566i \(-0.243962\pi\)
−0.960843 + 0.277095i \(0.910628\pi\)
\(654\) 4.75133 8.22954i 0.185792 0.321800i
\(655\) −5.17329 + 8.96041i −0.202137 + 0.350112i
\(656\) −1.32856 2.30112i −0.0518714 0.0898438i
\(657\) −13.4622 −0.525209
\(658\) 24.9510 + 6.34916i 0.972693 + 0.247516i
\(659\) −12.0108 −0.467876 −0.233938 0.972252i \(-0.575161\pi\)
−0.233938 + 0.972252i \(0.575161\pi\)
\(660\) 0.712801 + 1.23461i 0.0277457 + 0.0480570i
\(661\) −8.21363 + 14.2264i −0.319473 + 0.553344i −0.980378 0.197126i \(-0.936839\pi\)
0.660905 + 0.750470i \(0.270173\pi\)
\(662\) −0.299524 + 0.518791i −0.0116413 + 0.0201634i
\(663\) −1.90182 3.29406i −0.0738607 0.127930i
\(664\) −10.4063 −0.403842
\(665\) −9.42571 2.39851i −0.365513 0.0930102i
\(666\) 29.1541 1.12970
\(667\) −0.509007 0.881626i −0.0197088 0.0341367i
\(668\) −10.6646 + 18.4716i −0.412626 + 0.714689i
\(669\) −6.40081 + 11.0865i −0.247470 + 0.428630i
\(670\) 0.782597 + 1.35550i 0.0302343 + 0.0523674i
\(671\) −60.1957 −2.32383
\(672\) 1.18045 1.21064i 0.0455369 0.0467013i
\(673\) 30.5627 1.17811 0.589053 0.808095i \(-0.299501\pi\)
0.589053 + 0.808095i \(0.299501\pi\)
\(674\) −3.90226 6.75891i −0.150309 0.260344i
\(675\) 8.41952 14.5830i 0.324067 0.561301i
\(676\) 3.58163 6.20356i 0.137755 0.238598i
\(677\) −3.13118 5.42335i −0.120341 0.208436i 0.799561 0.600585i \(-0.205065\pi\)
−0.919902 + 0.392148i \(0.871732\pi\)
\(678\) 6.48912 0.249213
\(679\) −10.6073 37.6780i −0.407071 1.44595i
\(680\) 1.32171 0.0506854
\(681\) 0.558625 + 0.967566i 0.0214065 + 0.0370772i
\(682\) −2.32948 + 4.03478i −0.0892004 + 0.154500i
\(683\) −0.555889 + 0.962828i −0.0212705 + 0.0368416i −0.876465 0.481466i \(-0.840104\pi\)
0.855194 + 0.518308i \(0.173438\pi\)
\(684\) −8.87833 15.3777i −0.339471 0.587982i
\(685\) −2.68361 −0.102535
\(686\) 4.11267 18.0579i 0.157022 0.689452i
\(687\) 2.11256 0.0805993
\(688\) 1.75442 + 3.03875i 0.0668867 + 0.115851i
\(689\) −15.5771 + 26.9803i −0.593439 + 1.02787i
\(690\) 0.171445 0.296951i 0.00652680 0.0113047i
\(691\) −3.54088 6.13298i −0.134701 0.233309i 0.790782 0.612098i \(-0.209674\pi\)
−0.925483 + 0.378788i \(0.876341\pi\)
\(692\) 22.2580 0.846122
\(693\) 7.72517 + 27.4404i 0.293455 + 1.04237i
\(694\) 28.1816 1.06976
\(695\) −2.72691 4.72314i −0.103437 0.179159i
\(696\) −0.325304 + 0.563444i −0.0123306 + 0.0213573i
\(697\) −3.27286 + 5.66877i −0.123969 + 0.214720i
\(698\) 1.16944 + 2.02552i 0.0442638 + 0.0766671i
\(699\) −6.72906 −0.254517
\(700\) −8.70363 + 8.92619i −0.328966 + 0.337378i
\(701\) −9.33422 −0.352548 −0.176274 0.984341i \(-0.556405\pi\)
−0.176274 + 0.984341i \(0.556405\pi\)
\(702\) −4.31673 7.47679i −0.162924 0.282193i
\(703\) 38.5398 66.7530i 1.45356 2.51764i
\(704\) 2.07880 3.60059i 0.0783478 0.135702i
\(705\) −1.66836 2.88968i −0.0628339 0.108832i
\(706\) −16.5300 −0.622116
\(707\) −17.1153 4.35523i −0.643686 0.163795i
\(708\) −1.86325 −0.0700251
\(709\) −20.0267 34.6873i −0.752118 1.30271i −0.946794 0.321840i \(-0.895699\pi\)
0.194676 0.980868i \(-0.437635\pi\)
\(710\) −0.593070 + 1.02723i −0.0222575 + 0.0385512i
\(711\) −13.7969 + 23.8969i −0.517424 + 0.896205i
\(712\) 1.85233 + 3.20832i 0.0694188 + 0.120237i
\(713\) 1.12059 0.0419663
\(714\) −4.03682 1.02723i −0.151074 0.0384430i
\(715\) −5.38911 −0.201541
\(716\) −4.76625 8.25539i −0.178123 0.308518i
\(717\) 4.03842 6.99475i 0.150818 0.261224i
\(718\) 10.4577 18.1133i 0.390279 0.675982i
\(719\) −7.04553 12.2032i −0.262754 0.455103i 0.704219 0.709983i \(-0.251297\pi\)
−0.966973 + 0.254880i \(0.917964\pi\)
\(720\) 1.39043 0.0518183
\(721\) 5.72323 5.86957i 0.213144 0.218594i
\(722\) −27.9463 −1.04005
\(723\) −5.89591 10.2120i −0.219271 0.379789i
\(724\) −10.7686 + 18.6518i −0.400212 + 0.693187i
\(725\) 2.39851 4.15435i 0.0890785 0.154289i
\(726\) −2.00858 3.47896i −0.0745453 0.129116i
\(727\) −6.76916 −0.251054 −0.125527 0.992090i \(-0.540062\pi\)
−0.125527 + 0.992090i \(0.540062\pi\)
\(728\) 1.73217 + 6.15279i 0.0641984 + 0.228038i
\(729\) −7.37828 −0.273270
\(730\) −1.39352 2.41364i −0.0515764 0.0893330i
\(731\) 4.32198 7.48589i 0.159854 0.276876i
\(732\) 4.62657 8.01345i 0.171003 0.296185i
\(733\) 6.87122 + 11.9013i 0.253794 + 0.439585i 0.964567 0.263837i \(-0.0849880\pi\)
−0.710773 + 0.703421i \(0.751655\pi\)
\(734\) 12.7371 0.470136
\(735\) −2.04770 + 1.25221i −0.0755306 + 0.0461883i
\(736\) −1.00000 −0.0368605
\(737\) −6.06447 10.5040i −0.223388 0.386919i
\(738\) −3.44302 + 5.96349i −0.126739 + 0.219519i
\(739\) 12.5961 21.8170i 0.463354 0.802552i −0.535772 0.844363i \(-0.679979\pi\)
0.999126 + 0.0418106i \(0.0133126\pi\)
\(740\) 3.01785 + 5.22707i 0.110938 + 0.192151i
\(741\) −10.5792 −0.388636
\(742\) 9.24558 + 32.8410i 0.339416 + 1.20563i
\(743\) −2.40488 −0.0882266 −0.0441133 0.999027i \(-0.514046\pi\)
−0.0441133 + 0.999027i \(0.514046\pi\)
\(744\) −0.358081 0.620215i −0.0131279 0.0227382i
\(745\) −0.242489 + 0.420004i −0.00888412 + 0.0153877i
\(746\) 9.14892 15.8464i 0.334966 0.580177i
\(747\) 13.4842 + 23.3554i 0.493362 + 0.854528i
\(748\) −10.2422 −0.374491
\(749\) −6.15668 + 6.31411i −0.224960 + 0.230713i
\(750\) 3.33020 0.121602
\(751\) 3.65901 + 6.33759i 0.133519 + 0.231262i 0.925031 0.379892i \(-0.124039\pi\)
−0.791512 + 0.611154i \(0.790706\pi\)
\(752\) −4.86557 + 8.42742i −0.177429 + 0.307316i
\(753\) 3.81390 6.60587i 0.138986 0.240731i
\(754\) −1.22973 2.12995i −0.0447841 0.0775683i
\(755\) −9.47846 −0.344957
\(756\) −9.16270 2.33158i −0.333244 0.0847989i
\(757\) 8.95332 0.325414 0.162707 0.986674i \(-0.447978\pi\)
0.162707 + 0.986674i \(0.447978\pi\)
\(758\) 8.06160 + 13.9631i 0.292811 + 0.507163i
\(759\) −1.32856 + 2.30112i −0.0482235 + 0.0835255i
\(760\) 1.83806 3.18361i 0.0666734 0.115482i
\(761\) −17.2342 29.8506i −0.624741 1.08208i −0.988591 0.150625i \(-0.951871\pi\)
0.363850 0.931457i \(-0.381462\pi\)
\(762\) 2.46218 0.0891952
\(763\) 38.1244 + 9.70132i 1.38020 + 0.351211i
\(764\) 23.4905 0.849857
\(765\) −1.71265 2.96639i −0.0619209 0.107250i
\(766\) −8.51927 + 14.7558i −0.307814 + 0.533149i
\(767\) 3.52176 6.09987i 0.127163 0.220253i
\(768\) 0.319548 + 0.553474i 0.0115307 + 0.0199718i
\(769\) 9.26470 0.334094 0.167047 0.985949i \(-0.446577\pi\)
0.167047 + 0.985949i \(0.446577\pi\)
\(770\) −4.12016 + 4.22551i −0.148480