Properties

Label 322.2.e.c.277.1
Level $322$
Weight $2$
Character 322.277
Analytic conductor $2.571$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,2,Mod(93,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 322.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.57118294509\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1767277521.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + x^{6} - 10x^{5} + 38x^{4} - 40x^{3} + 64x^{2} - 38x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.1
Root \(0.373419 + 0.0835272i\) of defining polynomial
Character \(\chi\) \(=\) 322.277
Dual form 322.2.e.c.93.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.31242 + 2.27317i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.68584 - 2.91996i) q^{5} -2.62484 q^{6} +(-1.55926 - 2.13746i) q^{7} -1.00000 q^{8} +(-1.94488 - 3.36864i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.31242 + 2.27317i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.68584 - 2.91996i) q^{5} -2.62484 q^{6} +(-1.55926 - 2.13746i) q^{7} -1.00000 q^{8} +(-1.94488 - 3.36864i) q^{9} +(1.68584 - 2.91996i) q^{10} +(1.11437 - 1.93015i) q^{11} +(-1.31242 - 2.27317i) q^{12} -3.10674 q^{13} +(1.07146 - 2.41908i) q^{14} +8.85009 q^{15} +(-0.500000 - 0.866025i) q^{16} +(-3.18584 + 5.51803i) q^{17} +(1.94488 - 3.36864i) q^{18} +(-0.457092 - 0.791706i) q^{19} +3.37167 q^{20} +(6.90521 - 0.739223i) q^{21} +2.22875 q^{22} +(-0.500000 - 0.866025i) q^{23} +(1.31242 - 2.27317i) q^{24} +(-3.18409 + 5.51501i) q^{25} +(-1.55337 - 2.69052i) q^{26} +2.33549 q^{27} +(2.63072 - 0.281626i) q^{28} -4.22526 q^{29} +(4.42505 + 7.66440i) q^{30} +(1.73921 - 3.01240i) q^{31} +(0.500000 - 0.866025i) q^{32} +(2.92505 + 5.06633i) q^{33} -6.37167 q^{34} +(-3.61263 + 8.15636i) q^{35} +3.88977 q^{36} +(-4.70891 - 8.15607i) q^{37} +(0.457092 - 0.791706i) q^{38} +(4.07735 - 7.06217i) q^{39} +(1.68584 + 2.91996i) q^{40} -5.85009 q^{41} +(4.09279 + 5.61047i) q^{42} +12.7643 q^{43} +(1.11437 + 1.93015i) q^{44} +(-6.55751 + 11.3579i) q^{45} +(0.500000 - 0.866025i) q^{46} +(-3.28212 - 5.68479i) q^{47} +2.62484 q^{48} +(-2.13744 + 6.66568i) q^{49} -6.36818 q^{50} +(-8.36230 - 14.4839i) q^{51} +(1.55337 - 2.69052i) q^{52} +(-5.57386 + 9.65420i) q^{53} +(1.16774 + 2.02259i) q^{54} -7.51460 q^{55} +(1.55926 + 2.13746i) q^{56} +2.39958 q^{57} +(-2.11263 - 3.65918i) q^{58} +(1.48605 - 2.57391i) q^{59} +(-4.42505 + 7.66440i) q^{60} +(-3.40282 - 5.89385i) q^{61} +3.47842 q^{62} +(-4.16774 + 9.40967i) q^{63} +1.00000 q^{64} +(5.23746 + 9.07155i) q^{65} +(-2.92505 + 5.06633i) q^{66} +(-3.43725 + 5.95350i) q^{67} +(-3.18584 - 5.51803i) q^{68} +2.62484 q^{69} +(-8.86993 + 0.949553i) q^{70} +1.61307 q^{71} +(1.94488 + 3.36864i) q^{72} +(-2.96795 + 5.14065i) q^{73} +(4.70891 - 8.15607i) q^{74} +(-8.35772 - 14.4760i) q^{75} +0.914183 q^{76} +(-5.86320 + 0.627674i) q^{77} +8.15470 q^{78} +(7.37491 + 12.7737i) q^{79} +(-1.68584 + 2.91996i) q^{80} +(2.76951 - 4.79693i) q^{81} +(-2.92505 - 5.06633i) q^{82} -6.51111 q^{83} +(-2.81242 + 6.34970i) q^{84} +21.4832 q^{85} +(6.38214 + 11.0542i) q^{86} +(5.54530 - 9.60474i) q^{87} +(-1.11437 + 1.93015i) q^{88} +(0.792581 + 1.37279i) q^{89} -13.1150 q^{90} +(4.84421 + 6.64053i) q^{91} +1.00000 q^{92} +(4.56514 + 7.90705i) q^{93} +(3.28212 - 5.68479i) q^{94} +(-1.54116 + 2.66937i) q^{95} +(1.31242 + 2.27317i) q^{96} +13.7970 q^{97} +(-6.84137 + 1.48176i) q^{98} -8.66930 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - q^{3} - 4 q^{4} - 3 q^{5} - 2 q^{6} - q^{7} - 8 q^{8} - 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} - q^{3} - 4 q^{4} - 3 q^{5} - 2 q^{6} - q^{7} - 8 q^{8} - 7 q^{9} + 3 q^{10} + 6 q^{11} - q^{12} - 2 q^{13} + q^{14} + 6 q^{15} - 4 q^{16} - 15 q^{17} + 7 q^{18} + q^{19} + 6 q^{20} - q^{21} + 12 q^{22} - 4 q^{23} + q^{24} + 5 q^{25} - q^{26} - 10 q^{27} + 2 q^{28} + 12 q^{29} + 3 q^{30} - 8 q^{31} + 4 q^{32} - 9 q^{33} - 30 q^{34} - 6 q^{35} + 14 q^{36} - 8 q^{37} - q^{38} + 25 q^{39} + 3 q^{40} + 18 q^{41} - 14 q^{42} + 28 q^{43} + 6 q^{44} - 21 q^{45} + 4 q^{46} - 9 q^{47} + 2 q^{48} + 5 q^{49} + 10 q^{50} - 6 q^{51} + q^{52} + 3 q^{53} - 5 q^{54} - 24 q^{55} + q^{56} + 46 q^{57} + 6 q^{58} - 12 q^{59} - 3 q^{60} - 11 q^{61} - 16 q^{62} - 19 q^{63} + 8 q^{64} + 9 q^{66} + q^{67} - 15 q^{68} + 2 q^{69} - 30 q^{70} - 6 q^{71} + 7 q^{72} + 4 q^{73} + 8 q^{74} - 22 q^{75} - 2 q^{76} - 9 q^{77} + 50 q^{78} - 5 q^{79} - 3 q^{80} + 8 q^{81} + 9 q^{82} + 24 q^{83} - 13 q^{84} + 48 q^{85} + 14 q^{86} + 9 q^{87} - 6 q^{88} - 27 q^{89} - 42 q^{90} - 26 q^{91} + 8 q^{92} + 25 q^{93} + 9 q^{94} + 3 q^{95} + q^{96} + 4 q^{97} - 26 q^{98} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.31242 + 2.27317i −0.757725 + 1.31242i 0.186283 + 0.982496i \(0.440356\pi\)
−0.944008 + 0.329922i \(0.892978\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.68584 2.91996i −0.753929 1.30584i −0.945905 0.324444i \(-0.894823\pi\)
0.191976 0.981400i \(-0.438511\pi\)
\(6\) −2.62484 −1.07158
\(7\) −1.55926 2.13746i −0.589343 0.807883i
\(8\) −1.00000 −0.353553
\(9\) −1.94488 3.36864i −0.648294 1.12288i
\(10\) 1.68584 2.91996i 0.533108 0.923371i
\(11\) 1.11437 1.93015i 0.335996 0.581962i −0.647680 0.761913i \(-0.724260\pi\)
0.983676 + 0.179951i \(0.0575938\pi\)
\(12\) −1.31242 2.27317i −0.378862 0.656209i
\(13\) −3.10674 −0.861656 −0.430828 0.902434i \(-0.641778\pi\)
−0.430828 + 0.902434i \(0.641778\pi\)
\(14\) 1.07146 2.41908i 0.286361 0.646527i
\(15\) 8.85009 2.28508
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.18584 + 5.51803i −0.772679 + 1.33832i 0.163411 + 0.986558i \(0.447750\pi\)
−0.936090 + 0.351761i \(0.885583\pi\)
\(18\) 1.94488 3.36864i 0.458413 0.793995i
\(19\) −0.457092 0.791706i −0.104864 0.181630i 0.808819 0.588058i \(-0.200107\pi\)
−0.913683 + 0.406428i \(0.866774\pi\)
\(20\) 3.37167 0.753929
\(21\) 6.90521 0.739223i 1.50684 0.161312i
\(22\) 2.22875 0.475170
\(23\) −0.500000 0.866025i −0.104257 0.180579i
\(24\) 1.31242 2.27317i 0.267896 0.464010i
\(25\) −3.18409 + 5.51501i −0.636818 + 1.10300i
\(26\) −1.55337 2.69052i −0.304641 0.527654i
\(27\) 2.33549 0.449465
\(28\) 2.63072 0.281626i 0.497159 0.0532224i
\(29\) −4.22526 −0.784610 −0.392305 0.919835i \(-0.628322\pi\)
−0.392305 + 0.919835i \(0.628322\pi\)
\(30\) 4.42505 + 7.66440i 0.807899 + 1.39932i
\(31\) 1.73921 3.01240i 0.312371 0.541043i −0.666504 0.745501i \(-0.732210\pi\)
0.978875 + 0.204459i \(0.0655434\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 2.92505 + 5.06633i 0.509185 + 0.881935i
\(34\) −6.37167 −1.09273
\(35\) −3.61263 + 8.15636i −0.610646 + 1.37868i
\(36\) 3.88977 0.648294
\(37\) −4.70891 8.15607i −0.774140 1.34085i −0.935277 0.353917i \(-0.884849\pi\)
0.161137 0.986932i \(-0.448484\pi\)
\(38\) 0.457092 0.791706i 0.0741500 0.128432i
\(39\) 4.07735 7.06217i 0.652898 1.13085i
\(40\) 1.68584 + 2.91996i 0.266554 + 0.461685i
\(41\) −5.85009 −0.913631 −0.456815 0.889562i \(-0.651010\pi\)
−0.456815 + 0.889562i \(0.651010\pi\)
\(42\) 4.09279 + 5.61047i 0.631531 + 0.865715i
\(43\) 12.7643 1.94653 0.973267 0.229677i \(-0.0737671\pi\)
0.973267 + 0.229677i \(0.0737671\pi\)
\(44\) 1.11437 + 1.93015i 0.167998 + 0.290981i
\(45\) −6.55751 + 11.3579i −0.977536 + 1.69314i
\(46\) 0.500000 0.866025i 0.0737210 0.127688i
\(47\) −3.28212 5.68479i −0.478746 0.829212i 0.520957 0.853583i \(-0.325575\pi\)
−0.999703 + 0.0243705i \(0.992242\pi\)
\(48\) 2.62484 0.378862
\(49\) −2.13744 + 6.66568i −0.305349 + 0.952240i
\(50\) −6.36818 −0.900597
\(51\) −8.36230 14.4839i −1.17096 2.02816i
\(52\) 1.55337 2.69052i 0.215414 0.373108i
\(53\) −5.57386 + 9.65420i −0.765628 + 1.32611i 0.174286 + 0.984695i \(0.444238\pi\)
−0.939914 + 0.341412i \(0.889095\pi\)
\(54\) 1.16774 + 2.02259i 0.158910 + 0.275240i
\(55\) −7.51460 −1.01327
\(56\) 1.55926 + 2.13746i 0.208364 + 0.285630i
\(57\) 2.39958 0.317832
\(58\) −2.11263 3.65918i −0.277402 0.480474i
\(59\) 1.48605 2.57391i 0.193467 0.335094i −0.752930 0.658101i \(-0.771360\pi\)
0.946397 + 0.323006i \(0.104693\pi\)
\(60\) −4.42505 + 7.66440i −0.571271 + 0.989470i
\(61\) −3.40282 5.89385i −0.435686 0.754630i 0.561665 0.827364i \(-0.310161\pi\)
−0.997351 + 0.0727344i \(0.976827\pi\)
\(62\) 3.47842 0.441760
\(63\) −4.16774 + 9.40967i −0.525086 + 1.18551i
\(64\) 1.00000 0.125000
\(65\) 5.23746 + 9.07155i 0.649627 + 1.12519i
\(66\) −2.92505 + 5.06633i −0.360048 + 0.623622i
\(67\) −3.43725 + 5.95350i −0.419927 + 0.727336i −0.995932 0.0901110i \(-0.971278\pi\)
0.576004 + 0.817447i \(0.304611\pi\)
\(68\) −3.18584 5.51803i −0.386339 0.669160i
\(69\) 2.62484 0.315993
\(70\) −8.86993 + 0.949553i −1.06016 + 0.113493i
\(71\) 1.61307 0.191436 0.0957181 0.995408i \(-0.469485\pi\)
0.0957181 + 0.995408i \(0.469485\pi\)
\(72\) 1.94488 + 3.36864i 0.229207 + 0.396998i
\(73\) −2.96795 + 5.14065i −0.347373 + 0.601667i −0.985782 0.168030i \(-0.946259\pi\)
0.638409 + 0.769697i \(0.279593\pi\)
\(74\) 4.70891 8.15607i 0.547399 0.948124i
\(75\) −8.35772 14.4760i −0.965066 1.67154i
\(76\) 0.914183 0.104864
\(77\) −5.86320 + 0.627674i −0.668174 + 0.0715301i
\(78\) 8.15470 0.923337
\(79\) 7.37491 + 12.7737i 0.829742 + 1.43716i 0.898241 + 0.439504i \(0.144846\pi\)
−0.0684986 + 0.997651i \(0.521821\pi\)
\(80\) −1.68584 + 2.91996i −0.188482 + 0.326461i
\(81\) 2.76951 4.79693i 0.307723 0.532992i
\(82\) −2.92505 5.06633i −0.323017 0.559482i
\(83\) −6.51111 −0.714687 −0.357344 0.933973i \(-0.616318\pi\)
−0.357344 + 0.933973i \(0.616318\pi\)
\(84\) −2.81242 + 6.34970i −0.306860 + 0.692809i
\(85\) 21.4832 2.33018
\(86\) 6.38214 + 11.0542i 0.688204 + 1.19200i
\(87\) 5.54530 9.60474i 0.594519 1.02974i
\(88\) −1.11437 + 1.93015i −0.118793 + 0.205755i
\(89\) 0.792581 + 1.37279i 0.0840134 + 0.145516i 0.904970 0.425475i \(-0.139893\pi\)
−0.820957 + 0.570990i \(0.806559\pi\)
\(90\) −13.1150 −1.38244
\(91\) 4.84421 + 6.64053i 0.507811 + 0.696117i
\(92\) 1.00000 0.104257
\(93\) 4.56514 + 7.90705i 0.473383 + 0.819923i
\(94\) 3.28212 5.68479i 0.338525 0.586342i
\(95\) −1.54116 + 2.66937i −0.158120 + 0.273872i
\(96\) 1.31242 + 2.27317i 0.133948 + 0.232005i
\(97\) 13.7970 1.40087 0.700435 0.713716i \(-0.252989\pi\)
0.700435 + 0.713716i \(0.252989\pi\)
\(98\) −6.84137 + 1.48176i −0.691083 + 0.149680i
\(99\) −8.66930 −0.871297
\(100\) −3.18409 5.51501i −0.318409 0.551501i
\(101\) 3.53767 6.12743i 0.352012 0.609702i −0.634590 0.772849i \(-0.718831\pi\)
0.986602 + 0.163147i \(0.0521644\pi\)
\(102\) 8.36230 14.4839i 0.827991 1.43412i
\(103\) 7.87581 + 13.6413i 0.776027 + 1.34412i 0.934216 + 0.356709i \(0.116101\pi\)
−0.158189 + 0.987409i \(0.550565\pi\)
\(104\) 3.10674 0.304641
\(105\) −13.7996 18.9167i −1.34670 1.84608i
\(106\) −11.1477 −1.08276
\(107\) −2.88388 4.99503i −0.278795 0.482888i 0.692290 0.721619i \(-0.256602\pi\)
−0.971086 + 0.238731i \(0.923268\pi\)
\(108\) −1.16774 + 2.02259i −0.112366 + 0.194624i
\(109\) 9.46033 16.3858i 0.906135 1.56947i 0.0867484 0.996230i \(-0.472352\pi\)
0.819387 0.573241i \(-0.194314\pi\)
\(110\) −3.75730 6.50784i −0.358245 0.620498i
\(111\) 24.7202 2.34634
\(112\) −1.07146 + 2.41908i −0.101244 + 0.228582i
\(113\) −11.2697 −1.06017 −0.530083 0.847946i \(-0.677839\pi\)
−0.530083 + 0.847946i \(0.677839\pi\)
\(114\) 1.19979 + 2.07810i 0.112371 + 0.194632i
\(115\) −1.68584 + 2.91996i −0.157205 + 0.272287i
\(116\) 2.11263 3.65918i 0.196153 0.339746i
\(117\) 6.04225 + 10.4655i 0.558607 + 0.967535i
\(118\) 2.97209 0.273603
\(119\) 16.7621 1.79443i 1.53658 0.164495i
\(120\) −8.85009 −0.807899
\(121\) 3.01635 + 5.22447i 0.274213 + 0.474951i
\(122\) 3.40282 5.89385i 0.308076 0.533604i
\(123\) 7.67777 13.2983i 0.692281 1.19907i
\(124\) 1.73921 + 3.01240i 0.156186 + 0.270521i
\(125\) 4.61307 0.412605
\(126\) −10.2329 + 1.09546i −0.911618 + 0.0975914i
\(127\) −20.9743 −1.86117 −0.930583 0.366081i \(-0.880699\pi\)
−0.930583 + 0.366081i \(0.880699\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −16.7521 + 29.0154i −1.47494 + 2.55467i
\(130\) −5.23746 + 9.07155i −0.459356 + 0.795628i
\(131\) −1.63795 2.83701i −0.143108 0.247871i 0.785557 0.618789i \(-0.212376\pi\)
−0.928666 + 0.370918i \(0.879043\pi\)
\(132\) −5.85009 −0.509185
\(133\) −0.979514 + 2.21149i −0.0849347 + 0.191760i
\(134\) −6.87451 −0.593867
\(135\) −3.93725 6.81952i −0.338865 0.586931i
\(136\) 3.18584 5.51803i 0.273183 0.473167i
\(137\) −0.548792 + 0.950535i −0.0468865 + 0.0812097i −0.888516 0.458845i \(-0.848263\pi\)
0.841630 + 0.540055i \(0.181597\pi\)
\(138\) 1.31242 + 2.27317i 0.111720 + 0.193506i
\(139\) −2.44572 −0.207444 −0.103722 0.994606i \(-0.533075\pi\)
−0.103722 + 0.994606i \(0.533075\pi\)
\(140\) −5.25730 7.20681i −0.444323 0.609086i
\(141\) 17.2300 1.45103
\(142\) 0.806535 + 1.39696i 0.0676829 + 0.117230i
\(143\) −3.46207 + 5.99648i −0.289513 + 0.501451i
\(144\) −1.94488 + 3.36864i −0.162074 + 0.280720i
\(145\) 7.12309 + 12.3376i 0.591541 + 1.02458i
\(146\) −5.93591 −0.491259
\(147\) −12.3470 13.6069i −1.01837 1.12228i
\(148\) 9.41782 0.774140
\(149\) −9.34377 16.1839i −0.765471 1.32583i −0.939997 0.341182i \(-0.889173\pi\)
0.174526 0.984653i \(-0.444161\pi\)
\(150\) 8.35772 14.4760i 0.682405 1.18196i
\(151\) 0.267765 0.463782i 0.0217904 0.0377421i −0.854925 0.518752i \(-0.826397\pi\)
0.876715 + 0.481010i \(0.159730\pi\)
\(152\) 0.457092 + 0.791706i 0.0370750 + 0.0642158i
\(153\) 24.7843 2.00369
\(154\) −3.47518 4.76385i −0.280038 0.383882i
\(155\) −11.7281 −0.942023
\(156\) 4.07735 + 7.06217i 0.326449 + 0.565426i
\(157\) 5.22028 9.04178i 0.416623 0.721613i −0.578974 0.815346i \(-0.696547\pi\)
0.995597 + 0.0937332i \(0.0298801\pi\)
\(158\) −7.37491 + 12.7737i −0.586716 + 1.01622i
\(159\) −14.6305 25.3407i −1.16027 2.00965i
\(160\) −3.37167 −0.266554
\(161\) −1.07146 + 2.41908i −0.0844432 + 0.190650i
\(162\) 5.53902 0.435186
\(163\) −2.08781 3.61620i −0.163530 0.283242i 0.772602 0.634890i \(-0.218955\pi\)
−0.936132 + 0.351648i \(0.885621\pi\)
\(164\) 2.92505 5.06633i 0.228408 0.395614i
\(165\) 9.86230 17.0820i 0.767779 1.32983i
\(166\) −3.25556 5.63879i −0.252680 0.437655i
\(167\) −7.26623 −0.562277 −0.281139 0.959667i \(-0.590712\pi\)
−0.281139 + 0.959667i \(0.590712\pi\)
\(168\) −6.90521 + 0.739223i −0.532748 + 0.0570323i
\(169\) −3.34814 −0.257549
\(170\) 10.7416 + 18.6050i 0.823843 + 1.42694i
\(171\) −1.77798 + 3.07955i −0.135965 + 0.235499i
\(172\) −6.38214 + 11.0542i −0.486633 + 0.842874i
\(173\) 1.21265 + 2.10037i 0.0921959 + 0.159688i 0.908435 0.418026i \(-0.137278\pi\)
−0.816239 + 0.577714i \(0.803945\pi\)
\(174\) 11.0906 0.840777
\(175\) 16.7529 1.79345i 1.26640 0.135572i
\(176\) −2.22875 −0.167998
\(177\) 3.90063 + 6.75609i 0.293189 + 0.507819i
\(178\) −0.792581 + 1.37279i −0.0594065 + 0.102895i
\(179\) 6.93507 12.0119i 0.518351 0.897811i −0.481421 0.876489i \(-0.659879\pi\)
0.999773 0.0213215i \(-0.00678736\pi\)
\(180\) −6.55751 11.3579i −0.488768 0.846571i
\(181\) 3.48271 0.258868 0.129434 0.991588i \(-0.458684\pi\)
0.129434 + 0.991588i \(0.458684\pi\)
\(182\) −3.32877 + 7.51547i −0.246744 + 0.557084i
\(183\) 17.8637 1.32052
\(184\) 0.500000 + 0.866025i 0.0368605 + 0.0638442i
\(185\) −15.8769 + 27.4996i −1.16729 + 2.02181i
\(186\) −4.56514 + 7.90705i −0.334732 + 0.579773i
\(187\) 7.10042 + 12.2983i 0.519234 + 0.899340i
\(188\) 6.56423 0.478746
\(189\) −3.64163 4.99201i −0.264889 0.363115i
\(190\) −3.08233 −0.223616
\(191\) 7.42116 + 12.8538i 0.536976 + 0.930070i 0.999065 + 0.0432362i \(0.0137668\pi\)
−0.462089 + 0.886834i \(0.652900\pi\)
\(192\) −1.31242 + 2.27317i −0.0947156 + 0.164052i
\(193\) 7.99477 13.8473i 0.575476 0.996753i −0.420514 0.907286i \(-0.638150\pi\)
0.995990 0.0894672i \(-0.0285164\pi\)
\(194\) 6.89848 + 11.9485i 0.495282 + 0.857854i
\(195\) −27.4950 −1.96896
\(196\) −4.70393 5.18392i −0.335995 0.370280i
\(197\) −14.8954 −1.06126 −0.530628 0.847605i \(-0.678044\pi\)
−0.530628 + 0.847605i \(0.678044\pi\)
\(198\) −4.33465 7.50783i −0.308050 0.533558i
\(199\) 12.0627 20.8933i 0.855105 1.48109i −0.0214427 0.999770i \(-0.506826\pi\)
0.876548 0.481315i \(-0.159841\pi\)
\(200\) 3.18409 5.51501i 0.225149 0.389970i
\(201\) −9.02223 15.6270i −0.636379 1.10224i
\(202\) 7.07535 0.497820
\(203\) 6.58825 + 9.03130i 0.462405 + 0.633873i
\(204\) 16.7246 1.17096
\(205\) 9.86230 + 17.0820i 0.688813 + 1.19306i
\(206\) −7.87581 + 13.6413i −0.548734 + 0.950435i
\(207\) −1.94488 + 3.36864i −0.135179 + 0.234136i
\(208\) 1.55337 + 2.69052i 0.107707 + 0.186554i
\(209\) −2.03748 −0.140936
\(210\) 9.48256 21.4091i 0.654359 1.47737i
\(211\) −18.1067 −1.24652 −0.623260 0.782015i \(-0.714192\pi\)
−0.623260 + 0.782015i \(0.714192\pi\)
\(212\) −5.57386 9.65420i −0.382814 0.663054i
\(213\) −2.11702 + 3.66679i −0.145056 + 0.251244i
\(214\) 2.88388 4.99503i 0.197138 0.341453i
\(215\) −21.5185 37.2711i −1.46755 2.54187i
\(216\) −2.33549 −0.158910
\(217\) −9.15074 + 0.979615i −0.621193 + 0.0665006i
\(218\) 18.9207 1.28147
\(219\) −7.79039 13.4934i −0.526426 0.911797i
\(220\) 3.75730 6.50784i 0.253317 0.438758i
\(221\) 9.89758 17.1431i 0.665783 1.15317i
\(222\) 12.3601 + 21.4083i 0.829557 + 1.43683i
\(223\) 20.1922 1.35217 0.676084 0.736824i \(-0.263676\pi\)
0.676084 + 0.736824i \(0.263676\pi\)
\(224\) −2.63072 + 0.281626i −0.175772 + 0.0188170i
\(225\) 24.7707 1.65138
\(226\) −5.63486 9.75986i −0.374825 0.649216i
\(227\) 9.90935 17.1635i 0.657706 1.13918i −0.323501 0.946228i \(-0.604860\pi\)
0.981208 0.192953i \(-0.0618066\pi\)
\(228\) −1.19979 + 2.07810i −0.0794581 + 0.137625i
\(229\) −9.08018 15.7273i −0.600035 1.03929i −0.992815 0.119659i \(-0.961820\pi\)
0.392780 0.919633i \(-0.371514\pi\)
\(230\) −3.37167 −0.222322
\(231\) 6.26816 14.1519i 0.412415 0.931124i
\(232\) 4.22526 0.277402
\(233\) −6.20567 10.7485i −0.406547 0.704160i 0.587953 0.808895i \(-0.299934\pi\)
−0.994500 + 0.104735i \(0.966601\pi\)
\(234\) −6.04225 + 10.4655i −0.394994 + 0.684151i
\(235\) −11.0662 + 19.1673i −0.721881 + 1.25033i
\(236\) 1.48605 + 2.57391i 0.0967334 + 0.167547i
\(237\) −38.7159 −2.51486
\(238\) 9.93507 + 13.6192i 0.643995 + 0.882800i
\(239\) −0.868040 −0.0561489 −0.0280744 0.999606i \(-0.508938\pi\)
−0.0280744 + 0.999606i \(0.508938\pi\)
\(240\) −4.42505 7.66440i −0.285635 0.494735i
\(241\) −0.793485 + 1.37436i −0.0511129 + 0.0885301i −0.890450 0.455081i \(-0.849610\pi\)
0.839337 + 0.543611i \(0.182943\pi\)
\(242\) −3.01635 + 5.22447i −0.193898 + 0.335841i
\(243\) 10.7727 + 18.6589i 0.691072 + 1.19697i
\(244\) 6.80563 0.435686
\(245\) 23.0669 4.99601i 1.47369 0.319184i
\(246\) 15.3555 0.979033
\(247\) 1.42007 + 2.45963i 0.0903567 + 0.156502i
\(248\) −1.73921 + 3.01240i −0.110440 + 0.191287i
\(249\) 8.54530 14.8009i 0.541537 0.937969i
\(250\) 2.30653 + 3.99504i 0.145878 + 0.252668i
\(251\) −3.09976 −0.195655 −0.0978277 0.995203i \(-0.531189\pi\)
−0.0978277 + 0.995203i \(0.531189\pi\)
\(252\) −6.06514 8.31421i −0.382068 0.523746i
\(253\) −2.22875 −0.140120
\(254\) −10.4871 18.1643i −0.658021 1.13973i
\(255\) −28.1949 + 48.8351i −1.76564 + 3.05817i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 3.48695 + 6.03958i 0.217510 + 0.376738i 0.954046 0.299660i \(-0.0968732\pi\)
−0.736536 + 0.676398i \(0.763540\pi\)
\(258\) −33.5041 −2.08588
\(259\) −10.0909 + 22.7825i −0.627015 + 1.41563i
\(260\) −10.4749 −0.649627
\(261\) 8.21763 + 14.2333i 0.508658 + 0.881022i
\(262\) 1.63795 2.83701i 0.101193 0.175271i
\(263\) −2.28451 + 3.95689i −0.140869 + 0.243992i −0.927824 0.373018i \(-0.878323\pi\)
0.786955 + 0.617010i \(0.211656\pi\)
\(264\) −2.92505 5.06633i −0.180024 0.311811i
\(265\) 37.5865 2.30892
\(266\) −2.40496 + 0.257458i −0.147458 + 0.0157858i
\(267\) −4.16079 −0.254636
\(268\) −3.43725 5.95350i −0.209964 0.363668i
\(269\) −14.8758 + 25.7657i −0.906994 + 1.57096i −0.0887767 + 0.996052i \(0.528296\pi\)
−0.818218 + 0.574909i \(0.805038\pi\)
\(270\) 3.93725 6.81952i 0.239614 0.415023i
\(271\) 2.69495 + 4.66780i 0.163707 + 0.283549i 0.936195 0.351480i \(-0.114322\pi\)
−0.772488 + 0.635029i \(0.780988\pi\)
\(272\) 6.37167 0.386339
\(273\) −21.4527 + 2.29658i −1.29838 + 0.138995i
\(274\) −1.09758 −0.0663075
\(275\) 7.09653 + 12.2916i 0.427937 + 0.741208i
\(276\) −1.31242 + 2.27317i −0.0789983 + 0.136829i
\(277\) −0.784262 + 1.35838i −0.0471217 + 0.0816172i −0.888624 0.458636i \(-0.848338\pi\)
0.841503 + 0.540253i \(0.181672\pi\)
\(278\) −1.22286 2.11806i −0.0733424 0.127033i
\(279\) −13.5302 −0.810034
\(280\) 3.61263 8.15636i 0.215896 0.487436i
\(281\) 15.4009 0.918739 0.459370 0.888245i \(-0.348075\pi\)
0.459370 + 0.888245i \(0.348075\pi\)
\(282\) 8.61502 + 14.9217i 0.513017 + 0.888572i
\(283\) 7.99412 13.8462i 0.475201 0.823072i −0.524396 0.851475i \(-0.675709\pi\)
0.999597 + 0.0284026i \(0.00904205\pi\)
\(284\) −0.806535 + 1.39696i −0.0478590 + 0.0828943i
\(285\) −4.04530 7.00667i −0.239623 0.415039i
\(286\) −6.92414 −0.409433
\(287\) 9.12179 + 12.5043i 0.538442 + 0.738107i
\(288\) −3.88977 −0.229207
\(289\) −11.7991 20.4367i −0.694065 1.20216i
\(290\) −7.12309 + 12.3376i −0.418282 + 0.724486i
\(291\) −18.1074 + 31.3629i −1.06147 + 1.83853i
\(292\) −2.96795 5.14065i −0.173686 0.300834i
\(293\) 12.8179 0.748830 0.374415 0.927261i \(-0.377844\pi\)
0.374415 + 0.927261i \(0.377844\pi\)
\(294\) 5.61044 17.4963i 0.327208 1.02041i
\(295\) −10.0209 −0.583441
\(296\) 4.70891 + 8.15607i 0.273700 + 0.474062i
\(297\) 2.60261 4.50785i 0.151019 0.261572i
\(298\) 9.34377 16.1839i 0.541270 0.937507i
\(299\) 1.55337 + 2.69052i 0.0898338 + 0.155597i
\(300\) 16.7154 0.965066
\(301\) −19.9028 27.2831i −1.14718 1.57257i
\(302\) 0.535529 0.0308163
\(303\) 9.28581 + 16.0835i 0.533456 + 0.923973i
\(304\) −0.457092 + 0.791706i −0.0262160 + 0.0454074i
\(305\) −11.4732 + 19.8721i −0.656953 + 1.13788i
\(306\) 12.3922 + 21.4638i 0.708413 + 1.22701i
\(307\) −0.501952 −0.0286479 −0.0143239 0.999897i \(-0.504560\pi\)
−0.0143239 + 0.999897i \(0.504560\pi\)
\(308\) 2.38802 5.39152i 0.136070 0.307210i
\(309\) −41.3454 −2.35206
\(310\) −5.86405 10.1568i −0.333055 0.576869i
\(311\) −7.68365 + 13.3085i −0.435700 + 0.754654i −0.997352 0.0727189i \(-0.976832\pi\)
0.561653 + 0.827373i \(0.310166\pi\)
\(312\) −4.07735 + 7.06217i −0.230834 + 0.399817i
\(313\) 3.80983 + 6.59882i 0.215344 + 0.372988i 0.953379 0.301775i \(-0.0975792\pi\)
−0.738035 + 0.674763i \(0.764246\pi\)
\(314\) 10.4406 0.589194
\(315\) 34.5019 3.69354i 1.94396 0.208107i
\(316\) −14.7498 −0.829742
\(317\) 9.14921 + 15.8469i 0.513871 + 0.890050i 0.999871 + 0.0160915i \(0.00512230\pi\)
−0.486000 + 0.873959i \(0.661544\pi\)
\(318\) 14.6305 25.3407i 0.820436 1.42104i
\(319\) −4.70851 + 8.15538i −0.263626 + 0.456613i
\(320\) −1.68584 2.91996i −0.0942411 0.163230i
\(321\) 15.1394 0.845001
\(322\) −2.63072 + 0.281626i −0.146604 + 0.0156944i
\(323\) 5.82488 0.324105
\(324\) 2.76951 + 4.79693i 0.153862 + 0.266496i
\(325\) 9.89216 17.1337i 0.548718 0.950408i
\(326\) 2.08781 3.61620i 0.115633 0.200283i
\(327\) 24.8318 + 43.0100i 1.37320 + 2.37846i
\(328\) 5.85009 0.323017
\(329\) −7.03334 + 15.8794i −0.387761 + 0.875461i
\(330\) 19.7246 1.08580
\(331\) −5.83639 10.1089i −0.320797 0.555637i 0.659856 0.751392i \(-0.270617\pi\)
−0.980653 + 0.195755i \(0.937284\pi\)
\(332\) 3.25556 5.63879i 0.178672 0.309469i
\(333\) −18.3166 + 31.7252i −1.00374 + 1.73853i
\(334\) −3.63311 6.29274i −0.198795 0.344323i
\(335\) 23.1786 1.26638
\(336\) −4.09279 5.61047i −0.223280 0.306076i
\(337\) −24.1242 −1.31413 −0.657064 0.753835i \(-0.728202\pi\)
−0.657064 + 0.753835i \(0.728202\pi\)
\(338\) −1.67407 2.89957i −0.0910574 0.157716i
\(339\) 14.7906 25.6180i 0.803314 1.39138i
\(340\) −10.7416 + 18.6050i −0.582545 + 1.00900i
\(341\) −3.87625 6.71387i −0.209911 0.363576i
\(342\) −3.55596 −0.192284
\(343\) 17.5804 5.82481i 0.949254 0.314510i
\(344\) −12.7643 −0.688204
\(345\) −4.42505 7.66440i −0.238236 0.412638i
\(346\) −1.21265 + 2.10037i −0.0651923 + 0.112916i
\(347\) −11.1630 + 19.3349i −0.599262 + 1.03795i 0.393668 + 0.919253i \(0.371206\pi\)
−0.992930 + 0.118700i \(0.962127\pi\)
\(348\) 5.54530 + 9.60474i 0.297259 + 0.514868i
\(349\) −8.64837 −0.462937 −0.231468 0.972842i \(-0.574353\pi\)
−0.231468 + 0.972842i \(0.574353\pi\)
\(350\) 9.92963 + 13.6117i 0.530761 + 0.727577i
\(351\) −7.25577 −0.387284
\(352\) −1.11437 1.93015i −0.0593963 0.102877i
\(353\) −15.7845 + 27.3396i −0.840125 + 1.45514i 0.0496639 + 0.998766i \(0.484185\pi\)
−0.889789 + 0.456373i \(0.849148\pi\)
\(354\) −3.90063 + 6.75609i −0.207316 + 0.359082i
\(355\) −2.71937 4.71009i −0.144329 0.249986i
\(356\) −1.58516 −0.0840134
\(357\) −17.9198 + 40.4582i −0.948417 + 2.14128i
\(358\) 13.8701 0.733059
\(359\) −7.51395 13.0145i −0.396571 0.686882i 0.596729 0.802443i \(-0.296467\pi\)
−0.993300 + 0.115561i \(0.963133\pi\)
\(360\) 6.55751 11.3579i 0.345611 0.598616i
\(361\) 9.08213 15.7307i 0.478007 0.827933i
\(362\) 1.74135 + 3.01611i 0.0915235 + 0.158523i
\(363\) −15.8348 −0.831113
\(364\) −8.17297 + 0.874941i −0.428380 + 0.0458594i
\(365\) 20.0139 1.04758
\(366\) 8.93183 + 15.4704i 0.466874 + 0.808650i
\(367\) 17.4935 30.2996i 0.913151 1.58162i 0.103566 0.994623i \(-0.466975\pi\)
0.809586 0.587002i \(-0.199692\pi\)
\(368\) −0.500000 + 0.866025i −0.0260643 + 0.0451447i
\(369\) 11.3777 + 19.7068i 0.592302 + 1.02590i
\(370\) −31.7538 −1.65080
\(371\) 29.3265 3.13949i 1.52256 0.162994i
\(372\) −9.13028 −0.473383
\(373\) 7.42700 + 12.8639i 0.384555 + 0.666069i 0.991707 0.128516i \(-0.0410214\pi\)
−0.607152 + 0.794586i \(0.707688\pi\)
\(374\) −7.10042 + 12.2983i −0.367154 + 0.635929i
\(375\) −6.05428 + 10.4863i −0.312641 + 0.541511i
\(376\) 3.28212 + 5.68479i 0.169262 + 0.293171i
\(377\) 13.1268 0.676064
\(378\) 2.50239 5.64974i 0.128709 0.290591i
\(379\) 3.30019 0.169519 0.0847597 0.996401i \(-0.472988\pi\)
0.0847597 + 0.996401i \(0.472988\pi\)
\(380\) −1.54116 2.66937i −0.0790600 0.136936i
\(381\) 27.5270 47.6782i 1.41025 2.44263i
\(382\) −7.42116 + 12.8538i −0.379699 + 0.657659i
\(383\) −5.74927 9.95803i −0.293774 0.508832i 0.680925 0.732353i \(-0.261578\pi\)
−0.974699 + 0.223522i \(0.928245\pi\)
\(384\) −2.62484 −0.133948
\(385\) 11.7172 + 16.0621i 0.597163 + 0.818602i
\(386\) 15.9895 0.813846
\(387\) −24.8250 42.9982i −1.26193 2.18572i
\(388\) −6.89848 + 11.9485i −0.350217 + 0.606594i
\(389\) −6.22112 + 10.7753i −0.315423 + 0.546329i −0.979527 0.201311i \(-0.935480\pi\)
0.664104 + 0.747640i \(0.268813\pi\)
\(390\) −13.7475 23.8113i −0.696131 1.20573i
\(391\) 6.37167 0.322229
\(392\) 2.13744 6.66568i 0.107957 0.336668i
\(393\) 8.59870 0.433747
\(394\) −7.44772 12.8998i −0.375211 0.649884i
\(395\) 24.8658 43.0688i 1.25113 2.16703i
\(396\) 4.33465 7.50783i 0.217824 0.377283i
\(397\) −12.0839 20.9299i −0.606473 1.05044i −0.991817 0.127668i \(-0.959251\pi\)
0.385344 0.922773i \(-0.374083\pi\)
\(398\) 24.1255 1.20930
\(399\) −3.74156 5.12900i −0.187312 0.256771i
\(400\) 6.36818 0.318409
\(401\) −2.04156 3.53609i −0.101951 0.176584i 0.810538 0.585687i \(-0.199175\pi\)
−0.912488 + 0.409103i \(0.865842\pi\)
\(402\) 9.02223 15.6270i 0.449988 0.779402i
\(403\) −5.40328 + 9.35875i −0.269156 + 0.466193i
\(404\) 3.53767 + 6.12743i 0.176006 + 0.304851i
\(405\) −18.6758 −0.928006
\(406\) −4.52721 + 10.2212i −0.224682 + 0.507272i
\(407\) −20.9899 −1.04043
\(408\) 8.36230 + 14.4839i 0.413996 + 0.717061i
\(409\) −7.11172 + 12.3179i −0.351652 + 0.609079i −0.986539 0.163526i \(-0.947713\pi\)
0.634887 + 0.772605i \(0.281047\pi\)
\(410\) −9.86230 + 17.0820i −0.487064 + 0.843620i
\(411\) −1.44049 2.49500i −0.0710541 0.123069i
\(412\) −15.7516 −0.776027
\(413\) −7.81874 + 0.837020i −0.384735 + 0.0411871i
\(414\) −3.88977 −0.191172
\(415\) 10.9767 + 19.0122i 0.538824 + 0.933270i
\(416\) −1.55337 + 2.69052i −0.0761603 + 0.131914i
\(417\) 3.20981 5.55956i 0.157185 0.272253i
\(418\) −1.01874 1.76451i −0.0498282 0.0863050i
\(419\) 13.2679 0.648180 0.324090 0.946026i \(-0.394942\pi\)
0.324090 + 0.946026i \(0.394942\pi\)
\(420\) 23.2821 2.49242i 1.13605 0.121618i
\(421\) −37.5460 −1.82988 −0.914940 0.403591i \(-0.867762\pi\)
−0.914940 + 0.403591i \(0.867762\pi\)
\(422\) −9.05337 15.6809i −0.440711 0.763334i
\(423\) −12.7667 + 22.1125i −0.620737 + 1.07515i
\(424\) 5.57386 9.65420i 0.270690 0.468850i
\(425\) −20.2880 35.1398i −0.984112 1.70453i
\(426\) −4.23404 −0.205140
\(427\) −7.29199 + 16.4634i −0.352884 + 0.796719i
\(428\) 5.76776 0.278795
\(429\) −9.08737 15.7398i −0.438742 0.759924i
\(430\) 21.5185 37.2711i 1.03771 1.79737i
\(431\) −4.64616 + 8.04739i −0.223798 + 0.387629i −0.955958 0.293503i \(-0.905179\pi\)
0.732160 + 0.681132i \(0.238512\pi\)
\(432\) −1.16774 2.02259i −0.0561831 0.0973121i
\(433\) −14.1033 −0.677759 −0.338880 0.940830i \(-0.610048\pi\)
−0.338880 + 0.940830i \(0.610048\pi\)
\(434\) −5.42374 7.43497i −0.260348 0.356890i
\(435\) −37.3939 −1.79290
\(436\) 9.46033 + 16.3858i 0.453067 + 0.784736i
\(437\) −0.457092 + 0.791706i −0.0218657 + 0.0378724i
\(438\) 7.79039 13.4934i 0.372239 0.644738i
\(439\) −9.73851 16.8676i −0.464794 0.805046i 0.534398 0.845233i \(-0.320538\pi\)
−0.999192 + 0.0401862i \(0.987205\pi\)
\(440\) 7.51460 0.358245
\(441\) 26.6113 5.76370i 1.26721 0.274462i
\(442\) 19.7952 0.941560
\(443\) 2.96621 + 5.13763i 0.140929 + 0.244096i 0.927847 0.372962i \(-0.121658\pi\)
−0.786918 + 0.617058i \(0.788324\pi\)
\(444\) −12.3601 + 21.4083i −0.586585 + 1.01600i
\(445\) 2.67233 4.62860i 0.126680 0.219417i
\(446\) 10.0961 + 17.4869i 0.478064 + 0.828031i
\(447\) 49.0517 2.32007
\(448\) −1.55926 2.13746i −0.0736679 0.100985i
\(449\) −5.13864 −0.242507 −0.121254 0.992622i \(-0.538691\pi\)
−0.121254 + 0.992622i \(0.538691\pi\)
\(450\) 12.3854 + 21.4521i 0.583852 + 1.01126i
\(451\) −6.51918 + 11.2916i −0.306976 + 0.531699i
\(452\) 5.63486 9.75986i 0.265041 0.459065i
\(453\) 0.702839 + 1.21735i 0.0330222 + 0.0571962i
\(454\) 19.8187 0.930137
\(455\) 11.2235 25.3397i 0.526166 1.18794i
\(456\) −2.39958 −0.112371
\(457\) −18.3152 31.7229i −0.856749 1.48393i −0.875013 0.484100i \(-0.839147\pi\)
0.0182636 0.999833i \(-0.494186\pi\)
\(458\) 9.08018 15.7273i 0.424289 0.734890i
\(459\) −7.44049 + 12.8873i −0.347292 + 0.601528i
\(460\) −1.68584 2.91996i −0.0786025 0.136144i
\(461\) −16.0663 −0.748281 −0.374140 0.927372i \(-0.622062\pi\)
−0.374140 + 0.927372i \(0.622062\pi\)
\(462\) 15.3900 1.64754i 0.716005 0.0766505i
\(463\) 14.7503 0.685505 0.342753 0.939426i \(-0.388641\pi\)
0.342753 + 0.939426i \(0.388641\pi\)
\(464\) 2.11263 + 3.65918i 0.0980763 + 0.169873i
\(465\) 15.3922 26.6600i 0.713794 1.23633i
\(466\) 6.20567 10.7485i 0.287472 0.497917i
\(467\) −14.8514 25.7234i −0.687240 1.19034i −0.972727 0.231953i \(-0.925489\pi\)
0.285487 0.958383i \(-0.407845\pi\)
\(468\) −12.0845 −0.558607
\(469\) 18.0849 1.93604i 0.835083 0.0893982i
\(470\) −22.1325 −1.02089
\(471\) 13.7024 + 23.7332i 0.631372 + 1.09357i
\(472\) −1.48605 + 2.57391i −0.0684008 + 0.118474i
\(473\) 14.2242 24.6370i 0.654028 1.13281i
\(474\) −19.3579 33.5289i −0.889139 1.54003i
\(475\) 5.82169 0.267117
\(476\) −6.82702 + 15.4136i −0.312916 + 0.706482i
\(477\) 43.3620 1.98541
\(478\) −0.434020 0.751745i −0.0198516 0.0343840i
\(479\) 6.02332 10.4327i 0.275213 0.476682i −0.694976 0.719033i \(-0.744585\pi\)
0.970189 + 0.242351i \(0.0779184\pi\)
\(480\) 4.42505 7.66440i 0.201975 0.349831i
\(481\) 14.6294 + 25.3388i 0.667042 + 1.15535i
\(482\) −1.58697 −0.0722845
\(483\) −4.09279 5.61047i −0.186228 0.255285i
\(484\) −6.03269 −0.274213
\(485\) −23.2594 40.2865i −1.05616 1.82932i
\(486\) −10.7727 + 18.6589i −0.488662 + 0.846387i
\(487\) −16.9658 + 29.3856i −0.768794 + 1.33159i 0.169423 + 0.985543i \(0.445810\pi\)
−0.938217 + 0.346047i \(0.887524\pi\)
\(488\) 3.40282 + 5.89385i 0.154038 + 0.266802i
\(489\) 10.9603 0.495643
\(490\) 15.8601 + 17.4785i 0.716487 + 0.789598i
\(491\) −23.1813 −1.04616 −0.523079 0.852284i \(-0.675217\pi\)
−0.523079 + 0.852284i \(0.675217\pi\)
\(492\) 7.67777 + 13.2983i 0.346140 + 0.599533i
\(493\) 13.4610 23.3151i 0.606252 1.05006i
\(494\) −1.42007 + 2.45963i −0.0638918 + 0.110664i
\(495\) 14.6150 + 25.3140i 0.656896 + 1.13778i
\(496\) −3.47842 −0.156186
\(497\) −2.51519 3.44787i −0.112822 0.154658i
\(498\) 17.0906 0.765848
\(499\) −4.40107 7.62288i −0.197019 0.341247i 0.750542 0.660823i \(-0.229793\pi\)
−0.947561 + 0.319576i \(0.896459\pi\)
\(500\) −2.30653 + 3.99504i −0.103151 + 0.178663i
\(501\) 9.53633 16.5174i 0.426052 0.737943i
\(502\) −1.54988 2.68447i −0.0691746 0.119814i
\(503\) −31.0653 −1.38513 −0.692566 0.721355i \(-0.743520\pi\)
−0.692566 + 0.721355i \(0.743520\pi\)
\(504\) 4.16774 9.40967i 0.185646 0.419140i
\(505\) −23.8558 −1.06157
\(506\) −1.11437 1.93015i −0.0495399 0.0858056i
\(507\) 4.39416 7.61091i 0.195151 0.338012i
\(508\) 10.4871 18.1643i 0.465291 0.805908i
\(509\) 7.37800 + 12.7791i 0.327024 + 0.566422i 0.981920 0.189297i \(-0.0606209\pi\)
−0.654896 + 0.755719i \(0.727288\pi\)
\(510\) −56.3899 −2.49699
\(511\) 15.6157 1.67171i 0.690798 0.0739521i
\(512\) −1.00000 −0.0441942
\(513\) −1.06753 1.84902i −0.0471327 0.0816363i
\(514\) −3.48695 + 6.03958i −0.153803 + 0.266394i
\(515\) 26.5547 45.9940i 1.17014 2.02674i
\(516\) −16.7521 29.0154i −0.737469 1.27733i
\(517\) −14.6300 −0.643427
\(518\) −24.7756 + 2.65231i −1.08858 + 0.116536i
\(519\) −6.36600 −0.279437
\(520\) −5.23746 9.07155i −0.229678 0.397814i
\(521\) 9.69476 16.7918i 0.424735 0.735663i −0.571660 0.820490i \(-0.693701\pi\)
0.996396 + 0.0848273i \(0.0270339\pi\)
\(522\) −8.21763 + 14.2333i −0.359676 + 0.622977i
\(523\) 2.65365 + 4.59625i 0.116036 + 0.200980i 0.918193 0.396132i \(-0.129648\pi\)
−0.802157 + 0.597113i \(0.796315\pi\)
\(524\) 3.27590 0.143108
\(525\) −17.9100 + 40.4360i −0.781656 + 1.76477i
\(526\) −4.56902 −0.199219
\(527\) 11.0817 + 19.1940i 0.482725 + 0.836105i
\(528\) 2.92505 5.06633i 0.127296 0.220484i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) 18.7932 + 32.5508i 0.816326 + 1.41392i
\(531\) −11.5607 −0.501694
\(532\) −1.42545 1.95403i −0.0618009 0.0847178i
\(533\) 18.1747 0.787235
\(534\) −2.08040 3.60335i −0.0900275 0.155932i
\(535\) −9.72351 + 16.8416i −0.420384 + 0.728126i
\(536\) 3.43725 5.95350i 0.148467 0.257152i
\(537\) 18.2034 + 31.5292i 0.785535 + 1.36059i
\(538\) −29.7516 −1.28268
\(539\) 10.4839 + 11.5536i 0.451572 + 0.497651i
\(540\) 7.87451 0.338865
\(541\) 21.4095 + 37.0824i 0.920468 + 1.59430i 0.798693 + 0.601739i \(0.205525\pi\)
0.121775 + 0.992558i \(0.461141\pi\)
\(542\) −2.69495 + 4.66780i −0.115758 + 0.200499i
\(543\) −4.57077 + 7.91680i −0.196150 + 0.339742i
\(544\) 3.18584 + 5.51803i 0.136592 + 0.236584i
\(545\) −63.7943 −2.73265
\(546\) −12.7153 17.4303i −0.544163 0.745948i
\(547\) 1.51910 0.0649521 0.0324761 0.999473i \(-0.489661\pi\)
0.0324761 + 0.999473i \(0.489661\pi\)
\(548\) −0.548792 0.950535i −0.0234432 0.0406049i
\(549\) −13.2362 + 22.9257i −0.564905 + 0.978445i
\(550\) −7.09653 + 12.2916i −0.302597 + 0.524113i
\(551\) 1.93133 + 3.34516i 0.0822774 + 0.142509i
\(552\) −2.62484 −0.111720
\(553\) 15.8039 35.6810i 0.672050 1.51731i
\(554\) −1.56852 −0.0666402
\(555\) −41.6743 72.1820i −1.76897 3.06395i
\(556\) 1.22286 2.11806i 0.0518609 0.0898257i
\(557\) 6.28851 10.8920i 0.266453 0.461509i −0.701491 0.712679i \(-0.747482\pi\)
0.967943 + 0.251169i \(0.0808151\pi\)
\(558\) −6.76512 11.7175i −0.286390 0.496042i
\(559\) −39.6553 −1.67724
\(560\) 8.86993 0.949553i 0.374823 0.0401259i
\(561\) −37.2749 −1.57375
\(562\) 7.70044 + 13.3376i 0.324823 + 0.562611i
\(563\) 5.45510 9.44851i 0.229905 0.398207i −0.727875 0.685710i \(-0.759492\pi\)
0.957780 + 0.287503i \(0.0928251\pi\)
\(564\) −8.61502 + 14.9217i −0.362758 + 0.628315i
\(565\) 18.9989 + 32.9071i 0.799290 + 1.38441i
\(566\) 15.9882 0.672036
\(567\) −14.5716 + 1.55993i −0.611950 + 0.0655111i
\(568\) −1.61307 −0.0676829
\(569\) −16.2432 28.1340i −0.680950 1.17944i −0.974691 0.223555i \(-0.928234\pi\)
0.293741 0.955885i \(-0.405100\pi\)
\(570\) 4.04530 7.00667i 0.169439 0.293477i
\(571\) −5.40910 + 9.36883i −0.226364 + 0.392073i −0.956728 0.290985i \(-0.906017\pi\)
0.730364 + 0.683058i \(0.239350\pi\)
\(572\) −3.46207 5.99648i −0.144756 0.250726i
\(573\) −38.9586 −1.62752
\(574\) −6.26816 + 14.1519i −0.261628 + 0.590687i
\(575\) 6.36818 0.265572
\(576\) −1.94488 3.36864i −0.0810368 0.140360i
\(577\) 3.93217 6.81072i 0.163698 0.283534i −0.772494 0.635022i \(-0.780991\pi\)
0.936192 + 0.351488i \(0.114324\pi\)
\(578\) 11.7991 20.4367i 0.490778 0.850053i
\(579\) 20.9850 + 36.3470i 0.872105 + 1.51053i
\(580\) −14.2462 −0.591541
\(581\) 10.1525 + 13.9172i 0.421196 + 0.577384i
\(582\) −36.2148 −1.50115
\(583\) 12.4227 + 21.5168i 0.514496 + 0.891133i
\(584\) 2.96795 5.14065i 0.122815 0.212722i
\(585\) 20.3725 35.2862i 0.842300 1.45891i
\(586\) 6.40895 + 11.1006i 0.264751 + 0.458563i
\(587\) 31.4964 1.29999 0.649997 0.759937i \(-0.274770\pi\)
0.649997 + 0.759937i \(0.274770\pi\)
\(588\) 17.9575 3.88938i 0.740554 0.160395i
\(589\) −3.17991 −0.131026
\(590\) −5.01046 8.67838i −0.206278 0.357283i
\(591\) 19.5490 33.8599i 0.804140 1.39281i
\(592\) −4.70891 + 8.15607i −0.193535 + 0.335212i
\(593\) −2.67926 4.64062i −0.110024 0.190567i 0.805756 0.592248i \(-0.201759\pi\)
−0.915780 + 0.401681i \(0.868426\pi\)
\(594\) 5.20521 0.213572
\(595\) −33.4978 45.9194i −1.37328 1.88251i
\(596\) 18.6875 0.765471
\(597\) 31.6627 + 54.8414i 1.29587 + 2.24451i
\(598\) −1.55337 + 2.69052i −0.0635221 + 0.110024i
\(599\) 9.54574 16.5337i 0.390029 0.675549i −0.602424 0.798176i \(-0.705798\pi\)
0.992453 + 0.122627i \(0.0391318\pi\)
\(600\) 8.35772 + 14.4760i 0.341202 + 0.590980i
\(601\) 32.3703 1.32041 0.660206 0.751085i \(-0.270469\pi\)
0.660206 + 0.751085i \(0.270469\pi\)
\(602\) 13.6765 30.8778i 0.557411 1.25849i
\(603\) 26.7402 1.08895
\(604\) 0.267765 + 0.463782i 0.0108952 + 0.0188710i
\(605\) 10.1701 17.6152i 0.413475 0.716160i
\(606\) −9.28581 + 16.0835i −0.377210 + 0.653348i
\(607\) 16.9405 + 29.3418i 0.687593 + 1.19095i 0.972614 + 0.232425i \(0.0746661\pi\)
−0.285021 + 0.958521i \(0.592001\pi\)
\(608\) −0.914183 −0.0370750
\(609\) −29.1763 + 3.12341i −1.18228 + 0.126567i
\(610\) −22.9464 −0.929071
\(611\) 10.1967 + 17.6612i 0.412514 + 0.714496i
\(612\) −12.3922 + 21.4638i −0.500923 + 0.867625i
\(613\) −8.47209 + 14.6741i −0.342185 + 0.592681i −0.984838 0.173476i \(-0.944500\pi\)
0.642654 + 0.766157i \(0.277833\pi\)
\(614\) −0.250976 0.434703i −0.0101286 0.0175432i
\(615\) −51.7738 −2.08772
\(616\) 5.86320 0.627674i 0.236235 0.0252897i
\(617\) −4.06228 −0.163541 −0.0817707 0.996651i \(-0.526058\pi\)
−0.0817707 + 0.996651i \(0.526058\pi\)
\(618\) −20.6727 35.8062i −0.831579 1.44034i
\(619\) −3.33355 + 5.77388i −0.133987 + 0.232072i −0.925210 0.379456i \(-0.876111\pi\)
0.791223 + 0.611528i \(0.209445\pi\)
\(620\) 5.86405 10.1568i 0.235506 0.407908i
\(621\) −1.16774 2.02259i −0.0468600 0.0811639i
\(622\) −15.3673 −0.616173
\(623\) 1.69844 3.83464i 0.0680467 0.153632i
\(624\) −8.15470 −0.326449
\(625\) 8.14358 + 14.1051i 0.325743 + 0.564204i
\(626\) −3.80983 + 6.59882i −0.152272 + 0.263742i
\(627\) 2.67403 4.63155i 0.106790 0.184966i
\(628\) 5.22028 + 9.04178i 0.208312 + 0.360806i
\(629\) 60.0073 2.39265
\(630\) 20.4497 + 28.0328i 0.814734 + 1.11685i
\(631\) −11.8611 −0.472181 −0.236091 0.971731i \(-0.575866\pi\)
−0.236091 + 0.971731i \(0.575866\pi\)
\(632\) −7.37491 12.7737i −0.293358 0.508111i
\(633\) 23.7636 41.1598i 0.944519 1.63596i
\(634\) −9.14921 + 15.8469i −0.363362 + 0.629361i
\(635\) 35.3592 + 61.2439i 1.40319 + 2.43039i
\(636\) 29.2609 1.16027
\(637\) 6.64049 20.7086i 0.263106 0.820504i
\(638\) −9.41702 −0.372823
\(639\) −3.13723 5.43384i −0.124107 0.214960i
\(640\) 1.68584 2.91996i 0.0666386 0.115421i
\(641\) −10.9590 + 18.9816i −0.432856 + 0.749729i −0.997118 0.0758670i \(-0.975828\pi\)
0.564262 + 0.825596i \(0.309161\pi\)
\(642\) 7.56972 + 13.1111i 0.298753 + 0.517455i
\(643\) 11.9456 0.471087 0.235544 0.971864i \(-0.424313\pi\)
0.235544 + 0.971864i \(0.424313\pi\)
\(644\) −1.55926 2.13746i −0.0614433 0.0842276i
\(645\) 112.965 4.44799
\(646\) 2.91244 + 5.04449i 0.114588 + 0.198473i
\(647\) −21.5405 + 37.3093i −0.846845 + 1.46678i 0.0371647 + 0.999309i \(0.488167\pi\)
−0.884009 + 0.467469i \(0.845166\pi\)
\(648\) −2.76951 + 4.79693i −0.108797 + 0.188441i
\(649\) −3.31202 5.73659i −0.130008 0.225181i
\(650\) 19.7843 0.776005
\(651\) 9.78277 22.0869i 0.383417 0.865654i
\(652\) 4.17562 0.163530
\(653\) −18.2629 31.6323i −0.714684 1.23787i −0.963081 0.269210i \(-0.913237\pi\)
0.248398 0.968658i \(-0.420096\pi\)
\(654\) −24.8318 + 43.0100i −0.971001 + 1.68182i
\(655\) −5.52263 + 9.56548i −0.215787 + 0.373754i
\(656\) 2.92505 + 5.06633i 0.114204 + 0.197807i
\(657\) 23.0893 0.900799
\(658\) −17.2687 + 1.84866i −0.673203 + 0.0720684i
\(659\) 49.2823 1.91976 0.959882 0.280403i \(-0.0904681\pi\)
0.959882 + 0.280403i \(0.0904681\pi\)
\(660\) 9.86230 + 17.0820i 0.383890 + 0.664916i
\(661\) −16.8683 + 29.2168i −0.656102 + 1.13640i 0.325514 + 0.945537i \(0.394463\pi\)
−0.981616 + 0.190865i \(0.938871\pi\)
\(662\) 5.83639 10.1089i 0.226838 0.392895i
\(663\) 25.9795 + 44.9979i 1.00896 + 1.74757i
\(664\) 6.51111 0.252680
\(665\) 8.10874 0.868065i 0.314443 0.0336621i
\(666\) −36.6331 −1.41950
\(667\) 2.11263 + 3.65918i 0.0818013 + 0.141684i
\(668\) 3.63311 6.29274i 0.140569 0.243473i
\(669\) −26.5006 + 45.9003i −1.02457 + 1.77461i
\(670\) 11.5893 + 20.0733i 0.447734 + 0.775498i
\(671\) −15.1680 −0.585555
\(672\) 2.81242 6.34970i 0.108491 0.244945i
\(673\) 1.47443 0.0568351 0.0284175 0.999596i \(-0.490953\pi\)
0.0284175 + 0.999596i \(0.490953\pi\)
\(674\) −12.0621 20.8922i −0.464614 0.804736i
\(675\) −7.43641 + 12.8802i −0.286228 + 0.495761i
\(676\) 1.67407 2.89957i 0.0643873 0.111522i
\(677\) −14.1882 24.5747i −0.545298 0.944484i −0.998588 0.0531208i \(-0.983083\pi\)
0.453290 0.891363i \(-0.350250\pi\)
\(678\) 29.5812 1.13606
\(679\) −21.5130 29.4904i −0.825593 1.13174i
\(680\) −21.4832 −0.823843
\(681\) 26.0104 + 45.0514i 0.996721 + 1.72637i
\(682\) 3.87625 6.71387i 0.148429 0.257087i
\(683\) 19.0782 33.0444i 0.730006 1.26441i −0.226874 0.973924i \(-0.572850\pi\)
0.956880 0.290484i \(-0.0938163\pi\)
\(684\) −1.77798 3.07955i −0.0679827 0.117750i
\(685\) 3.70069 0.141396
\(686\) 13.8346 + 12.3127i 0.528209 + 0.470101i
\(687\) 47.6680 1.81865
\(688\) −6.38214 11.0542i −0.243317 0.421437i
\(689\) 17.3166 29.9931i 0.659708 1.14265i
\(690\) 4.42505 7.66440i 0.168459 0.291779i
\(691\) −12.0540 20.8781i −0.458555 0.794240i 0.540330 0.841453i \(-0.318299\pi\)
−0.998885 + 0.0472128i \(0.984966\pi\)
\(692\) −2.42530 −0.0921959
\(693\) 13.5177 + 18.5302i 0.513493 + 0.703906i
\(694\) −22.3260 −0.847484
\(695\) 4.12309 + 7.14140i 0.156398 + 0.270889i
\(696\) −5.54530 + 9.60474i −0.210194 + 0.364067i
\(697\) 18.6374 32.2810i 0.705943 1.22273i
\(698\) −4.32419 7.48971i −0.163673 0.283490i
\(699\) 32.5778 1.23220
\(700\) −6.82328 + 15.4052i −0.257896 + 0.582261i
\(701\) −13.3899 −0.505730 −0.252865 0.967502i \(-0.581373\pi\)
−0.252865 + 0.967502i \(0.581373\pi\)
\(702\) −3.62788 6.28368i −0.136926 0.237162i
\(703\) −4.30480 + 7.45614i −0.162359 + 0.281214i
\(704\) 1.11437 1.93015i 0.0419995 0.0727453i
\(705\) −29.0470 50.3110i −1.09397 1.89482i
\(706\) −31.5690 −1.18812
\(707\) −18.6133 + 1.99261i −0.700024 + 0.0749396i
\(708\) −7.80126 −0.293189
\(709\) 15.1412 + 26.2253i 0.568639 + 0.984911i 0.996701 + 0.0811620i \(0.0258631\pi\)
−0.428062 + 0.903749i \(0.640804\pi\)
\(710\) 2.71937 4.71009i 0.102056 0.176767i
\(711\) 28.6867 49.6868i 1.07583 1.86340i
\(712\) −0.792581 1.37279i −0.0297032 0.0514475i
\(713\) −3.47842 −0.130268
\(714\) −43.9977 + 4.71009i −1.64657 + 0.176271i
\(715\) 23.3459 0.873089
\(716\) 6.93507 + 12.0119i 0.259176 + 0.448905i
\(717\) 1.13923 1.97321i 0.0425454 0.0736908i
\(718\) 7.51395 13.0145i 0.280418 0.485699i
\(719\) −0.515699 0.893216i −0.0192323 0.0333113i 0.856249 0.516563i \(-0.172789\pi\)
−0.875481 + 0.483252i \(0.839456\pi\)
\(720\) 13.1150 0.488768
\(721\) 16.8773 38.1045i 0.628544 1.41909i
\(722\) 18.1643 0.676004
\(723\) −2.08277 3.60746i −0.0774590 0.134163i
\(724\) −1.74135 + 3.01611i −0.0647169 + 0.112093i
\(725\) 13.4536 23.3023i 0.499654 0.865426i
\(726\) −7.91742 13.7134i −0.293843 0.508951i
\(727\) −19.4291 −0.720584 −0.360292 0.932839i \(-0.617323\pi\)
−0.360292 + 0.932839i \(0.617323\pi\)
\(728\) −4.84421 6.64053i −0.179538 0.246114i
\(729\) −39.9363 −1.47912
\(730\) 10.0070 + 17.3326i 0.370375 + 0.641508i
\(731\) −40.6649 + 70.4337i −1.50405 + 2.60508i
\(732\) −8.93183 + 15.4704i −0.330130 + 0.571802i
\(733\) 3.40151 + 5.89159i 0.125638 + 0.217611i 0.921982 0.387233i \(-0.126569\pi\)
−0.796344 + 0.604844i \(0.793236\pi\)
\(734\) 34.9869 1.29139
\(735\) −18.9166 + 58.9919i −0.697748 + 2.17595i
\(736\) −1.00000 −0.0368605
\(737\) 7.66076 + 13.2688i 0.282188 + 0.488764i
\(738\) −11.3777 + 19.7068i −0.418821 + 0.725418i
\(739\) −12.3841 + 21.4499i −0.455558 + 0.789049i −0.998720 0.0505786i \(-0.983893\pi\)
0.543162 + 0.839628i \(0.317227\pi\)
\(740\) −15.8769 27.4996i −0.583647 1.01091i
\(741\) −7.45488 −0.273862
\(742\) 17.3821 + 23.8278i 0.638118 + 0.874745i
\(743\) −46.9124 −1.72105 −0.860524 0.509410i \(-0.829864\pi\)
−0.860524 + 0.509410i \(0.829864\pi\)
\(744\) −4.56514 7.90705i −0.167366 0.289887i
\(745\) −31.5041 + 54.5668i −1.15422 + 1.99917i
\(746\) −7.42700 + 12.8639i −0.271922 + 0.470982i
\(747\) 12.6634 + 21.9336i 0.463328 + 0.802507i
\(748\) −14.2008 −0.519234
\(749\) −6.17995 + 13.9527i −0.225811 + 0.509821i
\(750\) −12.1086 −0.442142
\(751\) −3.83919 6.64967i −0.140094 0.242650i 0.787438 0.616394i \(-0.211407\pi\)
−0.927532 + 0.373744i \(0.878074\pi\)
\(752\) −3.28212 + 5.68479i −0.119687 + 0.207303i
\(753\) 4.06819 7.04631i 0.148253 0.256782i
\(754\) 6.56339 + 11.3681i 0.239025 + 0.414003i
\(755\) −1.80563 −0.0657136
\(756\) 6.14402 0.657736i 0.223456 0.0239216i
\(757\) −11.3250 −0.411615 −0.205807 0.978593i \(-0.565982\pi\)
−0.205807 + 0.978593i \(0.565982\pi\)
\(758\) 1.65009 + 2.85805i 0.0599341 + 0.103809i
\(759\) 2.92505 5.06633i 0.106172 0.183896i
\(760\) 1.54116 2.66937i 0.0559039 0.0968284i
\(761\) 9.05776 + 15.6885i 0.328344 + 0.568708i 0.982183 0.187925i \(-0.0601763\pi\)
−0.653840 + 0.756633i \(0.726843\pi\)
\(762\) 55.0540 1.99440
\(763\) −49.7749 + 5.32856i −1.80197 + 0.192907i
\(764\) −14.8423 −0.536976
\(765\) −41.7823 72.3691i −1.51064 2.61651i
\(766\) 5.74927 9.95803i 0.207730 0.359798i
\(767\) −4.61677 + 7.99647i −0.166702 + 0.288736i
\(768\) −1.31242 2.27317i −0.0473578 0.0820261i
\(769\) −37.2805 −1.34437 −0.672184 0.740384i \(-0.734644\pi\)
−0.672184 + 0.740384i \(0.734644\pi\)
\(770\) −8.05163 + 18.1784i −0.290161 + 0.655106i