# Properties

 Label 322.2.e.a.93.3 Level $322$ Weight $2$ Character 322.93 Analytic conductor $2.571$ Analytic rank $0$ Dimension $8$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$322 = 2 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 322.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.57118294509$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{3})$$ Coefficient field: 8.0.310217769.2 Defining polynomial: $$x^{8} + 4 x^{6} - 2 x^{5} + 15 x^{4} - 4 x^{3} + 5 x^{2} + x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 93.3 Root $$0.882007 + 1.52768i$$ of defining polynomial Character $$\chi$$ $$=$$ 322.93 Dual form 322.2.e.a.277.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 + 0.866025i) q^{2} +(0.0985631 + 0.170716i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.154437 - 0.267494i) q^{5} -0.197126 q^{6} +(-1.71031 - 2.01862i) q^{7} +1.00000 q^{8} +(1.48057 - 2.56442i) q^{9} +O(q^{10})$$ $$q+(-0.500000 + 0.866025i) q^{2} +(0.0985631 + 0.170716i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.154437 - 0.267494i) q^{5} -0.197126 q^{6} +(-1.71031 - 2.01862i) q^{7} +1.00000 q^{8} +(1.48057 - 2.56442i) q^{9} +(0.154437 + 0.267494i) q^{10} +(-0.184881 - 0.320224i) q^{11} +(0.0985631 - 0.170716i) q^{12} +6.29639 q^{13} +(2.60333 - 0.471863i) q^{14} +0.0608874 q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.30670 - 3.99533i) q^{17} +(1.48057 + 2.56442i) q^{18} +(0.176466 - 0.305648i) q^{19} -0.308875 q^{20} +(0.176038 - 0.490940i) q^{21} +0.369762 q^{22} +(0.500000 - 0.866025i) q^{23} +(0.0985631 + 0.170716i) q^{24} +(2.45230 + 4.24750i) q^{25} +(-3.14819 + 5.45283i) q^{26} +1.17510 q^{27} +(-0.893022 + 2.49048i) q^{28} +1.74199 q^{29} +(-0.0304437 + 0.0527300i) q^{30} +(-1.46739 - 2.54159i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.0364449 - 0.0631245i) q^{33} +4.61341 q^{34} +(-0.804105 + 0.145747i) q^{35} -2.96114 q^{36} +(3.18965 - 5.52464i) q^{37} +(0.176466 + 0.305648i) q^{38} +(0.620592 + 1.07490i) q^{39} +(0.154437 - 0.267494i) q^{40} -1.90213 q^{41} +(0.337147 + 0.397923i) q^{42} +6.55252 q^{43} +(-0.184881 + 0.320224i) q^{44} +(-0.457311 - 0.792086i) q^{45} +(0.500000 + 0.866025i) q^{46} +(-5.86735 + 10.1625i) q^{47} -0.197126 q^{48} +(-1.14967 + 6.90495i) q^{49} -4.90460 q^{50} +(0.454712 - 0.787584i) q^{51} +(-3.14819 - 5.45283i) q^{52} +(-2.95230 - 5.11353i) q^{53} +(-0.587549 + 1.01766i) q^{54} -0.114210 q^{55} +(-1.71031 - 2.01862i) q^{56} +0.0695722 q^{57} +(-0.870993 + 1.50860i) q^{58} +(1.14602 + 1.98497i) q^{59} +(-0.0304437 - 0.0527300i) q^{60} +(-3.39396 + 5.87851i) q^{61} +2.93477 q^{62} +(-7.70884 + 1.39725i) q^{63} +1.00000 q^{64} +(0.972398 - 1.68424i) q^{65} +(0.0364449 + 0.0631245i) q^{66} +(-6.37212 - 11.0368i) q^{67} +(-2.30670 + 3.99533i) q^{68} +0.197126 q^{69} +(0.275832 - 0.769248i) q^{70} +0.492118 q^{71} +(1.48057 - 2.56442i) q^{72} +(-2.99976 - 5.19573i) q^{73} +(3.18965 + 5.52464i) q^{74} +(-0.483412 + 0.837295i) q^{75} -0.352932 q^{76} +(-0.330206 + 0.920887i) q^{77} -1.24118 q^{78} +(-0.333075 + 0.576902i) q^{79} +(0.154437 + 0.267494i) q^{80} +(-4.32589 - 7.49266i) q^{81} +(0.951067 - 1.64730i) q^{82} -6.44785 q^{83} +(-0.513186 + 0.0930165i) q^{84} -1.42497 q^{85} +(-3.27626 + 5.67465i) q^{86} +(0.171696 + 0.297386i) q^{87} +(-0.184881 - 0.320224i) q^{88} +(-5.81105 + 10.0650i) q^{89} +0.914622 q^{90} +(-10.7688 - 12.7100i) q^{91} -1.00000 q^{92} +(0.289260 - 0.501013i) q^{93} +(-5.86735 - 10.1625i) q^{94} +(-0.0545060 - 0.0944071i) q^{95} +(0.0985631 - 0.170716i) q^{96} +4.96548 q^{97} +(-5.40502 - 4.44811i) q^{98} -1.09492 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q - 4 q^{2} - 3 q^{3} - 4 q^{4} - 7 q^{5} + 6 q^{6} - q^{7} + 8 q^{8} + q^{9} + O(q^{10})$$ $$8 q - 4 q^{2} - 3 q^{3} - 4 q^{4} - 7 q^{5} + 6 q^{6} - q^{7} + 8 q^{8} + q^{9} - 7 q^{10} - 2 q^{11} - 3 q^{12} + 2 q^{13} - q^{14} + 18 q^{15} - 4 q^{16} - 5 q^{17} + q^{18} - 11 q^{19} + 14 q^{20} + q^{21} + 4 q^{22} + 4 q^{23} - 3 q^{24} - 3 q^{25} - q^{26} + 6 q^{27} + 2 q^{28} + 4 q^{29} - 9 q^{30} - 6 q^{31} - 4 q^{32} - 15 q^{33} + 10 q^{34} - 8 q^{35} - 2 q^{36} + 8 q^{37} - 11 q^{38} - 3 q^{39} - 7 q^{40} + 18 q^{41} - 2 q^{42} + 8 q^{43} - 2 q^{44} - 3 q^{45} + 4 q^{46} - 11 q^{47} + 6 q^{48} - 19 q^{49} + 6 q^{50} + 18 q^{51} - q^{52} - q^{53} - 3 q^{54} + 20 q^{55} - q^{56} + 6 q^{57} - 2 q^{58} - 12 q^{59} - 9 q^{60} - 21 q^{61} + 12 q^{62} - 15 q^{63} + 8 q^{64} + 24 q^{65} - 15 q^{66} + 3 q^{67} - 5 q^{68} - 6 q^{69} - 8 q^{70} + 22 q^{71} + q^{72} + 16 q^{73} + 8 q^{74} - 18 q^{75} + 22 q^{76} - 19 q^{77} + 6 q^{78} + 21 q^{79} - 7 q^{80} + 8 q^{81} - 9 q^{82} + 8 q^{83} + q^{84} + 20 q^{85} - 4 q^{86} + 7 q^{87} - 2 q^{88} - 27 q^{89} + 6 q^{90} - 54 q^{91} - 8 q^{92} + 27 q^{93} - 11 q^{94} - 5 q^{95} - 3 q^{96} + 12 q^{97} + 14 q^{98} + 26 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/322\mathbb{Z}\right)^\times$$.

 $$n$$ $$185$$ $$281$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 + 0.866025i −0.353553 + 0.612372i
$$3$$ 0.0985631 + 0.170716i 0.0569055 + 0.0985631i 0.893075 0.449908i $$-0.148543\pi$$
−0.836169 + 0.548471i $$0.815210\pi$$
$$4$$ −0.500000 0.866025i −0.250000 0.433013i
$$5$$ 0.154437 0.267494i 0.0690665 0.119627i −0.829424 0.558619i $$-0.811331\pi$$
0.898491 + 0.438993i $$0.144665\pi$$
$$6$$ −0.197126 −0.0804765
$$7$$ −1.71031 2.01862i −0.646437 0.762967i
$$8$$ 1.00000 0.353553
$$9$$ 1.48057 2.56442i 0.493524 0.854808i
$$10$$ 0.154437 + 0.267494i 0.0488374 + 0.0845889i
$$11$$ −0.184881 0.320224i −0.0557438 0.0965510i 0.836807 0.547498i $$-0.184420\pi$$
−0.892551 + 0.450947i $$0.851086\pi$$
$$12$$ 0.0985631 0.170716i 0.0284527 0.0492816i
$$13$$ 6.29639 1.74630 0.873152 0.487448i $$-0.162072\pi$$
0.873152 + 0.487448i $$0.162072\pi$$
$$14$$ 2.60333 0.471863i 0.695770 0.126111i
$$15$$ 0.0608874 0.0157211
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −2.30670 3.99533i −0.559458 0.969009i −0.997542 0.0700753i $$-0.977676\pi$$
0.438084 0.898934i $$-0.355657\pi$$
$$18$$ 1.48057 + 2.56442i 0.348974 + 0.604440i
$$19$$ 0.176466 0.305648i 0.0404841 0.0701205i −0.845073 0.534650i $$-0.820443\pi$$
0.885557 + 0.464530i $$0.153777\pi$$
$$20$$ −0.308875 −0.0690665
$$21$$ 0.176038 0.490940i 0.0384147 0.107132i
$$22$$ 0.369762 0.0788336
$$23$$ 0.500000 0.866025i 0.104257 0.180579i
$$24$$ 0.0985631 + 0.170716i 0.0201191 + 0.0348473i
$$25$$ 2.45230 + 4.24750i 0.490460 + 0.849501i
$$26$$ −3.14819 + 5.45283i −0.617412 + 1.06939i
$$27$$ 1.17510 0.226148
$$28$$ −0.893022 + 2.49048i −0.168765 + 0.470657i
$$29$$ 1.74199 0.323479 0.161739 0.986834i $$-0.448290\pi$$
0.161739 + 0.986834i $$0.448290\pi$$
$$30$$ −0.0304437 + 0.0527300i −0.00555823 + 0.00962714i
$$31$$ −1.46739 2.54159i −0.263550 0.456482i 0.703633 0.710564i $$-0.251560\pi$$
−0.967183 + 0.254082i $$0.918227\pi$$
$$32$$ −0.500000 0.866025i −0.0883883 0.153093i
$$33$$ 0.0364449 0.0631245i 0.00634425 0.0109886i
$$34$$ 4.61341 0.791193
$$35$$ −0.804105 + 0.145747i −0.135918 + 0.0246357i
$$36$$ −2.96114 −0.493524
$$37$$ 3.18965 5.52464i 0.524375 0.908245i −0.475222 0.879866i $$-0.657632\pi$$
0.999597 0.0283789i $$-0.00903451\pi$$
$$38$$ 0.176466 + 0.305648i 0.0286266 + 0.0495827i
$$39$$ 0.620592 + 1.07490i 0.0993742 + 0.172121i
$$40$$ 0.154437 0.267494i 0.0244187 0.0422944i
$$41$$ −1.90213 −0.297064 −0.148532 0.988908i $$-0.547455\pi$$
−0.148532 + 0.988908i $$0.547455\pi$$
$$42$$ 0.337147 + 0.397923i 0.0520230 + 0.0614009i
$$43$$ 6.55252 0.999250 0.499625 0.866242i $$-0.333471\pi$$
0.499625 + 0.866242i $$0.333471\pi$$
$$44$$ −0.184881 + 0.320224i −0.0278719 + 0.0482755i
$$45$$ −0.457311 0.792086i −0.0681719 0.118077i
$$46$$ 0.500000 + 0.866025i 0.0737210 + 0.127688i
$$47$$ −5.86735 + 10.1625i −0.855841 + 1.48236i 0.0200221 + 0.999800i $$0.493626\pi$$
−0.875863 + 0.482560i $$0.839707\pi$$
$$48$$ −0.197126 −0.0284527
$$49$$ −1.14967 + 6.90495i −0.164238 + 0.986421i
$$50$$ −4.90460 −0.693615
$$51$$ 0.454712 0.787584i 0.0636724 0.110284i
$$52$$ −3.14819 5.45283i −0.436576 0.756172i
$$53$$ −2.95230 5.11353i −0.405529 0.702397i 0.588854 0.808240i $$-0.299579\pi$$
−0.994383 + 0.105842i $$0.966246\pi$$
$$54$$ −0.587549 + 1.01766i −0.0799553 + 0.138487i
$$55$$ −0.114210 −0.0154001
$$56$$ −1.71031 2.01862i −0.228550 0.269750i
$$57$$ 0.0695722 0.00921506
$$58$$ −0.870993 + 1.50860i −0.114367 + 0.198089i
$$59$$ 1.14602 + 1.98497i 0.149199 + 0.258421i 0.930932 0.365193i $$-0.118997\pi$$
−0.781732 + 0.623614i $$0.785664\pi$$
$$60$$ −0.0304437 0.0527300i −0.00393026 0.00680742i
$$61$$ −3.39396 + 5.87851i −0.434552 + 0.752667i −0.997259 0.0739899i $$-0.976427\pi$$
0.562707 + 0.826657i $$0.309760\pi$$
$$62$$ 2.93477 0.372716
$$63$$ −7.70884 + 1.39725i −0.971222 + 0.176037i
$$64$$ 1.00000 0.125000
$$65$$ 0.972398 1.68424i 0.120611 0.208905i
$$66$$ 0.0364449 + 0.0631245i 0.00448606 + 0.00777009i
$$67$$ −6.37212 11.0368i −0.778478 1.34836i −0.932819 0.360346i $$-0.882659\pi$$
0.154340 0.988018i $$-0.450675\pi$$
$$68$$ −2.30670 + 3.99533i −0.279729 + 0.484505i
$$69$$ 0.197126 0.0237312
$$70$$ 0.275832 0.769248i 0.0329682 0.0919427i
$$71$$ 0.492118 0.0584037 0.0292018 0.999574i $$-0.490703\pi$$
0.0292018 + 0.999574i $$0.490703\pi$$
$$72$$ 1.48057 2.56442i 0.174487 0.302220i
$$73$$ −2.99976 5.19573i −0.351095 0.608114i 0.635347 0.772227i $$-0.280857\pi$$
−0.986442 + 0.164113i $$0.947524\pi$$
$$74$$ 3.18965 + 5.52464i 0.370789 + 0.642226i
$$75$$ −0.483412 + 0.837295i −0.0558197 + 0.0966825i
$$76$$ −0.352932 −0.0404841
$$77$$ −0.330206 + 0.920887i −0.0376304 + 0.104945i
$$78$$ −1.24118 −0.140536
$$79$$ −0.333075 + 0.576902i −0.0374738 + 0.0649066i −0.884154 0.467196i $$-0.845264\pi$$
0.846680 + 0.532102i $$0.178598\pi$$
$$80$$ 0.154437 + 0.267494i 0.0172666 + 0.0299067i
$$81$$ −4.32589 7.49266i −0.480655 0.832518i
$$82$$ 0.951067 1.64730i 0.105028 0.181914i
$$83$$ −6.44785 −0.707744 −0.353872 0.935294i $$-0.615135\pi$$
−0.353872 + 0.935294i $$0.615135\pi$$
$$84$$ −0.513186 + 0.0930165i −0.0559931 + 0.0101489i
$$85$$ −1.42497 −0.154559
$$86$$ −3.27626 + 5.67465i −0.353288 + 0.611913i
$$87$$ 0.171696 + 0.297386i 0.0184077 + 0.0318831i
$$88$$ −0.184881 0.320224i −0.0197084 0.0341359i
$$89$$ −5.81105 + 10.0650i −0.615970 + 1.06689i 0.374244 + 0.927330i $$0.377902\pi$$
−0.990214 + 0.139560i $$0.955431\pi$$
$$90$$ 0.914622 0.0964097
$$91$$ −10.7688 12.7100i −1.12888 1.33237i
$$92$$ −1.00000 −0.104257
$$93$$ 0.289260 0.501013i 0.0299949 0.0519527i
$$94$$ −5.86735 10.1625i −0.605171 1.04819i
$$95$$ −0.0545060 0.0944071i −0.00559219 0.00968596i
$$96$$ 0.0985631 0.170716i 0.0100596 0.0174237i
$$97$$ 4.96548 0.504168 0.252084 0.967705i $$-0.418884\pi$$
0.252084 + 0.967705i $$0.418884\pi$$
$$98$$ −5.40502 4.44811i −0.545990 0.449327i
$$99$$ −1.09492 −0.110043
$$100$$ 2.45230 4.24750i 0.245230 0.424750i
$$101$$ 6.67745 + 11.5657i 0.664432 + 1.15083i 0.979439 + 0.201740i $$0.0646596\pi$$
−0.315008 + 0.949089i $$0.602007\pi$$
$$102$$ 0.454712 + 0.787584i 0.0450232 + 0.0779825i
$$103$$ −0.439355 + 0.760986i −0.0432910 + 0.0749821i −0.886859 0.462040i $$-0.847118\pi$$
0.843568 + 0.537022i $$0.180451\pi$$
$$104$$ 6.29639 0.617412
$$105$$ −0.104136 0.122909i −0.0101627 0.0119946i
$$106$$ 5.90460 0.573505
$$107$$ −7.15055 + 12.3851i −0.691270 + 1.19731i 0.280152 + 0.959956i $$0.409615\pi$$
−0.971422 + 0.237359i $$0.923718\pi$$
$$108$$ −0.587549 1.01766i −0.0565369 0.0979248i
$$109$$ 7.56040 + 13.0950i 0.724155 + 1.25427i 0.959321 + 0.282318i $$0.0911034\pi$$
−0.235166 + 0.971955i $$0.575563\pi$$
$$110$$ 0.0571052 0.0989090i 0.00544476 0.00943061i
$$111$$ 1.25753 0.119359
$$112$$ 2.60333 0.471863i 0.245992 0.0445868i
$$113$$ 7.57075 0.712196 0.356098 0.934449i $$-0.384107\pi$$
0.356098 + 0.934449i $$0.384107\pi$$
$$114$$ −0.0347861 + 0.0602513i −0.00325802 + 0.00564305i
$$115$$ −0.154437 0.267494i −0.0144014 0.0249439i
$$116$$ −0.870993 1.50860i −0.0808697 0.140070i
$$117$$ 9.32225 16.1466i 0.861842 1.49275i
$$118$$ −2.29204 −0.211000
$$119$$ −4.11987 + 11.4896i −0.377668 + 1.05325i
$$120$$ 0.0608874 0.00555823
$$121$$ 5.43164 9.40787i 0.493785 0.855261i
$$122$$ −3.39396 5.87851i −0.307275 0.532216i
$$123$$ −0.187480 0.324726i −0.0169045 0.0292795i
$$124$$ −1.46739 + 2.54159i −0.131775 + 0.228241i
$$125$$ 3.05928 0.273630
$$126$$ 2.64436 7.37468i 0.235579 0.656988i
$$127$$ 16.0215 1.42168 0.710841 0.703353i $$-0.248315\pi$$
0.710841 + 0.703353i $$0.248315\pi$$
$$128$$ −0.500000 + 0.866025i −0.0441942 + 0.0765466i
$$129$$ 0.645837 + 1.11862i 0.0568628 + 0.0984892i
$$130$$ 0.972398 + 1.68424i 0.0852850 + 0.147718i
$$131$$ −9.15897 + 15.8638i −0.800223 + 1.38603i 0.119247 + 0.992865i $$0.461952\pi$$
−0.919469 + 0.393161i $$0.871381\pi$$
$$132$$ −0.0728899 −0.00634425
$$133$$ −0.918800 + 0.166535i −0.0796701 + 0.0144405i
$$134$$ 12.7442 1.10093
$$135$$ 0.181479 0.314331i 0.0156192 0.0270533i
$$136$$ −2.30670 3.99533i −0.197798 0.342597i
$$137$$ 4.61681 + 7.99655i 0.394441 + 0.683191i 0.993030 0.117865i $$-0.0376050\pi$$
−0.598589 + 0.801056i $$0.704272\pi$$
$$138$$ −0.0985631 + 0.170716i −0.00839025 + 0.0145323i
$$139$$ −17.2940 −1.46686 −0.733430 0.679765i $$-0.762082\pi$$
−0.733430 + 0.679765i $$0.762082\pi$$
$$140$$ 0.528272 + 0.623502i 0.0446472 + 0.0526955i
$$141$$ −2.31322 −0.194808
$$142$$ −0.246059 + 0.426187i −0.0206488 + 0.0357648i
$$143$$ −1.16408 2.01625i −0.0973455 0.168607i
$$144$$ 1.48057 + 2.56442i 0.123381 + 0.213702i
$$145$$ 0.269028 0.465970i 0.0223416 0.0386967i
$$146$$ 5.99951 0.496523
$$147$$ −1.29210 + 0.484306i −0.106571 + 0.0399449i
$$148$$ −6.37930 −0.524375
$$149$$ 7.37742 12.7781i 0.604382 1.04682i −0.387767 0.921757i $$-0.626753\pi$$
0.992149 0.125063i $$-0.0399132\pi$$
$$150$$ −0.483412 0.837295i −0.0394705 0.0683648i
$$151$$ 10.6213 + 18.3966i 0.864348 + 1.49710i 0.867693 + 0.497101i $$0.165602\pi$$
−0.00334456 + 0.999994i $$0.501065\pi$$
$$152$$ 0.176466 0.305648i 0.0143133 0.0247913i
$$153$$ −13.6610 −1.10442
$$154$$ −0.632409 0.746410i −0.0509610 0.0601475i
$$155$$ −0.906477 −0.0728100
$$156$$ 0.620592 1.07490i 0.0496871 0.0860606i
$$157$$ 6.82206 + 11.8162i 0.544460 + 0.943032i 0.998641 + 0.0521224i $$0.0165986\pi$$
−0.454181 + 0.890909i $$0.650068\pi$$
$$158$$ −0.333075 0.576902i −0.0264980 0.0458959i
$$159$$ 0.581976 1.00801i 0.0461537 0.0799405i
$$160$$ −0.308875 −0.0244187
$$161$$ −2.60333 + 0.471863i −0.205171 + 0.0371880i
$$162$$ 8.65178 0.679748
$$163$$ 9.56734 16.5711i 0.749372 1.29795i −0.198752 0.980050i $$-0.563689\pi$$
0.948124 0.317901i $$-0.102978\pi$$
$$164$$ 0.951067 + 1.64730i 0.0742659 + 0.128632i
$$165$$ −0.0112569 0.0194976i −0.000876351 0.00151788i
$$166$$ 3.22393 5.58400i 0.250225 0.433403i
$$167$$ 5.31322 0.411149 0.205575 0.978641i $$-0.434094\pi$$
0.205575 + 0.978641i $$0.434094\pi$$
$$168$$ 0.176038 0.490940i 0.0135816 0.0378768i
$$169$$ 26.6445 2.04958
$$170$$ 0.712483 1.23406i 0.0546450 0.0946478i
$$171$$ −0.522541 0.905068i −0.0399597 0.0692122i
$$172$$ −3.27626 5.67465i −0.249812 0.432688i
$$173$$ 2.61269 4.52531i 0.198639 0.344053i −0.749448 0.662063i $$-0.769681\pi$$
0.948087 + 0.318010i $$0.103015\pi$$
$$174$$ −0.343391 −0.0260324
$$175$$ 4.37991 12.2148i 0.331090 0.923354i
$$176$$ 0.369762 0.0278719
$$177$$ −0.225911 + 0.391290i −0.0169805 + 0.0294111i
$$178$$ −5.81105 10.0650i −0.435556 0.754406i
$$179$$ 5.20161 + 9.00945i 0.388786 + 0.673398i 0.992287 0.123965i $$-0.0395611\pi$$
−0.603500 + 0.797363i $$0.706228\pi$$
$$180$$ −0.457311 + 0.792086i −0.0340860 + 0.0590386i
$$181$$ 7.39945 0.549997 0.274998 0.961445i $$-0.411323\pi$$
0.274998 + 0.961445i $$0.411323\pi$$
$$182$$ 16.3916 2.97103i 1.21503 0.220227i
$$183$$ −1.33808 −0.0989136
$$184$$ 0.500000 0.866025i 0.0368605 0.0638442i
$$185$$ −0.985203 1.70642i −0.0724336 0.125459i
$$186$$ 0.289260 + 0.501013i 0.0212096 + 0.0367361i
$$187$$ −0.852932 + 1.47732i −0.0623726 + 0.108032i
$$188$$ 11.7347 0.855841
$$189$$ −2.00978 2.37208i −0.146190 0.172543i
$$190$$ 0.109012 0.00790855
$$191$$ 1.99976 3.46368i 0.144697 0.250623i −0.784563 0.620050i $$-0.787112\pi$$
0.929260 + 0.369426i $$0.120446\pi$$
$$192$$ 0.0985631 + 0.170716i 0.00711318 + 0.0123204i
$$193$$ −0.226630 0.392534i −0.0163132 0.0282552i 0.857754 0.514061i $$-0.171860\pi$$
−0.874067 + 0.485806i $$0.838526\pi$$
$$194$$ −2.48274 + 4.30023i −0.178250 + 0.308739i
$$195$$ 0.383370 0.0274537
$$196$$ 6.55469 2.45683i 0.468192 0.175488i
$$197$$ −6.07584 −0.432885 −0.216443 0.976295i $$-0.569445\pi$$
−0.216443 + 0.976295i $$0.569445\pi$$
$$198$$ 0.547459 0.948227i 0.0389062 0.0673876i
$$199$$ 12.9633 + 22.4530i 0.918941 + 1.59165i 0.801027 + 0.598628i $$0.204287\pi$$
0.117914 + 0.993024i $$0.462379\pi$$
$$200$$ 2.45230 + 4.24750i 0.173404 + 0.300344i
$$201$$ 1.25611 2.17565i 0.0885993 0.153459i
$$202$$ −13.3549 −0.939648
$$203$$ −2.97934 3.51641i −0.209109 0.246804i
$$204$$ −0.909424 −0.0636724
$$205$$ −0.293761 + 0.508809i −0.0205171 + 0.0355367i
$$206$$ −0.439355 0.760986i −0.0306113 0.0530204i
$$207$$ −1.48057 2.56442i −0.102907 0.178240i
$$208$$ −3.14819 + 5.45283i −0.218288 + 0.378086i
$$209$$ −0.130501 −0.00902694
$$210$$ 0.158510 0.0287305i 0.0109382 0.00198259i
$$211$$ −14.9365 −1.02827 −0.514137 0.857708i $$-0.671888\pi$$
−0.514137 + 0.857708i $$0.671888\pi$$
$$212$$ −2.95230 + 5.11353i −0.202765 + 0.351199i
$$213$$ 0.0485047 + 0.0840126i 0.00332349 + 0.00575645i
$$214$$ −7.15055 12.3851i −0.488802 0.846629i
$$215$$ 1.01195 1.75276i 0.0690147 0.119537i
$$216$$ 1.17510 0.0799553
$$217$$ −2.62081 + 7.30900i −0.177912 + 0.496167i
$$218$$ −15.1208 −1.02411
$$219$$ 0.591331 1.02422i 0.0399585 0.0692101i
$$220$$ 0.0571052 + 0.0989090i 0.00385003 + 0.00666845i
$$221$$ −14.5239 25.1561i −0.976983 1.69218i
$$222$$ −0.628764 + 1.08905i −0.0421999 + 0.0730924i
$$223$$ −5.36408 −0.359205 −0.179603 0.983739i $$-0.557481\pi$$
−0.179603 + 0.983739i $$0.557481\pi$$
$$224$$ −0.893022 + 2.49048i −0.0596675 + 0.166402i
$$225$$ 14.5232 0.968213
$$226$$ −3.78537 + 6.55646i −0.251799 + 0.436129i
$$227$$ −14.0894 24.4035i −0.935146 1.61972i −0.774374 0.632729i $$-0.781935\pi$$
−0.160772 0.986992i $$-0.551398\pi$$
$$228$$ −0.0347861 0.0602513i −0.00230377 0.00399024i
$$229$$ −7.91864 + 13.7155i −0.523278 + 0.906345i 0.476355 + 0.879253i $$0.341958\pi$$
−0.999633 + 0.0270914i $$0.991375\pi$$
$$230$$ 0.308875 0.0203666
$$231$$ −0.189757 + 0.0343940i −0.0124851 + 0.00226296i
$$232$$ 1.74199 0.114367
$$233$$ −12.7090 + 22.0127i −0.832596 + 1.44210i 0.0633771 + 0.997990i $$0.479813\pi$$
−0.895973 + 0.444109i $$0.853520\pi$$
$$234$$ 9.32225 + 16.1466i 0.609414 + 1.05554i
$$235$$ 1.81228 + 3.13896i 0.118220 + 0.204763i
$$236$$ 1.14602 1.98497i 0.0745997 0.129210i
$$237$$ −0.131316 −0.00852986
$$238$$ −7.89037 9.31272i −0.511456 0.603654i
$$239$$ 8.59412 0.555907 0.277954 0.960595i $$-0.410344\pi$$
0.277954 + 0.960595i $$0.410344\pi$$
$$240$$ −0.0304437 + 0.0527300i −0.00196513 + 0.00340371i
$$241$$ −4.69442 8.13098i −0.302394 0.523762i 0.674283 0.738473i $$-0.264453\pi$$
−0.976678 + 0.214710i $$0.931119\pi$$
$$242$$ 5.43164 + 9.40787i 0.349159 + 0.604761i
$$243$$ 2.61539 4.52999i 0.167778 0.290599i
$$244$$ 6.78792 0.434552
$$245$$ 1.66948 + 1.37391i 0.106659 + 0.0877759i
$$246$$ 0.374961 0.0239066
$$247$$ 1.11110 1.92448i 0.0706975 0.122452i
$$248$$ −1.46739 2.54159i −0.0931790 0.161391i
$$249$$ −0.635520 1.10075i −0.0402745 0.0697574i
$$250$$ −1.52964 + 2.64942i −0.0967430 + 0.167564i
$$251$$ −3.13763 −0.198046 −0.0990229 0.995085i $$-0.531572\pi$$
−0.0990229 + 0.995085i $$0.531572\pi$$
$$252$$ 5.06447 + 5.97742i 0.319032 + 0.376542i
$$253$$ −0.369762 −0.0232468
$$254$$ −8.01077 + 13.8751i −0.502641 + 0.870599i
$$255$$ −0.140449 0.243265i −0.00879527 0.0152338i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 13.4913 23.3677i 0.841567 1.45764i −0.0470028 0.998895i $$-0.514967\pi$$
0.888570 0.458742i $$-0.151700\pi$$
$$258$$ −1.29167 −0.0804161
$$259$$ −16.6075 + 3.01015i −1.03194 + 0.187042i
$$260$$ −1.94480 −0.120611
$$261$$ 2.57913 4.46719i 0.159644 0.276512i
$$262$$ −9.15897 15.8638i −0.565843 0.980068i
$$263$$ 5.36612 + 9.29439i 0.330889 + 0.573117i 0.982686 0.185277i $$-0.0593181\pi$$
−0.651797 + 0.758393i $$0.725985\pi$$
$$264$$ 0.0364449 0.0631245i 0.00224303 0.00388504i
$$265$$ −1.82378 −0.112034
$$266$$ 0.315176 0.878972i 0.0193247 0.0538932i
$$267$$ −2.29102 −0.140208
$$268$$ −6.37212 + 11.0368i −0.389239 + 0.674182i
$$269$$ 7.93807 + 13.7491i 0.483992 + 0.838300i 0.999831 0.0183863i $$-0.00585286\pi$$
−0.515838 + 0.856686i $$0.672520\pi$$
$$270$$ 0.181479 + 0.314331i 0.0110445 + 0.0191296i
$$271$$ −7.19021 + 12.4538i −0.436774 + 0.756515i −0.997439 0.0715280i $$-0.977212\pi$$
0.560664 + 0.828043i $$0.310546\pi$$
$$272$$ 4.61341 0.279729
$$273$$ 1.10840 3.09115i 0.0670837 0.187085i
$$274$$ −9.23362 −0.557823
$$275$$ 0.906767 1.57057i 0.0546801 0.0947088i
$$276$$ −0.0985631 0.170716i −0.00593280 0.0102759i
$$277$$ −5.81799 10.0771i −0.349569 0.605471i 0.636604 0.771191i $$-0.280339\pi$$
−0.986173 + 0.165720i $$0.947005\pi$$
$$278$$ 8.64701 14.9771i 0.518613 0.898264i
$$279$$ −8.69027 −0.520273
$$280$$ −0.804105 + 0.145747i −0.0480544 + 0.00871002i
$$281$$ −25.2062 −1.50367 −0.751837 0.659349i $$-0.770832\pi$$
−0.751837 + 0.659349i $$0.770832\pi$$
$$282$$ 1.15661 2.00331i 0.0688750 0.119295i
$$283$$ 1.78808 + 3.09704i 0.106290 + 0.184100i 0.914265 0.405118i $$-0.132769\pi$$
−0.807974 + 0.589218i $$0.799436\pi$$
$$284$$ −0.246059 0.426187i −0.0146009 0.0252895i
$$285$$ 0.0107446 0.0186101i 0.000636453 0.00110237i
$$286$$ 2.32817 0.137667
$$287$$ 3.25324 + 3.83969i 0.192033 + 0.226650i
$$288$$ −2.96114 −0.174487
$$289$$ −2.14176 + 3.70964i −0.125986 + 0.218214i
$$290$$ 0.269028 + 0.465970i 0.0157979 + 0.0273627i
$$291$$ 0.489414 + 0.847689i 0.0286899 + 0.0496924i
$$292$$ −2.99976 + 5.19573i −0.175548 + 0.304057i
$$293$$ −4.03243 −0.235577 −0.117788 0.993039i $$-0.537580\pi$$
−0.117788 + 0.993039i $$0.537580\pi$$
$$294$$ 0.226630 1.36115i 0.0132173 0.0793837i
$$295$$ 0.707955 0.0412187
$$296$$ 3.18965 5.52464i 0.185395 0.321113i
$$297$$ −0.217253 0.376294i −0.0126063 0.0218348i
$$298$$ 7.37742 + 12.7781i 0.427363 + 0.740214i
$$299$$ 3.14819 5.45283i 0.182065 0.315345i
$$300$$ 0.966825 0.0558197
$$301$$ −11.2069 13.2271i −0.645952 0.762395i
$$302$$ −21.2426 −1.22237
$$303$$ −1.31630 + 2.27990i −0.0756196 + 0.130977i
$$304$$ 0.176466 + 0.305648i 0.0101210 + 0.0175301i
$$305$$ 1.04831 + 1.81573i 0.0600261 + 0.103968i
$$306$$ 6.83048 11.8307i 0.390472 0.676318i
$$307$$ −1.35937 −0.0775831 −0.0387915 0.999247i $$-0.512351\pi$$
−0.0387915 + 0.999247i $$0.512351\pi$$
$$308$$ 0.962615 0.174477i 0.0548501 0.00994175i
$$309$$ −0.173217 −0.00985397
$$310$$ 0.453239 0.785032i 0.0257422 0.0445868i
$$311$$ −7.38172 12.7855i −0.418579 0.725000i 0.577218 0.816590i $$-0.304138\pi$$
−0.995797 + 0.0915904i $$0.970805\pi$$
$$312$$ 0.620592 + 1.07490i 0.0351341 + 0.0608540i
$$313$$ 11.6470 20.1732i 0.658328 1.14026i −0.322720 0.946494i $$-0.604597\pi$$
0.981048 0.193763i $$-0.0620693\pi$$
$$314$$ −13.6441 −0.769982
$$315$$ −0.816778 + 2.27785i −0.0460202 + 0.128342i
$$316$$ 0.666150 0.0374738
$$317$$ −9.66087 + 16.7331i −0.542608 + 0.939825i 0.456145 + 0.889906i $$0.349230\pi$$
−0.998753 + 0.0499197i $$0.984103\pi$$
$$318$$ 0.581976 + 1.00801i 0.0326356 + 0.0565265i
$$319$$ −0.322060 0.557825i −0.0180319 0.0312322i
$$320$$ 0.154437 0.267494i 0.00863332 0.0149533i
$$321$$ −2.81912 −0.157348
$$322$$ 0.893022 2.49048i 0.0497662 0.138789i
$$323$$ −1.62822 −0.0905966
$$324$$ −4.32589 + 7.49266i −0.240327 + 0.416259i
$$325$$ 15.4406 + 26.7439i 0.856491 + 1.48349i
$$326$$ 9.56734 + 16.5711i 0.529886 + 0.917790i
$$327$$ −1.49035 + 2.58137i −0.0824168 + 0.142750i
$$328$$ −1.90213 −0.105028
$$329$$ 30.5493 5.53716i 1.68424 0.305274i
$$330$$ 0.0225139 0.00123935
$$331$$ 2.00407 3.47116i 0.110154 0.190792i −0.805678 0.592353i $$-0.798199\pi$$
0.915832 + 0.401561i $$0.131532\pi$$
$$332$$ 3.22393 + 5.58400i 0.176936 + 0.306462i
$$333$$ −9.44501 16.3592i −0.517583 0.896481i
$$334$$ −2.65661 + 4.60138i −0.145363 + 0.251776i
$$335$$ −3.93638 −0.215067
$$336$$ 0.337147 + 0.397923i 0.0183929 + 0.0217085i
$$337$$ −18.7242 −1.01997 −0.509986 0.860183i $$-0.670349\pi$$
−0.509986 + 0.860183i $$0.670349\pi$$
$$338$$ −13.3222 + 23.0748i −0.724635 + 1.25510i
$$339$$ 0.746197 + 1.29245i 0.0405278 + 0.0701963i
$$340$$ 0.712483 + 1.23406i 0.0386398 + 0.0669261i
$$341$$ −0.542584 + 0.939783i −0.0293826 + 0.0508921i
$$342$$ 1.04508 0.0565116
$$343$$ 15.9048 9.48887i 0.858776 0.512351i
$$344$$ 6.55252 0.353288
$$345$$ 0.0304437 0.0527300i 0.00163903 0.00283889i
$$346$$ 2.61269 + 4.52531i 0.140459 + 0.243282i
$$347$$ −2.62469 4.54610i −0.140901 0.244047i 0.786935 0.617036i $$-0.211667\pi$$
−0.927836 + 0.372988i $$0.878333\pi$$
$$348$$ 0.171696 0.297386i 0.00920385 0.0159415i
$$349$$ −29.3789 −1.57262 −0.786309 0.617834i $$-0.788010\pi$$
−0.786309 + 0.617834i $$0.788010\pi$$
$$350$$ 8.38839 + 9.90052i 0.448378 + 0.529205i
$$351$$ 7.39887 0.394922
$$352$$ −0.184881 + 0.320224i −0.00985420 + 0.0170680i
$$353$$ −1.88815 3.27037i −0.100496 0.174064i 0.811393 0.584501i $$-0.198710\pi$$
−0.911889 + 0.410437i $$0.865376\pi$$
$$354$$ −0.225911 0.391290i −0.0120070 0.0207968i
$$355$$ 0.0760015 0.131638i 0.00403374 0.00698664i
$$356$$ 11.6221 0.615970
$$357$$ −2.36753 + 0.429123i −0.125303 + 0.0227116i
$$358$$ −10.4032 −0.549827
$$359$$ 9.28414 16.0806i 0.489998 0.848702i −0.509935 0.860213i $$-0.670331\pi$$
0.999934 + 0.0115107i $$0.00366406\pi$$
$$360$$ −0.457311 0.792086i −0.0241024 0.0417466i
$$361$$ 9.43772 + 16.3466i 0.496722 + 0.860348i
$$362$$ −3.69973 + 6.40811i −0.194453 + 0.336803i
$$363$$ 2.14144 0.112396
$$364$$ −5.62281 + 15.6811i −0.294715 + 0.821911i
$$365$$ −1.85310 −0.0969957
$$366$$ 0.669039 1.15881i 0.0349712 0.0605720i
$$367$$ −7.66138 13.2699i −0.399921 0.692683i 0.593795 0.804616i $$-0.297629\pi$$
−0.993716 + 0.111933i $$0.964296\pi$$
$$368$$ 0.500000 + 0.866025i 0.0260643 + 0.0451447i
$$369$$ −2.81624 + 4.87788i −0.146608 + 0.253932i
$$370$$ 1.97041 0.102437
$$371$$ −5.27293 + 14.7053i −0.273757 + 0.763461i
$$372$$ −0.578520 −0.0299949
$$373$$ −2.03891 + 3.53149i −0.105571 + 0.182854i −0.913971 0.405779i $$-0.867000\pi$$
0.808401 + 0.588633i $$0.200334\pi$$
$$374$$ −0.852932 1.47732i −0.0441041 0.0763905i
$$375$$ 0.301532 + 0.522270i 0.0155711 + 0.0269699i
$$376$$ −5.86735 + 10.1625i −0.302585 + 0.524093i
$$377$$ 10.9682 0.564892
$$378$$ 3.05917 0.554485i 0.157347 0.0285196i
$$379$$ 27.4392 1.40946 0.704729 0.709477i $$-0.251069\pi$$
0.704729 + 0.709477i $$0.251069\pi$$
$$380$$ −0.0545060 + 0.0944071i −0.00279610 + 0.00484298i
$$381$$ 1.57913 + 2.73514i 0.0809015 + 0.140125i
$$382$$ 1.99976 + 3.46368i 0.102316 + 0.177217i
$$383$$ 0.302361 0.523705i 0.0154499 0.0267601i −0.858197 0.513320i $$-0.828415\pi$$
0.873647 + 0.486560i $$0.161749\pi$$
$$384$$ −0.197126 −0.0100596
$$385$$ 0.195335 + 0.230547i 0.00995521 + 0.0117498i
$$386$$ 0.453259 0.0230703
$$387$$ 9.70147 16.8034i 0.493153 0.854167i
$$388$$ −2.48274 4.30023i −0.126042 0.218311i
$$389$$ 4.05062 + 7.01588i 0.205375 + 0.355719i 0.950252 0.311482i $$-0.100825\pi$$
−0.744877 + 0.667201i $$0.767492\pi$$
$$390$$ −0.191685 + 0.332009i −0.00970636 + 0.0168119i
$$391$$ −4.61341 −0.233310
$$392$$ −1.14967 + 6.90495i −0.0580670 + 0.348752i
$$393$$ −3.61095 −0.182148
$$394$$ 3.03792 5.26183i 0.153048 0.265087i
$$395$$ 0.102878 + 0.178191i 0.00517638 + 0.00896575i
$$396$$ 0.547459 + 0.948227i 0.0275109 + 0.0476502i
$$397$$ 6.42365 11.1261i 0.322394 0.558402i −0.658588 0.752504i $$-0.728846\pi$$
0.980981 + 0.194102i $$0.0621791\pi$$
$$398$$ −25.9265 −1.29958
$$399$$ −0.118990 0.140440i −0.00595696 0.00703079i
$$400$$ −4.90460 −0.245230
$$401$$ −4.03550 + 6.98970i −0.201523 + 0.349049i −0.949019 0.315217i $$-0.897923\pi$$
0.747496 + 0.664266i $$0.231256\pi$$
$$402$$ 1.25611 + 2.17565i 0.0626492 + 0.108512i
$$403$$ −9.23922 16.0028i −0.460239 0.797157i
$$404$$ 6.67745 11.5657i 0.332216 0.575415i
$$405$$ −2.67232 −0.132789
$$406$$ 4.53497 0.821978i 0.225067 0.0407941i
$$407$$ −2.35883 −0.116923
$$408$$ 0.454712 0.787584i 0.0225116 0.0389912i
$$409$$ 8.67087 + 15.0184i 0.428747 + 0.742612i 0.996762 0.0804065i $$-0.0256218\pi$$
−0.568015 + 0.823018i $$0.692289\pi$$
$$410$$ −0.293761 0.508809i −0.0145078 0.0251283i
$$411$$ −0.910095 + 1.57633i −0.0448917 + 0.0777546i
$$412$$ 0.878711 0.0432910
$$413$$ 2.04685 5.70830i 0.100719 0.280887i
$$414$$ 2.96114 0.145532
$$415$$ −0.995790 + 1.72476i −0.0488814 + 0.0846651i
$$416$$ −3.14819 5.45283i −0.154353 0.267347i
$$417$$ −1.70455 2.95237i −0.0834723 0.144578i
$$418$$ 0.0652505 0.113017i 0.00319151 0.00552785i
$$419$$ 15.7626 0.770054 0.385027 0.922905i $$-0.374192\pi$$
0.385027 + 0.922905i $$0.374192\pi$$
$$420$$ −0.0543738 + 0.151639i −0.00265317 + 0.00739923i
$$421$$ −16.4898 −0.803661 −0.401831 0.915714i $$-0.631626\pi$$
−0.401831 + 0.915714i $$0.631626\pi$$
$$422$$ 7.46827 12.9354i 0.363550 0.629686i
$$423$$ 17.3740 + 30.0927i 0.844755 + 1.46316i
$$424$$ −2.95230 5.11353i −0.143376 0.248335i
$$425$$ 11.3135 19.5955i 0.548783 0.950520i
$$426$$ −0.0970094 −0.00470012
$$427$$ 17.6712 3.20297i 0.855171 0.155002i
$$428$$ 14.3011 0.691270
$$429$$ 0.229471 0.397456i 0.0110790 0.0191894i
$$430$$ 1.01195 + 1.75276i 0.0488008 + 0.0845254i
$$431$$ −5.47285 9.47926i −0.263618 0.456600i 0.703583 0.710614i $$-0.251583\pi$$
−0.967201 + 0.254014i $$0.918249\pi$$
$$432$$ −0.587549 + 1.01766i −0.0282685 + 0.0489624i
$$433$$ −28.0699 −1.34896 −0.674478 0.738295i $$-0.735631\pi$$
−0.674478 + 0.738295i $$0.735631\pi$$
$$434$$ −5.01937 5.92419i −0.240938 0.284370i
$$435$$ 0.106065 0.00508543
$$436$$ 7.56040 13.0950i 0.362078 0.627137i
$$437$$ −0.176466 0.305648i −0.00844152 0.0146211i
$$438$$ 0.591331 + 1.02422i 0.0282549 + 0.0489389i
$$439$$ 4.54122 7.86562i 0.216740 0.375405i −0.737069 0.675817i $$-0.763791\pi$$
0.953810 + 0.300412i $$0.0971242\pi$$
$$440$$ −0.114210 −0.00544476
$$441$$ 16.0050 + 13.1715i 0.762145 + 0.627214i
$$442$$ 29.0478 1.38166
$$443$$ 15.3899 26.6560i 0.731194 1.26647i −0.225179 0.974317i $$-0.572297\pi$$
0.956373 0.292148i $$-0.0943699\pi$$
$$444$$ −0.628764 1.08905i −0.0298398 0.0516841i
$$445$$ 1.79489 + 3.10883i 0.0850858 + 0.147373i
$$446$$ 2.68204 4.64543i 0.126998 0.219967i
$$447$$ 2.90857 0.137571
$$448$$ −1.71031 2.01862i −0.0808046 0.0953709i
$$449$$ −30.9015 −1.45833 −0.729166 0.684337i $$-0.760092\pi$$
−0.729166 + 0.684337i $$0.760092\pi$$
$$450$$ −7.26160 + 12.5775i −0.342315 + 0.592907i
$$451$$ 0.351669 + 0.609108i 0.0165594 + 0.0286818i
$$452$$ −3.78537 6.55646i −0.178049 0.308390i
$$453$$ −2.09374 + 3.62646i −0.0983723 + 0.170386i
$$454$$ 28.1788 1.32250
$$455$$ −5.06295 + 0.917677i −0.237355 + 0.0430213i
$$456$$ 0.0695722 0.00325802
$$457$$ −20.3512 + 35.2492i −0.951987 + 1.64889i −0.210870 + 0.977514i $$0.567630\pi$$
−0.741117 + 0.671376i $$0.765704\pi$$
$$458$$ −7.91864 13.7155i −0.370014 0.640882i
$$459$$ −2.71060 4.69490i −0.126520 0.219139i
$$460$$ −0.154437 + 0.267494i −0.00720068 + 0.0124720i
$$461$$ 22.0792 1.02833 0.514166 0.857691i $$-0.328102\pi$$
0.514166 + 0.857691i $$0.328102\pi$$
$$462$$ 0.0650922 0.181531i 0.00302837 0.00844559i
$$463$$ 16.3672 0.760648 0.380324 0.924853i $$-0.375813\pi$$
0.380324 + 0.924853i $$0.375813\pi$$
$$464$$ −0.870993 + 1.50860i −0.0404348 + 0.0700352i
$$465$$ −0.0893452 0.154750i −0.00414329 0.00717638i
$$466$$ −12.7090 22.0127i −0.588734 1.01972i
$$467$$ 15.0234 26.0213i 0.695201 1.20412i −0.274912 0.961469i $$-0.588649\pi$$
0.970113 0.242654i $$-0.0780181\pi$$
$$468$$ −18.6445 −0.861842
$$469$$ −11.3809 + 31.7393i −0.525520 + 1.46559i
$$470$$ −3.62455 −0.167188
$$471$$ −1.34481 + 2.32927i −0.0619655 + 0.107327i
$$472$$ 1.14602 + 1.98497i 0.0527500 + 0.0913656i
$$473$$ −1.21144 2.09827i −0.0557020 0.0964786i
$$474$$ 0.0656578 0.113723i 0.00301576 0.00522345i
$$475$$ 1.73099 0.0794233
$$476$$ 12.0102 2.17689i 0.550488 0.0997778i
$$477$$ −17.4843 −0.800553
$$478$$ −4.29706 + 7.44272i −0.196543 + 0.340422i
$$479$$ 4.04609 + 7.00803i 0.184871 + 0.320205i 0.943533 0.331279i $$-0.107480\pi$$
−0.758662 + 0.651484i $$0.774147\pi$$
$$480$$ −0.0304437 0.0527300i −0.00138956 0.00240678i
$$481$$ 20.0833 34.7853i 0.915719 1.58607i
$$482$$ 9.38884 0.427650
$$483$$ −0.337147 0.397923i −0.0153407 0.0181061i
$$484$$ −10.8633 −0.493785
$$485$$ 0.766857 1.32823i 0.0348212 0.0603120i
$$486$$ 2.61539 + 4.52999i 0.118637 + 0.205485i
$$487$$ −3.29781 5.71198i −0.149438 0.258834i 0.781582 0.623803i $$-0.214413\pi$$
−0.931020 + 0.364968i $$0.881080\pi$$
$$488$$ −3.39396 + 5.87851i −0.153637 + 0.266108i
$$489$$ 3.77195 0.170573
$$490$$ −2.02458 + 0.758854i −0.0914612 + 0.0342815i
$$491$$ −12.7040 −0.573323 −0.286661 0.958032i $$-0.592545\pi$$
−0.286661 + 0.958032i $$0.592545\pi$$
$$492$$ −0.187480 + 0.324726i −0.00845227 + 0.0146398i
$$493$$ −4.01825 6.95981i −0.180973 0.313454i
$$494$$ 1.11110 + 1.92448i 0.0499907 + 0.0865864i
$$495$$ −0.169096 + 0.292884i −0.00760032 + 0.0131641i
$$496$$ 2.93477 0.131775
$$497$$ −0.841675 0.993400i −0.0377543 0.0445601i
$$498$$ 1.27104 0.0569567
$$499$$ 3.34489 5.79352i 0.149738 0.259354i −0.781393 0.624040i $$-0.785490\pi$$
0.931131 + 0.364686i $$0.118824\pi$$
$$500$$ −1.52964 2.64942i −0.0684076 0.118485i
$$501$$ 0.523687 + 0.907053i 0.0233966 + 0.0405242i
$$502$$ 1.56882 2.71727i 0.0700197 0.121278i
$$503$$ 42.8269 1.90956 0.954779 0.297316i $$-0.0960913\pi$$
0.954779 + 0.297316i $$0.0960913\pi$$
$$504$$ −7.70884 + 1.39725i −0.343379 + 0.0622385i
$$505$$ 4.12500 0.183560
$$506$$ 0.184881 0.320224i 0.00821897 0.0142357i
$$507$$ 2.62616 + 4.54865i 0.116632 + 0.202013i
$$508$$ −8.01077 13.8751i −0.355421 0.615606i
$$509$$ 13.9892 24.2300i 0.620059 1.07397i −0.369415 0.929264i $$-0.620442\pi$$
0.989474 0.144709i $$-0.0462247\pi$$
$$510$$ 0.280898 0.0124384
$$511$$ −5.35770 + 14.9417i −0.237011 + 0.660982i
$$512$$ 1.00000 0.0441942
$$513$$ 0.207365 0.359167i 0.00915538 0.0158576i
$$514$$ 13.4913 + 23.3677i 0.595078 + 1.03070i
$$515$$ 0.135706 + 0.235049i 0.00597991 + 0.0103575i
$$516$$ 0.645837 1.11862i 0.0284314 0.0492446i
$$517$$ 4.33905 0.190831
$$518$$ 5.69686 15.8876i 0.250306 0.698059i
$$519$$ 1.03006 0.0452146
$$520$$ 0.972398 1.68424i 0.0426425 0.0738589i
$$521$$ 2.01361 + 3.48768i 0.0882180 + 0.152798i 0.906758 0.421652i $$-0.138549\pi$$
−0.818540 + 0.574450i $$0.805216\pi$$
$$522$$ 2.57913 + 4.46719i 0.112886 + 0.195524i
$$523$$ −17.3396 + 30.0331i −0.758209 + 1.31326i 0.185554 + 0.982634i $$0.440592\pi$$
−0.943763 + 0.330623i $$0.892741\pi$$
$$524$$ 18.3179 0.800223
$$525$$ 2.51697 0.456209i 0.109849 0.0199106i
$$526$$ −10.7322 −0.467948
$$527$$ −6.76965 + 11.7254i −0.294890 + 0.510765i
$$528$$ 0.0364449 + 0.0631245i 0.00158606 + 0.00274714i
$$529$$ −0.500000 0.866025i −0.0217391 0.0376533i
$$530$$ 0.911891 1.57944i 0.0396100 0.0686066i
$$531$$ 6.78707 0.294534
$$532$$ 0.603624 + 0.712436i 0.0261704 + 0.0308880i
$$533$$ −11.9766 −0.518763
$$534$$ 1.14551 1.98408i 0.0495711 0.0858596i
$$535$$ 2.20863 + 3.82545i 0.0954872 + 0.165389i
$$536$$ −6.37212 11.0368i −0.275234 0.476719i
$$537$$ −1.02537 + 1.77600i −0.0442481 + 0.0766400i
$$538$$ −15.8761 −0.684469
$$539$$ 2.42368 0.908444i 0.104395 0.0391294i
$$540$$ −0.362958 −0.0156192
$$541$$ 13.3296 23.0875i 0.573084 0.992610i −0.423163 0.906053i $$-0.639080\pi$$
0.996247 0.0865564i $$-0.0275863\pi$$
$$542$$ −7.19021 12.4538i −0.308846 0.534937i
$$543$$ 0.729313 + 1.26321i 0.0312978 + 0.0542094i
$$544$$ −2.30670 + 3.99533i −0.0988991 + 0.171298i
$$545$$ 4.67044 0.200060
$$546$$ 2.12281 + 2.50548i 0.0908479 + 0.107225i
$$547$$ −5.21015 −0.222770 −0.111385 0.993777i $$-0.535529\pi$$
−0.111385 + 0.993777i $$0.535529\pi$$
$$548$$ 4.61681 7.99655i 0.197220 0.341596i
$$549$$ 10.0500 + 17.4071i 0.428924 + 0.742917i
$$550$$ 0.906767 + 1.57057i 0.0386647 + 0.0669692i
$$551$$ 0.307401 0.532435i 0.0130957 0.0226825i
$$552$$ 0.197126 0.00839025
$$553$$ 1.73421 0.314331i 0.0737461 0.0133667i
$$554$$ 11.6360 0.494365
$$555$$ 0.194210 0.336381i 0.00824373 0.0142786i
$$556$$ 8.64701 + 14.9771i 0.366715 + 0.635169i
$$557$$ −23.3278 40.4050i −0.988431 1.71201i −0.625564 0.780172i $$-0.715131\pi$$
−0.362867 0.931841i $$-0.618202\pi$$
$$558$$ 4.34513 7.52599i 0.183944 0.318601i
$$559$$ 41.2572 1.74499
$$560$$ 0.275832 0.769248i 0.0116560 0.0325067i
$$561$$ −0.336271 −0.0141974
$$562$$ 12.6031 21.8292i 0.531629 0.920809i
$$563$$ −20.9007 36.2010i −0.880859 1.52569i −0.850388 0.526156i $$-0.823633\pi$$
−0.0304709 0.999536i $$-0.509701\pi$$
$$564$$ 1.15661 + 2.00331i 0.0487020 + 0.0843544i
$$565$$ 1.16921 2.02513i 0.0491889 0.0851977i
$$566$$ −3.57615 −0.150317
$$567$$ −7.72623 + 21.5471i −0.324471 + 0.904894i
$$568$$ 0.492118 0.0206488
$$569$$ 5.68959 9.85467i 0.238520 0.413129i −0.721770 0.692133i $$-0.756671\pi$$
0.960290 + 0.279004i $$0.0900043\pi$$
$$570$$ 0.0107446 + 0.0186101i 0.000450040 + 0.000779492i
$$571$$ −10.6530 18.4516i −0.445815 0.772174i 0.552294 0.833649i $$-0.313753\pi$$
−0.998109 + 0.0614758i $$0.980419\pi$$
$$572$$ −1.16408 + 2.01625i −0.0486728 + 0.0843037i
$$573$$ 0.788410 0.0329363
$$574$$ −4.95189 + 0.897546i −0.206688 + 0.0374629i
$$575$$ 4.90460 0.204536
$$576$$ 1.48057 2.56442i 0.0616904 0.106851i
$$577$$ 8.62124 + 14.9324i 0.358907 + 0.621645i 0.987779 0.155864i $$-0.0498162\pi$$
−0.628872 + 0.777509i $$0.716483\pi$$
$$578$$ −2.14176 3.70964i −0.0890857 0.154301i
$$579$$ 0.0446747 0.0773788i 0.00185662 0.00321575i
$$580$$ −0.538056 −0.0223416
$$581$$ 11.0278 + 13.0158i 0.457512 + 0.539985i
$$582$$ −0.978827 −0.0405737
$$583$$ −1.09165 + 1.89079i −0.0452115 + 0.0783086i
$$584$$ −2.99976 5.19573i −0.124131 0.215001i
$$585$$ −2.87941 4.98728i −0.119049 0.206199i
$$586$$ 2.01621 3.49218i 0.0832890 0.144261i
$$587$$ −3.94485 −0.162821 −0.0814107 0.996681i $$-0.525943\pi$$
−0.0814107 + 0.996681i $$0.525943\pi$$
$$588$$ 1.06547 + 0.876840i 0.0439393 + 0.0361603i
$$589$$ −1.03577 −0.0426784
$$590$$ −0.353978 + 0.613107i −0.0145730 + 0.0252412i
$$591$$ −0.598854 1.03724i −0.0246335 0.0426666i
$$592$$ 3.18965 + 5.52464i 0.131094 + 0.227061i
$$593$$ −4.52179 + 7.83196i −0.185687 + 0.321620i −0.943808 0.330494i $$-0.892785\pi$$
0.758120 + 0.652115i $$0.226118\pi$$
$$594$$ 0.434507 0.0178280
$$595$$ 2.43714 + 2.87647i 0.0999128 + 0.117924i
$$596$$ −14.7548 −0.604382
$$597$$ −2.55540 + 4.42608i −0.104585 + 0.181147i
$$598$$ 3.14819 + 5.45283i 0.128739 + 0.222983i
$$599$$ 15.0419 + 26.0534i 0.614597 + 1.06451i 0.990455 + 0.137836i $$0.0440147\pi$$
−0.375858 + 0.926677i $$0.622652\pi$$
$$600$$ −0.483412 + 0.837295i −0.0197352 + 0.0341824i
$$601$$ −25.0873 −1.02333 −0.511665 0.859185i $$-0.670971\pi$$
−0.511665 + 0.859185i $$0.670971\pi$$
$$602$$ 17.0584 3.09189i 0.695248 0.126016i
$$603$$ −37.7375 −1.53679
$$604$$ 10.6213 18.3966i 0.432174 0.748548i
$$605$$ −1.67770 2.90586i −0.0682081 0.118140i
$$606$$ −1.31630 2.27990i −0.0534711 0.0926147i
$$607$$ −19.0622 + 33.0168i −0.773713 + 1.34011i 0.161802 + 0.986823i $$0.448269\pi$$
−0.935515 + 0.353287i $$0.885064\pi$$
$$608$$ −0.352932 −0.0143133
$$609$$ 0.306656 0.855211i 0.0124263 0.0346549i
$$610$$ −2.09662 −0.0848897
$$611$$ −36.9431 + 63.9873i −1.49456 + 2.58865i
$$612$$ 6.83048 + 11.8307i 0.276106 + 0.478229i
$$613$$ 15.8375 + 27.4314i 0.639670 + 1.10794i 0.985505 + 0.169646i $$0.0542625\pi$$
−0.345835 + 0.938296i $$0.612404\pi$$
$$614$$ 0.679683 1.17725i 0.0274298 0.0475097i
$$615$$ −0.115816 −0.00467015
$$616$$ −0.330206 + 0.920887i −0.0133044 + 0.0371036i
$$617$$ −39.9083 −1.60665 −0.803324 0.595543i $$-0.796937\pi$$
−0.803324 + 0.595543i $$0.796937\pi$$
$$618$$ 0.0866085 0.150010i 0.00348390 0.00603430i
$$619$$ 5.69093 + 9.85698i 0.228738 + 0.396185i 0.957434 0.288651i $$-0.0932068\pi$$
−0.728696 + 0.684837i $$0.759873\pi$$
$$620$$ 0.453239 + 0.785032i 0.0182025 + 0.0315276i
$$621$$ 0.587549 1.01766i 0.0235775 0.0408375i
$$622$$ 14.7634 0.591960
$$623$$ 30.2562 5.48403i 1.21219 0.219713i
$$624$$ −1.24118 −0.0496871
$$625$$ −11.7890 + 20.4192i −0.471561 + 0.816767i
$$626$$ 11.6470 + 20.1732i 0.465508 + 0.806284i
$$627$$ −0.0128626 0.0222787i −0.000513682 0.000889724i
$$628$$ 6.82206 11.8162i 0.272230 0.471516i
$$629$$ −29.4303 −1.17346
$$630$$ −1.56429 1.84628i −0.0623228 0.0735574i
$$631$$ 28.3119 1.12708 0.563539 0.826089i $$-0.309439\pi$$
0.563539 + 0.826089i $$0.309439\pi$$
$$632$$ −0.333075 + 0.576902i −0.0132490 + 0.0229479i
$$633$$ −1.47219 2.54991i −0.0585144 0.101350i
$$634$$ −9.66087 16.7331i −0.383682 0.664557i
$$635$$ 2.47433 4.28566i 0.0981907 0.170071i
$$636$$ −1.16395 −0.0461537
$$637$$ −7.23875 + 43.4762i −0.286810 + 1.72259i
$$638$$ 0.644121 0.0255010
$$639$$ 0.728615 1.26200i 0.0288236 0.0499239i
$$640$$ 0.154437 + 0.267494i 0.00610468 + 0.0105736i
$$641$$ 1.16446 + 2.01691i 0.0459935 + 0.0796632i 0.888106 0.459639i $$-0.152021\pi$$
−0.842112 + 0.539302i $$0.818688\pi$$
$$642$$ 1.40956 2.44143i 0.0556310 0.0963556i
$$643$$ −5.03301 −0.198482 −0.0992412 0.995063i $$-0.531642\pi$$
−0.0992412 + 0.995063i $$0.531642\pi$$
$$644$$ 1.71031 + 2.01862i 0.0673957 + 0.0795448i
$$645$$ 0.398966 0.0157093
$$646$$ 0.814110 1.41008i 0.0320307 0.0554788i
$$647$$ 17.9635 + 31.1137i 0.706218 + 1.22321i 0.966250 + 0.257605i $$0.0829335\pi$$
−0.260032 + 0.965600i $$0.583733\pi$$
$$648$$ −4.32589 7.49266i −0.169937 0.294340i
$$649$$ 0.423756 0.733967i 0.0166339 0.0288107i
$$650$$ −30.8812 −1.21126
$$651$$ −1.50608 + 0.272982i −0.0590280 + 0.0106990i
$$652$$ −19.1347 −0.749372
$$653$$ 11.9554 20.7073i 0.467849 0.810338i −0.531476 0.847073i $$-0.678362\pi$$
0.999325 + 0.0367350i $$0.0116957\pi$$
$$654$$ −1.49035 2.58137i −0.0582775 0.100940i
$$655$$ 2.82897 + 4.89993i 0.110537 + 0.191456i
$$656$$ 0.951067 1.64730i 0.0371329 0.0643161i
$$657$$ −17.7654 −0.693095
$$658$$ −10.4793 + 29.2251i −0.408527 + 1.13931i
$$659$$ 25.6645 0.999749 0.499874 0.866098i $$-0.333380\pi$$
0.499874 + 0.866098i $$0.333380\pi$$
$$660$$ −0.0112569 + 0.0194976i −0.000438175 + 0.000758942i
$$661$$ −0.221521 0.383685i −0.00861616 0.0149236i 0.861685 0.507443i $$-0.169409\pi$$
−0.870301 + 0.492520i $$0.836076\pi$$
$$662$$ 2.00407 + 3.47116i 0.0778905 + 0.134910i
$$663$$ 2.86304 4.95894i 0.111191 0.192589i
$$664$$ −6.44785 −0.250225
$$665$$ −0.0973500 + 0.271492i −0.00377507 + 0.0105280i
$$666$$ 18.8900 0.731973
$$667$$ 0.870993 1.50860i 0.0337250 0.0584134i
$$668$$ −2.65661 4.60138i −0.102787 0.178033i
$$669$$ −0.528700 0.915736i −0.0204407 0.0354044i
$$670$$ 1.96819 3.40900i 0.0760377 0.131701i
$$671$$ 2.50992 0.0968943
$$672$$ −0.513186 + 0.0930165i −0.0197966 + 0.00358819i
$$673$$ 27.3836 1.05556 0.527781 0.849381i $$-0.323024\pi$$
0.527781 + 0.849381i $$0.323024\pi$$
$$674$$ 9.36209 16.2156i 0.360614 0.624602i
$$675$$ 2.88169 + 4.99123i 0.110916 + 0.192113i
$$676$$ −13.3222 23.0748i −0.512394 0.887493i
$$677$$ −19.3292 + 33.4792i −0.742882 + 1.28671i 0.208296 + 0.978066i $$0.433208\pi$$
−0.951178 + 0.308644i $$0.900125\pi$$
$$678$$ −1.49239 −0.0573150
$$679$$ −8.49253 10.0234i −0.325913 0.384664i
$$680$$ −1.42497 −0.0546450
$$681$$ 2.77739 4.81058i 0.106430 0.184342i
$$682$$ −0.542584 0.939783i −0.0207766 0.0359861i
$$683$$ −19.0423 32.9822i −0.728633 1.26203i −0.957461 0.288562i $$-0.906823\pi$$
0.228828 0.973467i $$-0.426511\pi$$
$$684$$ −0.522541 + 0.905068i −0.0199799 + 0.0346061i
$$685$$ 2.85203 0.108971
$$686$$ 0.265219 + 18.5184i 0.0101261 + 0.707034i
$$687$$ −3.12194 −0.119110
$$688$$ −3.27626 + 5.67465i −0.124906 + 0.216344i
$$689$$ −18.5888 32.1968i −0.708177 1.22660i
$$690$$ 0.0304437 + 0.0527300i 0.00115897 + 0.00200740i
$$691$$ 10.0832 17.4646i 0.383582 0.664384i −0.607989 0.793945i $$-0.708024\pi$$
0.991571 + 0.129562i $$0.0413570\pi$$
$$692$$ −5.22538 −0.198639
$$693$$ 1.87265 + 2.21023i 0.0711362 + 0.0839596i
$$694$$ 5.24938 0.199264
$$695$$ −2.67084 + 4.62604i −0.101311 + 0.175476i
$$696$$ 0.171696 + 0.297386i 0.00650811 + 0.0112724i
$$697$$ 4.38766 + 7.59965i 0.166195 + 0.287857i
$$698$$ 14.6895 25.4429i 0.556004 0.963027i
$$699$$ −5.01057 −0.189517
$$700$$ −12.7683 + 2.31430i −0.482596 + 0.0874722i
$$701$$ −21.0182 −0.793847 −0.396924 0.917852i $$-0.629922\pi$$
−0.396924 + 0.917852i $$0.629922\pi$$
$$702$$ −3.69944 + 6.40761i −0.139626 + 0.241840i
$$703$$ −1.12573 1.94982i −0.0424577 0.0735390i
$$704$$ −0.184881 0.320224i −0.00696797 0.0120689i
$$705$$ −0.357247 + 0.618771i −0.0134547 + 0.0233043i
$$706$$ 3.77629 0.142123
$$707$$ 11.9262 33.2602i 0.448532 1.25088i
$$708$$ 0.451822 0.0169805
$$709$$ −4.15409 + 7.19509i −0.156010 + 0.270217i −0.933426 0.358769i $$-0.883197\pi$$
0.777416 + 0.628986i $$0.216530\pi$$
$$710$$ 0.0760015 + 0.131638i 0.00285228 + 0.00494030i
$$711$$ 0.986281 + 1.70829i 0.0369884 + 0.0640659i
$$712$$ −5.81105 + 10.0650i −0.217778 + 0.377203i
$$713$$ −2.93477 −0.109908
$$714$$ 0.812135 2.26491i 0.0303934 0.0847620i
$$715$$ −0.719112 −0.0268933
$$716$$ 5.20161 9.00945i 0.194393 0.336699i
$$717$$ 0.847063 + 1.46716i 0.0316342 + 0.0547920i
$$718$$ 9.28414 + 16.0806i 0.346481 + 0.600123i
$$719$$ −16.2182 + 28.0908i −0.604838 + 1.04761i 0.387239 + 0.921980i $$0.373429\pi$$
−0.992077 + 0.125631i $$0.959904\pi$$
$$720$$ 0.914622 0.0340860
$$721$$ 2.28758 0.414631i 0.0851938 0.0154417i
$$722$$ −18.8754 −0.702471
$$723$$ 0.925394 1.60283i 0.0344158 0.0596099i
$$724$$ −3.69973 6.40811i −0.137499 0.238156i
$$725$$ 4.27187 + 7.39910i 0.158653 + 0.274796i
$$726$$ −1.07072 + 1.85454i −0.0397381 + 0.0688284i
$$727$$ −17.1339 −0.635460 −0.317730 0.948181i $$-0.602921\pi$$
−0.317730 + 0.948181i $$0.602921\pi$$
$$728$$ −10.7688 12.7100i −0.399118 0.471065i
$$729$$ −24.9242 −0.923119
$$730$$ 0.926550 1.60483i 0.0342932 0.0593975i
$$731$$ −15.1147 26.1795i −0.559038 0.968283i
$$732$$ 0.669039 + 1.15881i 0.0247284 + 0.0428308i
$$733$$ 3.43584 5.95105i 0.126906 0.219807i −0.795571 0.605861i $$-0.792829\pi$$
0.922476 + 0.386054i $$0.126162\pi$$
$$734$$ 15.3228 0.565573
$$735$$ −0.0700002 + 0.420424i −0.00258200 + 0.0155076i
$$736$$ −1.00000 −0.0368605
$$737$$ −2.35617 + 4.08101i −0.0867906 + 0.150326i
$$738$$ −2.81624 4.87788i −0.103667 0.179557i
$$739$$ 5.63174 + 9.75446i 0.207167 + 0.358823i 0.950821 0.309741i $$-0.100242\pi$$
−0.743654 + 0.668565i $$0.766909\pi$$
$$740$$ −0.985203 + 1.70642i −0.0362168 + 0.0627293i
$$741$$ 0.438054 0.0160923
$$742$$ −10.0987 11.9191i −0.370735 0.437566i
$$743$$ −23.7565 −0.871540 −0.435770 0.900058i $$-0.643524\pi$$
−0.435770 + 0.900058i $$0.643524\pi$$
$$744$$ 0.289260 0.501013i 0.0106048 0.0183680i
$$745$$ −2.27870 3.94683i −0.0834851 0.144601i
$$746$$ −2.03891 3.53149i −0.0746497 0.129297i
$$747$$ −9.54650 + 16.5350i −0.349288 + 0.604985i
$$748$$ 1.70586 0.0623726
$$749$$ 37.2305 6.74815i 1.36037 0.246572i
$$750$$ −0.603065 −0.0220208
$$751$$ 16.9977 29.4409i 0.620256 1.07431i −0.369182 0.929357i $$-0.620362\pi$$
0.989438 0.144957i $$-0.0463045\pi$$
$$752$$ −5.86735 10.1625i −0.213960 0.370590i
$$753$$ −0.309255 0.535646i −0.0112699 0.0195200i
$$754$$ −5.48411 + 9.49876i −0.199720 + 0.345924i
$$755$$ 6.56130 0.238790
$$756$$ −1.04939 + 2.92656i −0.0381659 + 0.106438i
$$757$$ −40.7166 −1.47987 −0.739935 0.672679i $$-0.765144\pi$$
−0.739935 + 0.672679i $$0.765144\pi$$
$$758$$ −13.7196 + 23.7631i −0.498319 + 0.863113i
$$759$$ −0.0364449 0.0631245i −0.00132287 0.00229127i
$$760$$ −0.0545060 0.0944071i −0.00197714 0.00342450i
$$761$$ −19.0121 + 32.9300i −0.689189 + 1.19371i 0.282911 + 0.959146i $$0.408700\pi$$
−0.972101 + 0.234565i $$0.924634\pi$$
$$762$$ −3.15827 −0.114412
$$763$$ 13.5032 37.6581i 0.488849 1.36332i
$$764$$ −3.99951 −0.144697
$$765$$ −2.10976 + 3.65422i −0.0762786 + 0.132118i
$$766$$ 0.302361 + 0.523705i 0.0109248 + 0.0189222i
$$767$$ 7.21580 + 12.4981i 0.260547 + 0.451281i
$$768$$ 0.0985631 0.170716i 0.00355659 0.00616020i
$$769$$ −18.1567 −0.654746 −0.327373 0.944895i $$-0.606163\pi$$
−0.327373 + 0.944895i $$0.606163\pi$$
$$770$$ −0.297328 + 0.0538916i −0.0107149 + 0.00194212i
$$771$$ 5.31900 0.191559
$$772$$ −0.226630 + 0.392534i −0.00815658 + 0.0141276i
$$773$$ −12.8258 22.2150i −0.461313 0.799018i 0.537714 0.843128i $$-0.319288\pi$$
−0.999027 + 0.0441098i $$0.985955\pi$$
$$774$$ 9.70147 + 16.8034i 0.348712 + 0.603987i
$$775$$ 7.19693 12.4655i 0.258521 0.447772i