Newspace parameters
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.57118294509\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{3})\) |
Coefficient field: | 8.0.1767277521.3 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 2x^{7} + x^{6} - 10x^{5} + 38x^{4} - 40x^{3} + 64x^{2} - 38x + 7 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{7} + x^{6} - 10x^{5} + 38x^{4} - 40x^{3} + 64x^{2} - 38x + 7 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -14\nu^{7} + 688\nu^{6} - 619\nu^{5} - 193\nu^{4} - 6480\nu^{3} + 17846\nu^{2} - 10595\nu + 23150 ) / 8102 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 74\nu^{7} - 743\nu^{6} + 957\nu^{5} - 716\nu^{4} + 8788\nu^{3} - 23147\nu^{2} + 13756\nu - 21668 ) / 8102 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -139\nu^{7} + 465\nu^{6} - 648\nu^{5} + 688\nu^{4} - 5887\nu^{3} + 15724\nu^{2} - 9416\nu - 2218 ) / 8102 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -1269\nu^{7} + 2176\nu^{6} - 262\nu^{5} + 11731\nu^{4} - 43953\nu^{3} + 36565\nu^{2} - 52069\nu + 14432 ) / 8102 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -962\nu^{7} + 1557\nu^{6} - 288\nu^{5} + 9308\nu^{4} - 33224\nu^{3} + 25443\nu^{2} - 49196\nu + 18369 ) / 4051 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 4270 \nu^{7} + 7290 \nu^{6} - 2449 \nu^{5} + 42410 \nu^{4} - 149399 \nu^{3} + 128118 \nu^{2} - 241837 \nu + 88979 ) / 8102 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 4805\nu^{7} - 8118\nu^{6} + 2087\nu^{5} - 47477\nu^{4} + 167278\nu^{3} - 139939\nu^{2} + 265634\nu - 98045 ) / 8102 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{7} + \beta_{6} - \beta_{5} + 2\beta_{4} - \beta_{3} - \beta_{2} - \beta _1 + 2 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -5\beta_{7} - 5\beta_{6} - \beta_{5} - \beta_{4} + 2\beta_{3} - 4\beta_{2} - 4\beta _1 + 2 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{7} + \beta_{6} - 6\beta_{5} + 2\beta_{4} + \beta_{3} + 3\beta_{2} + \beta _1 + 6 \)
|
\(\nu^{4}\) | \(=\) |
\( ( -7\beta_{7} + 5\beta_{6} - 38\beta_{5} + 16\beta_{4} - 23\beta_{3} - 17\beta_{2} - 17\beta _1 + 1 ) / 3 \)
|
\(\nu^{5}\) | \(=\) |
\( ( -70\beta_{7} - 70\beta_{6} - 11\beta_{5} - 14\beta_{4} + 4\beta_{3} - 14\beta_{2} - 8\beta _1 - 17 ) / 3 \)
|
\(\nu^{6}\) | \(=\) |
\( 17\beta_{7} + 37\beta_{6} - 60\beta_{5} + 35\beta_{4} - 16\beta_{3} + 50\beta_{2} + 46\beta _1 + 7 \)
|
\(\nu^{7}\) | \(=\) |
\( ( -44\beta_{7} - 38\beta_{6} - 22\beta_{5} - 7\beta_{4} - 301\beta_{3} - 283\beta_{2} - 97\beta _1 - 565 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).
\(n\) | \(185\) | \(281\) |
\(\chi(n)\) | \(-\beta_{5}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
93.1 |
|
−0.500000 | + | 0.866025i | −0.685837 | − | 1.18790i | −0.500000 | − | 0.866025i | 1.57146 | − | 2.72186i | 1.37167 | −1.66774 | + | 2.05393i | 1.00000 | 0.559256 | − | 0.968659i | 1.57146 | + | 2.72186i | ||||||||||||||||||||||||||||
93.2 | −0.500000 | + | 0.866025i | 0.313577 | + | 0.543132i | −0.500000 | − | 0.866025i | 0.475705 | − | 0.823946i | −0.627155 | 2.62597 | + | 0.322894i | 1.00000 | 1.30334 | − | 2.25745i | 0.475705 | + | 0.823946i | |||||||||||||||||||||||||||||
93.3 | −0.500000 | + | 0.866025i | 1.26826 | + | 2.19669i | −0.500000 | − | 0.866025i | −1.34706 | + | 2.33318i | −2.53652 | −2.28677 | − | 1.33067i | 1.00000 | −1.71698 | + | 2.97389i | −1.34706 | − | 2.33318i | |||||||||||||||||||||||||||||
93.4 | −0.500000 | + | 0.866025i | 1.60400 | + | 2.77821i | −0.500000 | − | 0.866025i | 1.79990 | − | 3.11751i | −3.20800 | 1.82854 | − | 1.91218i | 1.00000 | −3.64562 | + | 6.31440i | 1.79990 | + | 3.11751i | |||||||||||||||||||||||||||||
277.1 | −0.500000 | − | 0.866025i | −0.685837 | + | 1.18790i | −0.500000 | + | 0.866025i | 1.57146 | + | 2.72186i | 1.37167 | −1.66774 | − | 2.05393i | 1.00000 | 0.559256 | + | 0.968659i | 1.57146 | − | 2.72186i | |||||||||||||||||||||||||||||
277.2 | −0.500000 | − | 0.866025i | 0.313577 | − | 0.543132i | −0.500000 | + | 0.866025i | 0.475705 | + | 0.823946i | −0.627155 | 2.62597 | − | 0.322894i | 1.00000 | 1.30334 | + | 2.25745i | 0.475705 | − | 0.823946i | |||||||||||||||||||||||||||||
277.3 | −0.500000 | − | 0.866025i | 1.26826 | − | 2.19669i | −0.500000 | + | 0.866025i | −1.34706 | − | 2.33318i | −2.53652 | −2.28677 | + | 1.33067i | 1.00000 | −1.71698 | − | 2.97389i | −1.34706 | + | 2.33318i | |||||||||||||||||||||||||||||
277.4 | −0.500000 | − | 0.866025i | 1.60400 | − | 2.77821i | −0.500000 | + | 0.866025i | 1.79990 | + | 3.11751i | −3.20800 | 1.82854 | + | 1.91218i | 1.00000 | −3.64562 | − | 6.31440i | 1.79990 | − | 3.11751i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.2.e.b | ✓ | 8 |
7.c | even | 3 | 1 | inner | 322.2.e.b | ✓ | 8 |
7.c | even | 3 | 1 | 2254.2.a.w | 4 | ||
7.d | odd | 6 | 1 | 2254.2.a.ba | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.2.e.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
322.2.e.b | ✓ | 8 | 7.c | even | 3 | 1 | inner |
2254.2.a.w | 4 | 7.c | even | 3 | 1 | ||
2254.2.a.ba | 4 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{8} - 5T_{3}^{7} + 22T_{3}^{6} - 37T_{3}^{5} + 71T_{3}^{4} - 37T_{3}^{3} + 142T_{3}^{2} - 77T_{3} + 49 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + T + 1)^{4} \)
$3$
\( T^{8} - 5 T^{7} + 22 T^{6} - 37 T^{5} + \cdots + 49 \)
$5$
\( T^{8} - 5 T^{7} + 28 T^{6} - 59 T^{5} + \cdots + 841 \)
$7$
\( T^{8} - T^{7} - 8 T^{6} - 5 T^{5} + \cdots + 2401 \)
$11$
\( T^{8} - 2 T^{7} + 16 T^{6} - 6 T^{5} + \cdots + 9 \)
$13$
\( (T^{4} + 7 T^{3} + 6 T^{2} - 20 T + 7)^{2} \)
$17$
\( T^{8} + 3 T^{7} + 81 T^{6} + \cdots + 1814409 \)
$19$
\( T^{8} - 9 T^{7} + 78 T^{6} + \cdots + 95481 \)
$23$
\( (T^{2} + T + 1)^{4} \)
$29$
\( (T^{4} + 2 T^{3} - 27 T^{2} - 56 T - 1)^{2} \)
$31$
\( T^{8} - 14 T^{7} + 154 T^{6} + \cdots + 11449 \)
$37$
\( T^{8} + 30 T^{6} + 10 T^{5} + \cdots + 729 \)
$41$
\( (T^{4} + 15 T^{3} + 66 T^{2} + 62 T - 63)^{2} \)
$43$
\( (T^{4} + 18 T^{3} + 90 T^{2} + 99 T - 81)^{2} \)
$47$
\( T^{8} - 21 T^{7} + 324 T^{6} + \cdots + 35721 \)
$53$
\( T^{8} - 3 T^{7} + 144 T^{6} + \cdots + 13689 \)
$59$
\( T^{8} - 16 T^{7} + 334 T^{6} + \cdots + 1320201 \)
$61$
\( T^{8} - T^{7} + 199 T^{6} + \cdots + 8346321 \)
$67$
\( T^{8} - 17 T^{7} + 229 T^{6} + \cdots + 82369 \)
$71$
\( (T^{4} + T^{3} - 216 T^{2} - 196 T + 5243)^{2} \)
$73$
\( T^{8} - 4 T^{7} + 154 T^{6} + \cdots + 19245769 \)
$79$
\( T^{8} + 5 T^{7} + 67 T^{6} + \cdots + 145161 \)
$83$
\( (T^{4} + 4 T^{3} - 261 T^{2} - 574 T + 17003)^{2} \)
$89$
\( T^{8} - 9 T^{7} + 180 T^{6} + \cdots + 12131289 \)
$97$
\( (T^{4} - 40 T^{3} + 519 T^{2} - 2126 T - 637)^{2} \)
show more
show less