Properties

Label 322.2.e.a.93.3
Level $322$
Weight $2$
Character 322.93
Analytic conductor $2.571$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 322.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.57118294509\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.310217769.2
Defining polynomial: \(x^{8} + 4 x^{6} - 2 x^{5} + 15 x^{4} - 4 x^{3} + 5 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 93.3
Root \(0.882007 + 1.52768i\) of defining polynomial
Character \(\chi\) \(=\) 322.93
Dual form 322.2.e.a.277.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.0985631 + 0.170716i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.154437 - 0.267494i) q^{5} -0.197126 q^{6} +(-1.71031 - 2.01862i) q^{7} +1.00000 q^{8} +(1.48057 - 2.56442i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.0985631 + 0.170716i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.154437 - 0.267494i) q^{5} -0.197126 q^{6} +(-1.71031 - 2.01862i) q^{7} +1.00000 q^{8} +(1.48057 - 2.56442i) q^{9} +(0.154437 + 0.267494i) q^{10} +(-0.184881 - 0.320224i) q^{11} +(0.0985631 - 0.170716i) q^{12} +6.29639 q^{13} +(2.60333 - 0.471863i) q^{14} +0.0608874 q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.30670 - 3.99533i) q^{17} +(1.48057 + 2.56442i) q^{18} +(0.176466 - 0.305648i) q^{19} -0.308875 q^{20} +(0.176038 - 0.490940i) q^{21} +0.369762 q^{22} +(0.500000 - 0.866025i) q^{23} +(0.0985631 + 0.170716i) q^{24} +(2.45230 + 4.24750i) q^{25} +(-3.14819 + 5.45283i) q^{26} +1.17510 q^{27} +(-0.893022 + 2.49048i) q^{28} +1.74199 q^{29} +(-0.0304437 + 0.0527300i) q^{30} +(-1.46739 - 2.54159i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.0364449 - 0.0631245i) q^{33} +4.61341 q^{34} +(-0.804105 + 0.145747i) q^{35} -2.96114 q^{36} +(3.18965 - 5.52464i) q^{37} +(0.176466 + 0.305648i) q^{38} +(0.620592 + 1.07490i) q^{39} +(0.154437 - 0.267494i) q^{40} -1.90213 q^{41} +(0.337147 + 0.397923i) q^{42} +6.55252 q^{43} +(-0.184881 + 0.320224i) q^{44} +(-0.457311 - 0.792086i) q^{45} +(0.500000 + 0.866025i) q^{46} +(-5.86735 + 10.1625i) q^{47} -0.197126 q^{48} +(-1.14967 + 6.90495i) q^{49} -4.90460 q^{50} +(0.454712 - 0.787584i) q^{51} +(-3.14819 - 5.45283i) q^{52} +(-2.95230 - 5.11353i) q^{53} +(-0.587549 + 1.01766i) q^{54} -0.114210 q^{55} +(-1.71031 - 2.01862i) q^{56} +0.0695722 q^{57} +(-0.870993 + 1.50860i) q^{58} +(1.14602 + 1.98497i) q^{59} +(-0.0304437 - 0.0527300i) q^{60} +(-3.39396 + 5.87851i) q^{61} +2.93477 q^{62} +(-7.70884 + 1.39725i) q^{63} +1.00000 q^{64} +(0.972398 - 1.68424i) q^{65} +(0.0364449 + 0.0631245i) q^{66} +(-6.37212 - 11.0368i) q^{67} +(-2.30670 + 3.99533i) q^{68} +0.197126 q^{69} +(0.275832 - 0.769248i) q^{70} +0.492118 q^{71} +(1.48057 - 2.56442i) q^{72} +(-2.99976 - 5.19573i) q^{73} +(3.18965 + 5.52464i) q^{74} +(-0.483412 + 0.837295i) q^{75} -0.352932 q^{76} +(-0.330206 + 0.920887i) q^{77} -1.24118 q^{78} +(-0.333075 + 0.576902i) q^{79} +(0.154437 + 0.267494i) q^{80} +(-4.32589 - 7.49266i) q^{81} +(0.951067 - 1.64730i) q^{82} -6.44785 q^{83} +(-0.513186 + 0.0930165i) q^{84} -1.42497 q^{85} +(-3.27626 + 5.67465i) q^{86} +(0.171696 + 0.297386i) q^{87} +(-0.184881 - 0.320224i) q^{88} +(-5.81105 + 10.0650i) q^{89} +0.914622 q^{90} +(-10.7688 - 12.7100i) q^{91} -1.00000 q^{92} +(0.289260 - 0.501013i) q^{93} +(-5.86735 - 10.1625i) q^{94} +(-0.0545060 - 0.0944071i) q^{95} +(0.0985631 - 0.170716i) q^{96} +4.96548 q^{97} +(-5.40502 - 4.44811i) q^{98} -1.09492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 4q^{2} - 3q^{3} - 4q^{4} - 7q^{5} + 6q^{6} - q^{7} + 8q^{8} + q^{9} + O(q^{10}) \) \( 8q - 4q^{2} - 3q^{3} - 4q^{4} - 7q^{5} + 6q^{6} - q^{7} + 8q^{8} + q^{9} - 7q^{10} - 2q^{11} - 3q^{12} + 2q^{13} - q^{14} + 18q^{15} - 4q^{16} - 5q^{17} + q^{18} - 11q^{19} + 14q^{20} + q^{21} + 4q^{22} + 4q^{23} - 3q^{24} - 3q^{25} - q^{26} + 6q^{27} + 2q^{28} + 4q^{29} - 9q^{30} - 6q^{31} - 4q^{32} - 15q^{33} + 10q^{34} - 8q^{35} - 2q^{36} + 8q^{37} - 11q^{38} - 3q^{39} - 7q^{40} + 18q^{41} - 2q^{42} + 8q^{43} - 2q^{44} - 3q^{45} + 4q^{46} - 11q^{47} + 6q^{48} - 19q^{49} + 6q^{50} + 18q^{51} - q^{52} - q^{53} - 3q^{54} + 20q^{55} - q^{56} + 6q^{57} - 2q^{58} - 12q^{59} - 9q^{60} - 21q^{61} + 12q^{62} - 15q^{63} + 8q^{64} + 24q^{65} - 15q^{66} + 3q^{67} - 5q^{68} - 6q^{69} - 8q^{70} + 22q^{71} + q^{72} + 16q^{73} + 8q^{74} - 18q^{75} + 22q^{76} - 19q^{77} + 6q^{78} + 21q^{79} - 7q^{80} + 8q^{81} - 9q^{82} + 8q^{83} + q^{84} + 20q^{85} - 4q^{86} + 7q^{87} - 2q^{88} - 27q^{89} + 6q^{90} - 54q^{91} - 8q^{92} + 27q^{93} - 11q^{94} - 5q^{95} - 3q^{96} + 12q^{97} + 14q^{98} + 26q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.0985631 + 0.170716i 0.0569055 + 0.0985631i 0.893075 0.449908i \(-0.148543\pi\)
−0.836169 + 0.548471i \(0.815210\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.154437 0.267494i 0.0690665 0.119627i −0.829424 0.558619i \(-0.811331\pi\)
0.898491 + 0.438993i \(0.144665\pi\)
\(6\) −0.197126 −0.0804765
\(7\) −1.71031 2.01862i −0.646437 0.762967i
\(8\) 1.00000 0.353553
\(9\) 1.48057 2.56442i 0.493524 0.854808i
\(10\) 0.154437 + 0.267494i 0.0488374 + 0.0845889i
\(11\) −0.184881 0.320224i −0.0557438 0.0965510i 0.836807 0.547498i \(-0.184420\pi\)
−0.892551 + 0.450947i \(0.851086\pi\)
\(12\) 0.0985631 0.170716i 0.0284527 0.0492816i
\(13\) 6.29639 1.74630 0.873152 0.487448i \(-0.162072\pi\)
0.873152 + 0.487448i \(0.162072\pi\)
\(14\) 2.60333 0.471863i 0.695770 0.126111i
\(15\) 0.0608874 0.0157211
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.30670 3.99533i −0.559458 0.969009i −0.997542 0.0700753i \(-0.977676\pi\)
0.438084 0.898934i \(-0.355657\pi\)
\(18\) 1.48057 + 2.56442i 0.348974 + 0.604440i
\(19\) 0.176466 0.305648i 0.0404841 0.0701205i −0.845073 0.534650i \(-0.820443\pi\)
0.885557 + 0.464530i \(0.153777\pi\)
\(20\) −0.308875 −0.0690665
\(21\) 0.176038 0.490940i 0.0384147 0.107132i
\(22\) 0.369762 0.0788336
\(23\) 0.500000 0.866025i 0.104257 0.180579i
\(24\) 0.0985631 + 0.170716i 0.0201191 + 0.0348473i
\(25\) 2.45230 + 4.24750i 0.490460 + 0.849501i
\(26\) −3.14819 + 5.45283i −0.617412 + 1.06939i
\(27\) 1.17510 0.226148
\(28\) −0.893022 + 2.49048i −0.168765 + 0.470657i
\(29\) 1.74199 0.323479 0.161739 0.986834i \(-0.448290\pi\)
0.161739 + 0.986834i \(0.448290\pi\)
\(30\) −0.0304437 + 0.0527300i −0.00555823 + 0.00962714i
\(31\) −1.46739 2.54159i −0.263550 0.456482i 0.703633 0.710564i \(-0.251560\pi\)
−0.967183 + 0.254082i \(0.918227\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0.0364449 0.0631245i 0.00634425 0.0109886i
\(34\) 4.61341 0.791193
\(35\) −0.804105 + 0.145747i −0.135918 + 0.0246357i
\(36\) −2.96114 −0.493524
\(37\) 3.18965 5.52464i 0.524375 0.908245i −0.475222 0.879866i \(-0.657632\pi\)
0.999597 0.0283789i \(-0.00903451\pi\)
\(38\) 0.176466 + 0.305648i 0.0286266 + 0.0495827i
\(39\) 0.620592 + 1.07490i 0.0993742 + 0.172121i
\(40\) 0.154437 0.267494i 0.0244187 0.0422944i
\(41\) −1.90213 −0.297064 −0.148532 0.988908i \(-0.547455\pi\)
−0.148532 + 0.988908i \(0.547455\pi\)
\(42\) 0.337147 + 0.397923i 0.0520230 + 0.0614009i
\(43\) 6.55252 0.999250 0.499625 0.866242i \(-0.333471\pi\)
0.499625 + 0.866242i \(0.333471\pi\)
\(44\) −0.184881 + 0.320224i −0.0278719 + 0.0482755i
\(45\) −0.457311 0.792086i −0.0681719 0.118077i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) −5.86735 + 10.1625i −0.855841 + 1.48236i 0.0200221 + 0.999800i \(0.493626\pi\)
−0.875863 + 0.482560i \(0.839707\pi\)
\(48\) −0.197126 −0.0284527
\(49\) −1.14967 + 6.90495i −0.164238 + 0.986421i
\(50\) −4.90460 −0.693615
\(51\) 0.454712 0.787584i 0.0636724 0.110284i
\(52\) −3.14819 5.45283i −0.436576 0.756172i
\(53\) −2.95230 5.11353i −0.405529 0.702397i 0.588854 0.808240i \(-0.299579\pi\)
−0.994383 + 0.105842i \(0.966246\pi\)
\(54\) −0.587549 + 1.01766i −0.0799553 + 0.138487i
\(55\) −0.114210 −0.0154001
\(56\) −1.71031 2.01862i −0.228550 0.269750i
\(57\) 0.0695722 0.00921506
\(58\) −0.870993 + 1.50860i −0.114367 + 0.198089i
\(59\) 1.14602 + 1.98497i 0.149199 + 0.258421i 0.930932 0.365193i \(-0.118997\pi\)
−0.781732 + 0.623614i \(0.785664\pi\)
\(60\) −0.0304437 0.0527300i −0.00393026 0.00680742i
\(61\) −3.39396 + 5.87851i −0.434552 + 0.752667i −0.997259 0.0739899i \(-0.976427\pi\)
0.562707 + 0.826657i \(0.309760\pi\)
\(62\) 2.93477 0.372716
\(63\) −7.70884 + 1.39725i −0.971222 + 0.176037i
\(64\) 1.00000 0.125000
\(65\) 0.972398 1.68424i 0.120611 0.208905i
\(66\) 0.0364449 + 0.0631245i 0.00448606 + 0.00777009i
\(67\) −6.37212 11.0368i −0.778478 1.34836i −0.932819 0.360346i \(-0.882659\pi\)
0.154340 0.988018i \(-0.450675\pi\)
\(68\) −2.30670 + 3.99533i −0.279729 + 0.484505i
\(69\) 0.197126 0.0237312
\(70\) 0.275832 0.769248i 0.0329682 0.0919427i
\(71\) 0.492118 0.0584037 0.0292018 0.999574i \(-0.490703\pi\)
0.0292018 + 0.999574i \(0.490703\pi\)
\(72\) 1.48057 2.56442i 0.174487 0.302220i
\(73\) −2.99976 5.19573i −0.351095 0.608114i 0.635347 0.772227i \(-0.280857\pi\)
−0.986442 + 0.164113i \(0.947524\pi\)
\(74\) 3.18965 + 5.52464i 0.370789 + 0.642226i
\(75\) −0.483412 + 0.837295i −0.0558197 + 0.0966825i
\(76\) −0.352932 −0.0404841
\(77\) −0.330206 + 0.920887i −0.0376304 + 0.104945i
\(78\) −1.24118 −0.140536
\(79\) −0.333075 + 0.576902i −0.0374738 + 0.0649066i −0.884154 0.467196i \(-0.845264\pi\)
0.846680 + 0.532102i \(0.178598\pi\)
\(80\) 0.154437 + 0.267494i 0.0172666 + 0.0299067i
\(81\) −4.32589 7.49266i −0.480655 0.832518i
\(82\) 0.951067 1.64730i 0.105028 0.181914i
\(83\) −6.44785 −0.707744 −0.353872 0.935294i \(-0.615135\pi\)
−0.353872 + 0.935294i \(0.615135\pi\)
\(84\) −0.513186 + 0.0930165i −0.0559931 + 0.0101489i
\(85\) −1.42497 −0.154559
\(86\) −3.27626 + 5.67465i −0.353288 + 0.611913i
\(87\) 0.171696 + 0.297386i 0.0184077 + 0.0318831i
\(88\) −0.184881 0.320224i −0.0197084 0.0341359i
\(89\) −5.81105 + 10.0650i −0.615970 + 1.06689i 0.374244 + 0.927330i \(0.377902\pi\)
−0.990214 + 0.139560i \(0.955431\pi\)
\(90\) 0.914622 0.0964097
\(91\) −10.7688 12.7100i −1.12888 1.33237i
\(92\) −1.00000 −0.104257
\(93\) 0.289260 0.501013i 0.0299949 0.0519527i
\(94\) −5.86735 10.1625i −0.605171 1.04819i
\(95\) −0.0545060 0.0944071i −0.00559219 0.00968596i
\(96\) 0.0985631 0.170716i 0.0100596 0.0174237i
\(97\) 4.96548 0.504168 0.252084 0.967705i \(-0.418884\pi\)
0.252084 + 0.967705i \(0.418884\pi\)
\(98\) −5.40502 4.44811i −0.545990 0.449327i
\(99\) −1.09492 −0.110043
\(100\) 2.45230 4.24750i 0.245230 0.424750i
\(101\) 6.67745 + 11.5657i 0.664432 + 1.15083i 0.979439 + 0.201740i \(0.0646596\pi\)
−0.315008 + 0.949089i \(0.602007\pi\)
\(102\) 0.454712 + 0.787584i 0.0450232 + 0.0779825i
\(103\) −0.439355 + 0.760986i −0.0432910 + 0.0749821i −0.886859 0.462040i \(-0.847118\pi\)
0.843568 + 0.537022i \(0.180451\pi\)
\(104\) 6.29639 0.617412
\(105\) −0.104136 0.122909i −0.0101627 0.0119946i
\(106\) 5.90460 0.573505
\(107\) −7.15055 + 12.3851i −0.691270 + 1.19731i 0.280152 + 0.959956i \(0.409615\pi\)
−0.971422 + 0.237359i \(0.923718\pi\)
\(108\) −0.587549 1.01766i −0.0565369 0.0979248i
\(109\) 7.56040 + 13.0950i 0.724155 + 1.25427i 0.959321 + 0.282318i \(0.0911034\pi\)
−0.235166 + 0.971955i \(0.575563\pi\)
\(110\) 0.0571052 0.0989090i 0.00544476 0.00943061i
\(111\) 1.25753 0.119359
\(112\) 2.60333 0.471863i 0.245992 0.0445868i
\(113\) 7.57075 0.712196 0.356098 0.934449i \(-0.384107\pi\)
0.356098 + 0.934449i \(0.384107\pi\)
\(114\) −0.0347861 + 0.0602513i −0.00325802 + 0.00564305i
\(115\) −0.154437 0.267494i −0.0144014 0.0249439i
\(116\) −0.870993 1.50860i −0.0808697 0.140070i
\(117\) 9.32225 16.1466i 0.861842 1.49275i
\(118\) −2.29204 −0.211000
\(119\) −4.11987 + 11.4896i −0.377668 + 1.05325i
\(120\) 0.0608874 0.00555823
\(121\) 5.43164 9.40787i 0.493785 0.855261i
\(122\) −3.39396 5.87851i −0.307275 0.532216i
\(123\) −0.187480 0.324726i −0.0169045 0.0292795i
\(124\) −1.46739 + 2.54159i −0.131775 + 0.228241i
\(125\) 3.05928 0.273630
\(126\) 2.64436 7.37468i 0.235579 0.656988i
\(127\) 16.0215 1.42168 0.710841 0.703353i \(-0.248315\pi\)
0.710841 + 0.703353i \(0.248315\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0.645837 + 1.11862i 0.0568628 + 0.0984892i
\(130\) 0.972398 + 1.68424i 0.0852850 + 0.147718i
\(131\) −9.15897 + 15.8638i −0.800223 + 1.38603i 0.119247 + 0.992865i \(0.461952\pi\)
−0.919469 + 0.393161i \(0.871381\pi\)
\(132\) −0.0728899 −0.00634425
\(133\) −0.918800 + 0.166535i −0.0796701 + 0.0144405i
\(134\) 12.7442 1.10093
\(135\) 0.181479 0.314331i 0.0156192 0.0270533i
\(136\) −2.30670 3.99533i −0.197798 0.342597i
\(137\) 4.61681 + 7.99655i 0.394441 + 0.683191i 0.993030 0.117865i \(-0.0376050\pi\)
−0.598589 + 0.801056i \(0.704272\pi\)
\(138\) −0.0985631 + 0.170716i −0.00839025 + 0.0145323i
\(139\) −17.2940 −1.46686 −0.733430 0.679765i \(-0.762082\pi\)
−0.733430 + 0.679765i \(0.762082\pi\)
\(140\) 0.528272 + 0.623502i 0.0446472 + 0.0526955i
\(141\) −2.31322 −0.194808
\(142\) −0.246059 + 0.426187i −0.0206488 + 0.0357648i
\(143\) −1.16408 2.01625i −0.0973455 0.168607i
\(144\) 1.48057 + 2.56442i 0.123381 + 0.213702i
\(145\) 0.269028 0.465970i 0.0223416 0.0386967i
\(146\) 5.99951 0.496523
\(147\) −1.29210 + 0.484306i −0.106571 + 0.0399449i
\(148\) −6.37930 −0.524375
\(149\) 7.37742 12.7781i 0.604382 1.04682i −0.387767 0.921757i \(-0.626753\pi\)
0.992149 0.125063i \(-0.0399132\pi\)
\(150\) −0.483412 0.837295i −0.0394705 0.0683648i
\(151\) 10.6213 + 18.3966i 0.864348 + 1.49710i 0.867693 + 0.497101i \(0.165602\pi\)
−0.00334456 + 0.999994i \(0.501065\pi\)
\(152\) 0.176466 0.305648i 0.0143133 0.0247913i
\(153\) −13.6610 −1.10442
\(154\) −0.632409 0.746410i −0.0509610 0.0601475i
\(155\) −0.906477 −0.0728100
\(156\) 0.620592 1.07490i 0.0496871 0.0860606i
\(157\) 6.82206 + 11.8162i 0.544460 + 0.943032i 0.998641 + 0.0521224i \(0.0165986\pi\)
−0.454181 + 0.890909i \(0.650068\pi\)
\(158\) −0.333075 0.576902i −0.0264980 0.0458959i
\(159\) 0.581976 1.00801i 0.0461537 0.0799405i
\(160\) −0.308875 −0.0244187
\(161\) −2.60333 + 0.471863i −0.205171 + 0.0371880i
\(162\) 8.65178 0.679748
\(163\) 9.56734 16.5711i 0.749372 1.29795i −0.198752 0.980050i \(-0.563689\pi\)
0.948124 0.317901i \(-0.102978\pi\)
\(164\) 0.951067 + 1.64730i 0.0742659 + 0.128632i
\(165\) −0.0112569 0.0194976i −0.000876351 0.00151788i
\(166\) 3.22393 5.58400i 0.250225 0.433403i
\(167\) 5.31322 0.411149 0.205575 0.978641i \(-0.434094\pi\)
0.205575 + 0.978641i \(0.434094\pi\)
\(168\) 0.176038 0.490940i 0.0135816 0.0378768i
\(169\) 26.6445 2.04958
\(170\) 0.712483 1.23406i 0.0546450 0.0946478i
\(171\) −0.522541 0.905068i −0.0399597 0.0692122i
\(172\) −3.27626 5.67465i −0.249812 0.432688i
\(173\) 2.61269 4.52531i 0.198639 0.344053i −0.749448 0.662063i \(-0.769681\pi\)
0.948087 + 0.318010i \(0.103015\pi\)
\(174\) −0.343391 −0.0260324
\(175\) 4.37991 12.2148i 0.331090 0.923354i
\(176\) 0.369762 0.0278719
\(177\) −0.225911 + 0.391290i −0.0169805 + 0.0294111i
\(178\) −5.81105 10.0650i −0.435556 0.754406i
\(179\) 5.20161 + 9.00945i 0.388786 + 0.673398i 0.992287 0.123965i \(-0.0395611\pi\)
−0.603500 + 0.797363i \(0.706228\pi\)
\(180\) −0.457311 + 0.792086i −0.0340860 + 0.0590386i
\(181\) 7.39945 0.549997 0.274998 0.961445i \(-0.411323\pi\)
0.274998 + 0.961445i \(0.411323\pi\)
\(182\) 16.3916 2.97103i 1.21503 0.220227i
\(183\) −1.33808 −0.0989136
\(184\) 0.500000 0.866025i 0.0368605 0.0638442i
\(185\) −0.985203 1.70642i −0.0724336 0.125459i
\(186\) 0.289260 + 0.501013i 0.0212096 + 0.0367361i
\(187\) −0.852932 + 1.47732i −0.0623726 + 0.108032i
\(188\) 11.7347 0.855841
\(189\) −2.00978 2.37208i −0.146190 0.172543i
\(190\) 0.109012 0.00790855
\(191\) 1.99976 3.46368i 0.144697 0.250623i −0.784563 0.620050i \(-0.787112\pi\)
0.929260 + 0.369426i \(0.120446\pi\)
\(192\) 0.0985631 + 0.170716i 0.00711318 + 0.0123204i
\(193\) −0.226630 0.392534i −0.0163132 0.0282552i 0.857754 0.514061i \(-0.171860\pi\)
−0.874067 + 0.485806i \(0.838526\pi\)
\(194\) −2.48274 + 4.30023i −0.178250 + 0.308739i
\(195\) 0.383370 0.0274537
\(196\) 6.55469 2.45683i 0.468192 0.175488i
\(197\) −6.07584 −0.432885 −0.216443 0.976295i \(-0.569445\pi\)
−0.216443 + 0.976295i \(0.569445\pi\)
\(198\) 0.547459 0.948227i 0.0389062 0.0673876i
\(199\) 12.9633 + 22.4530i 0.918941 + 1.59165i 0.801027 + 0.598628i \(0.204287\pi\)
0.117914 + 0.993024i \(0.462379\pi\)
\(200\) 2.45230 + 4.24750i 0.173404 + 0.300344i
\(201\) 1.25611 2.17565i 0.0885993 0.153459i
\(202\) −13.3549 −0.939648
\(203\) −2.97934 3.51641i −0.209109 0.246804i
\(204\) −0.909424 −0.0636724
\(205\) −0.293761 + 0.508809i −0.0205171 + 0.0355367i
\(206\) −0.439355 0.760986i −0.0306113 0.0530204i
\(207\) −1.48057 2.56442i −0.102907 0.178240i
\(208\) −3.14819 + 5.45283i −0.218288 + 0.378086i
\(209\) −0.130501 −0.00902694
\(210\) 0.158510 0.0287305i 0.0109382 0.00198259i
\(211\) −14.9365 −1.02827 −0.514137 0.857708i \(-0.671888\pi\)
−0.514137 + 0.857708i \(0.671888\pi\)
\(212\) −2.95230 + 5.11353i −0.202765 + 0.351199i
\(213\) 0.0485047 + 0.0840126i 0.00332349 + 0.00575645i
\(214\) −7.15055 12.3851i −0.488802 0.846629i
\(215\) 1.01195 1.75276i 0.0690147 0.119537i
\(216\) 1.17510 0.0799553
\(217\) −2.62081 + 7.30900i −0.177912 + 0.496167i
\(218\) −15.1208 −1.02411
\(219\) 0.591331 1.02422i 0.0399585 0.0692101i
\(220\) 0.0571052 + 0.0989090i 0.00385003 + 0.00666845i
\(221\) −14.5239 25.1561i −0.976983 1.69218i
\(222\) −0.628764 + 1.08905i −0.0421999 + 0.0730924i
\(223\) −5.36408 −0.359205 −0.179603 0.983739i \(-0.557481\pi\)
−0.179603 + 0.983739i \(0.557481\pi\)
\(224\) −0.893022 + 2.49048i −0.0596675 + 0.166402i
\(225\) 14.5232 0.968213
\(226\) −3.78537 + 6.55646i −0.251799 + 0.436129i
\(227\) −14.0894 24.4035i −0.935146 1.61972i −0.774374 0.632729i \(-0.781935\pi\)
−0.160772 0.986992i \(-0.551398\pi\)
\(228\) −0.0347861 0.0602513i −0.00230377 0.00399024i
\(229\) −7.91864 + 13.7155i −0.523278 + 0.906345i 0.476355 + 0.879253i \(0.341958\pi\)
−0.999633 + 0.0270914i \(0.991375\pi\)
\(230\) 0.308875 0.0203666
\(231\) −0.189757 + 0.0343940i −0.0124851 + 0.00226296i
\(232\) 1.74199 0.114367
\(233\) −12.7090 + 22.0127i −0.832596 + 1.44210i 0.0633771 + 0.997990i \(0.479813\pi\)
−0.895973 + 0.444109i \(0.853520\pi\)
\(234\) 9.32225 + 16.1466i 0.609414 + 1.05554i
\(235\) 1.81228 + 3.13896i 0.118220 + 0.204763i
\(236\) 1.14602 1.98497i 0.0745997 0.129210i
\(237\) −0.131316 −0.00852986
\(238\) −7.89037 9.31272i −0.511456 0.603654i
\(239\) 8.59412 0.555907 0.277954 0.960595i \(-0.410344\pi\)
0.277954 + 0.960595i \(0.410344\pi\)
\(240\) −0.0304437 + 0.0527300i −0.00196513 + 0.00340371i
\(241\) −4.69442 8.13098i −0.302394 0.523762i 0.674283 0.738473i \(-0.264453\pi\)
−0.976678 + 0.214710i \(0.931119\pi\)
\(242\) 5.43164 + 9.40787i 0.349159 + 0.604761i
\(243\) 2.61539 4.52999i 0.167778 0.290599i
\(244\) 6.78792 0.434552
\(245\) 1.66948 + 1.37391i 0.106659 + 0.0877759i
\(246\) 0.374961 0.0239066
\(247\) 1.11110 1.92448i 0.0706975 0.122452i
\(248\) −1.46739 2.54159i −0.0931790 0.161391i
\(249\) −0.635520 1.10075i −0.0402745 0.0697574i
\(250\) −1.52964 + 2.64942i −0.0967430 + 0.167564i
\(251\) −3.13763 −0.198046 −0.0990229 0.995085i \(-0.531572\pi\)
−0.0990229 + 0.995085i \(0.531572\pi\)
\(252\) 5.06447 + 5.97742i 0.319032 + 0.376542i
\(253\) −0.369762 −0.0232468
\(254\) −8.01077 + 13.8751i −0.502641 + 0.870599i
\(255\) −0.140449 0.243265i −0.00879527 0.0152338i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 13.4913 23.3677i 0.841567 1.45764i −0.0470028 0.998895i \(-0.514967\pi\)
0.888570 0.458742i \(-0.151700\pi\)
\(258\) −1.29167 −0.0804161
\(259\) −16.6075 + 3.01015i −1.03194 + 0.187042i
\(260\) −1.94480 −0.120611
\(261\) 2.57913 4.46719i 0.159644 0.276512i
\(262\) −9.15897 15.8638i −0.565843 0.980068i
\(263\) 5.36612 + 9.29439i 0.330889 + 0.573117i 0.982686 0.185277i \(-0.0593181\pi\)
−0.651797 + 0.758393i \(0.725985\pi\)
\(264\) 0.0364449 0.0631245i 0.00224303 0.00388504i
\(265\) −1.82378 −0.112034
\(266\) 0.315176 0.878972i 0.0193247 0.0538932i
\(267\) −2.29102 −0.140208
\(268\) −6.37212 + 11.0368i −0.389239 + 0.674182i
\(269\) 7.93807 + 13.7491i 0.483992 + 0.838300i 0.999831 0.0183863i \(-0.00585286\pi\)
−0.515838 + 0.856686i \(0.672520\pi\)
\(270\) 0.181479 + 0.314331i 0.0110445 + 0.0191296i
\(271\) −7.19021 + 12.4538i −0.436774 + 0.756515i −0.997439 0.0715280i \(-0.977212\pi\)
0.560664 + 0.828043i \(0.310546\pi\)
\(272\) 4.61341 0.279729
\(273\) 1.10840 3.09115i 0.0670837 0.187085i
\(274\) −9.23362 −0.557823
\(275\) 0.906767 1.57057i 0.0546801 0.0947088i
\(276\) −0.0985631 0.170716i −0.00593280 0.0102759i
\(277\) −5.81799 10.0771i −0.349569 0.605471i 0.636604 0.771191i \(-0.280339\pi\)
−0.986173 + 0.165720i \(0.947005\pi\)
\(278\) 8.64701 14.9771i 0.518613 0.898264i
\(279\) −8.69027 −0.520273
\(280\) −0.804105 + 0.145747i −0.0480544 + 0.00871002i
\(281\) −25.2062 −1.50367 −0.751837 0.659349i \(-0.770832\pi\)
−0.751837 + 0.659349i \(0.770832\pi\)
\(282\) 1.15661 2.00331i 0.0688750 0.119295i
\(283\) 1.78808 + 3.09704i 0.106290 + 0.184100i 0.914265 0.405118i \(-0.132769\pi\)
−0.807974 + 0.589218i \(0.799436\pi\)
\(284\) −0.246059 0.426187i −0.0146009 0.0252895i
\(285\) 0.0107446 0.0186101i 0.000636453 0.00110237i
\(286\) 2.32817 0.137667
\(287\) 3.25324 + 3.83969i 0.192033 + 0.226650i
\(288\) −2.96114 −0.174487
\(289\) −2.14176 + 3.70964i −0.125986 + 0.218214i
\(290\) 0.269028 + 0.465970i 0.0157979 + 0.0273627i
\(291\) 0.489414 + 0.847689i 0.0286899 + 0.0496924i
\(292\) −2.99976 + 5.19573i −0.175548 + 0.304057i
\(293\) −4.03243 −0.235577 −0.117788 0.993039i \(-0.537580\pi\)
−0.117788 + 0.993039i \(0.537580\pi\)
\(294\) 0.226630 1.36115i 0.0132173 0.0793837i
\(295\) 0.707955 0.0412187
\(296\) 3.18965 5.52464i 0.185395 0.321113i
\(297\) −0.217253 0.376294i −0.0126063 0.0218348i
\(298\) 7.37742 + 12.7781i 0.427363 + 0.740214i
\(299\) 3.14819 5.45283i 0.182065 0.315345i
\(300\) 0.966825 0.0558197
\(301\) −11.2069 13.2271i −0.645952 0.762395i
\(302\) −21.2426 −1.22237
\(303\) −1.31630 + 2.27990i −0.0756196 + 0.130977i
\(304\) 0.176466 + 0.305648i 0.0101210 + 0.0175301i
\(305\) 1.04831 + 1.81573i 0.0600261 + 0.103968i
\(306\) 6.83048 11.8307i 0.390472 0.676318i
\(307\) −1.35937 −0.0775831 −0.0387915 0.999247i \(-0.512351\pi\)
−0.0387915 + 0.999247i \(0.512351\pi\)
\(308\) 0.962615 0.174477i 0.0548501 0.00994175i
\(309\) −0.173217 −0.00985397
\(310\) 0.453239 0.785032i 0.0257422 0.0445868i
\(311\) −7.38172 12.7855i −0.418579 0.725000i 0.577218 0.816590i \(-0.304138\pi\)
−0.995797 + 0.0915904i \(0.970805\pi\)
\(312\) 0.620592 + 1.07490i 0.0351341 + 0.0608540i
\(313\) 11.6470 20.1732i 0.658328 1.14026i −0.322720 0.946494i \(-0.604597\pi\)
0.981048 0.193763i \(-0.0620693\pi\)
\(314\) −13.6441 −0.769982
\(315\) −0.816778 + 2.27785i −0.0460202 + 0.128342i
\(316\) 0.666150 0.0374738
\(317\) −9.66087 + 16.7331i −0.542608 + 0.939825i 0.456145 + 0.889906i \(0.349230\pi\)
−0.998753 + 0.0499197i \(0.984103\pi\)
\(318\) 0.581976 + 1.00801i 0.0326356 + 0.0565265i
\(319\) −0.322060 0.557825i −0.0180319 0.0312322i
\(320\) 0.154437 0.267494i 0.00863332 0.0149533i
\(321\) −2.81912 −0.157348
\(322\) 0.893022 2.49048i 0.0497662 0.138789i
\(323\) −1.62822 −0.0905966
\(324\) −4.32589 + 7.49266i −0.240327 + 0.416259i
\(325\) 15.4406 + 26.7439i 0.856491 + 1.48349i
\(326\) 9.56734 + 16.5711i 0.529886 + 0.917790i
\(327\) −1.49035 + 2.58137i −0.0824168 + 0.142750i
\(328\) −1.90213 −0.105028
\(329\) 30.5493 5.53716i 1.68424 0.305274i
\(330\) 0.0225139 0.00123935
\(331\) 2.00407 3.47116i 0.110154 0.190792i −0.805678 0.592353i \(-0.798199\pi\)
0.915832 + 0.401561i \(0.131532\pi\)
\(332\) 3.22393 + 5.58400i 0.176936 + 0.306462i
\(333\) −9.44501 16.3592i −0.517583 0.896481i
\(334\) −2.65661 + 4.60138i −0.145363 + 0.251776i
\(335\) −3.93638 −0.215067
\(336\) 0.337147 + 0.397923i 0.0183929 + 0.0217085i
\(337\) −18.7242 −1.01997 −0.509986 0.860183i \(-0.670349\pi\)
−0.509986 + 0.860183i \(0.670349\pi\)
\(338\) −13.3222 + 23.0748i −0.724635 + 1.25510i
\(339\) 0.746197 + 1.29245i 0.0405278 + 0.0701963i
\(340\) 0.712483 + 1.23406i 0.0386398 + 0.0669261i
\(341\) −0.542584 + 0.939783i −0.0293826 + 0.0508921i
\(342\) 1.04508 0.0565116
\(343\) 15.9048 9.48887i 0.858776 0.512351i
\(344\) 6.55252 0.353288
\(345\) 0.0304437 0.0527300i 0.00163903 0.00283889i
\(346\) 2.61269 + 4.52531i 0.140459 + 0.243282i
\(347\) −2.62469 4.54610i −0.140901 0.244047i 0.786935 0.617036i \(-0.211667\pi\)
−0.927836 + 0.372988i \(0.878333\pi\)
\(348\) 0.171696 0.297386i 0.00920385 0.0159415i
\(349\) −29.3789 −1.57262 −0.786309 0.617834i \(-0.788010\pi\)
−0.786309 + 0.617834i \(0.788010\pi\)
\(350\) 8.38839 + 9.90052i 0.448378 + 0.529205i
\(351\) 7.39887 0.394922
\(352\) −0.184881 + 0.320224i −0.00985420 + 0.0170680i
\(353\) −1.88815 3.27037i −0.100496 0.174064i 0.811393 0.584501i \(-0.198710\pi\)
−0.911889 + 0.410437i \(0.865376\pi\)
\(354\) −0.225911 0.391290i −0.0120070 0.0207968i
\(355\) 0.0760015 0.131638i 0.00403374 0.00698664i
\(356\) 11.6221 0.615970
\(357\) −2.36753 + 0.429123i −0.125303 + 0.0227116i
\(358\) −10.4032 −0.549827
\(359\) 9.28414 16.0806i 0.489998 0.848702i −0.509935 0.860213i \(-0.670331\pi\)
0.999934 + 0.0115107i \(0.00366406\pi\)
\(360\) −0.457311 0.792086i −0.0241024 0.0417466i
\(361\) 9.43772 + 16.3466i 0.496722 + 0.860348i
\(362\) −3.69973 + 6.40811i −0.194453 + 0.336803i
\(363\) 2.14144 0.112396
\(364\) −5.62281 + 15.6811i −0.294715 + 0.821911i
\(365\) −1.85310 −0.0969957
\(366\) 0.669039 1.15881i 0.0349712 0.0605720i
\(367\) −7.66138 13.2699i −0.399921 0.692683i 0.593795 0.804616i \(-0.297629\pi\)
−0.993716 + 0.111933i \(0.964296\pi\)
\(368\) 0.500000 + 0.866025i 0.0260643 + 0.0451447i
\(369\) −2.81624 + 4.87788i −0.146608 + 0.253932i
\(370\) 1.97041 0.102437
\(371\) −5.27293 + 14.7053i −0.273757 + 0.763461i
\(372\) −0.578520 −0.0299949
\(373\) −2.03891 + 3.53149i −0.105571 + 0.182854i −0.913971 0.405779i \(-0.867000\pi\)
0.808401 + 0.588633i \(0.200334\pi\)
\(374\) −0.852932 1.47732i −0.0441041 0.0763905i
\(375\) 0.301532 + 0.522270i 0.0155711 + 0.0269699i
\(376\) −5.86735 + 10.1625i −0.302585 + 0.524093i
\(377\) 10.9682 0.564892
\(378\) 3.05917 0.554485i 0.157347 0.0285196i
\(379\) 27.4392 1.40946 0.704729 0.709477i \(-0.251069\pi\)
0.704729 + 0.709477i \(0.251069\pi\)
\(380\) −0.0545060 + 0.0944071i −0.00279610 + 0.00484298i
\(381\) 1.57913 + 2.73514i 0.0809015 + 0.140125i
\(382\) 1.99976 + 3.46368i 0.102316 + 0.177217i
\(383\) 0.302361 0.523705i 0.0154499 0.0267601i −0.858197 0.513320i \(-0.828415\pi\)
0.873647 + 0.486560i \(0.161749\pi\)
\(384\) −0.197126 −0.0100596
\(385\) 0.195335 + 0.230547i 0.00995521 + 0.0117498i
\(386\) 0.453259 0.0230703
\(387\) 9.70147 16.8034i 0.493153 0.854167i
\(388\) −2.48274 4.30023i −0.126042 0.218311i
\(389\) 4.05062 + 7.01588i 0.205375 + 0.355719i 0.950252 0.311482i \(-0.100825\pi\)
−0.744877 + 0.667201i \(0.767492\pi\)
\(390\) −0.191685 + 0.332009i −0.00970636 + 0.0168119i
\(391\) −4.61341 −0.233310
\(392\) −1.14967 + 6.90495i −0.0580670 + 0.348752i
\(393\) −3.61095 −0.182148
\(394\) 3.03792 5.26183i 0.153048 0.265087i
\(395\) 0.102878 + 0.178191i 0.00517638 + 0.00896575i
\(396\) 0.547459 + 0.948227i 0.0275109 + 0.0476502i
\(397\) 6.42365 11.1261i 0.322394 0.558402i −0.658588 0.752504i \(-0.728846\pi\)
0.980981 + 0.194102i \(0.0621791\pi\)
\(398\) −25.9265 −1.29958
\(399\) −0.118990 0.140440i −0.00595696 0.00703079i
\(400\) −4.90460 −0.245230
\(401\) −4.03550 + 6.98970i −0.201523 + 0.349049i −0.949019 0.315217i \(-0.897923\pi\)
0.747496 + 0.664266i \(0.231256\pi\)
\(402\) 1.25611 + 2.17565i 0.0626492 + 0.108512i
\(403\) −9.23922 16.0028i −0.460239 0.797157i
\(404\) 6.67745 11.5657i 0.332216 0.575415i
\(405\) −2.67232 −0.132789
\(406\) 4.53497 0.821978i 0.225067 0.0407941i
\(407\) −2.35883 −0.116923
\(408\) 0.454712 0.787584i 0.0225116 0.0389912i
\(409\) 8.67087 + 15.0184i 0.428747 + 0.742612i 0.996762 0.0804065i \(-0.0256218\pi\)
−0.568015 + 0.823018i \(0.692289\pi\)
\(410\) −0.293761 0.508809i −0.0145078 0.0251283i
\(411\) −0.910095 + 1.57633i −0.0448917 + 0.0777546i
\(412\) 0.878711 0.0432910
\(413\) 2.04685 5.70830i 0.100719 0.280887i
\(414\) 2.96114 0.145532
\(415\) −0.995790 + 1.72476i −0.0488814 + 0.0846651i
\(416\) −3.14819 5.45283i −0.154353 0.267347i
\(417\) −1.70455 2.95237i −0.0834723 0.144578i
\(418\) 0.0652505 0.113017i 0.00319151 0.00552785i
\(419\) 15.7626 0.770054 0.385027 0.922905i \(-0.374192\pi\)
0.385027 + 0.922905i \(0.374192\pi\)
\(420\) −0.0543738 + 0.151639i −0.00265317 + 0.00739923i
\(421\) −16.4898 −0.803661 −0.401831 0.915714i \(-0.631626\pi\)
−0.401831 + 0.915714i \(0.631626\pi\)
\(422\) 7.46827 12.9354i 0.363550 0.629686i
\(423\) 17.3740 + 30.0927i 0.844755 + 1.46316i
\(424\) −2.95230 5.11353i −0.143376 0.248335i
\(425\) 11.3135 19.5955i 0.548783 0.950520i
\(426\) −0.0970094 −0.00470012
\(427\) 17.6712 3.20297i 0.855171 0.155002i
\(428\) 14.3011 0.691270
\(429\) 0.229471 0.397456i 0.0110790 0.0191894i
\(430\) 1.01195 + 1.75276i 0.0488008 + 0.0845254i
\(431\) −5.47285 9.47926i −0.263618 0.456600i 0.703583 0.710614i \(-0.251583\pi\)
−0.967201 + 0.254014i \(0.918249\pi\)
\(432\) −0.587549 + 1.01766i −0.0282685 + 0.0489624i
\(433\) −28.0699 −1.34896 −0.674478 0.738295i \(-0.735631\pi\)
−0.674478 + 0.738295i \(0.735631\pi\)
\(434\) −5.01937 5.92419i −0.240938 0.284370i
\(435\) 0.106065 0.00508543
\(436\) 7.56040 13.0950i 0.362078 0.627137i
\(437\) −0.176466 0.305648i −0.00844152 0.0146211i
\(438\) 0.591331 + 1.02422i 0.0282549 + 0.0489389i
\(439\) 4.54122 7.86562i 0.216740 0.375405i −0.737069 0.675817i \(-0.763791\pi\)
0.953810 + 0.300412i \(0.0971242\pi\)
\(440\) −0.114210 −0.00544476
\(441\) 16.0050 + 13.1715i 0.762145 + 0.627214i
\(442\) 29.0478 1.38166
\(443\) 15.3899 26.6560i 0.731194 1.26647i −0.225179 0.974317i \(-0.572297\pi\)
0.956373 0.292148i \(-0.0943699\pi\)
\(444\) −0.628764 1.08905i −0.0298398 0.0516841i
\(445\) 1.79489 + 3.10883i 0.0850858 + 0.147373i
\(446\) 2.68204 4.64543i 0.126998 0.219967i
\(447\) 2.90857 0.137571
\(448\) −1.71031 2.01862i −0.0808046 0.0953709i
\(449\) −30.9015 −1.45833 −0.729166 0.684337i \(-0.760092\pi\)
−0.729166 + 0.684337i \(0.760092\pi\)
\(450\) −7.26160 + 12.5775i −0.342315 + 0.592907i
\(451\) 0.351669 + 0.609108i 0.0165594 + 0.0286818i
\(452\) −3.78537 6.55646i −0.178049 0.308390i
\(453\) −2.09374 + 3.62646i −0.0983723 + 0.170386i
\(454\) 28.1788 1.32250
\(455\) −5.06295 + 0.917677i −0.237355 + 0.0430213i
\(456\) 0.0695722 0.00325802
\(457\) −20.3512 + 35.2492i −0.951987 + 1.64889i −0.210870 + 0.977514i \(0.567630\pi\)
−0.741117 + 0.671376i \(0.765704\pi\)
\(458\) −7.91864 13.7155i −0.370014 0.640882i
\(459\) −2.71060 4.69490i −0.126520 0.219139i
\(460\) −0.154437 + 0.267494i −0.00720068 + 0.0124720i
\(461\) 22.0792 1.02833 0.514166 0.857691i \(-0.328102\pi\)
0.514166 + 0.857691i \(0.328102\pi\)
\(462\) 0.0650922 0.181531i 0.00302837 0.00844559i
\(463\) 16.3672 0.760648 0.380324 0.924853i \(-0.375813\pi\)
0.380324 + 0.924853i \(0.375813\pi\)
\(464\) −0.870993 + 1.50860i −0.0404348 + 0.0700352i
\(465\) −0.0893452 0.154750i −0.00414329 0.00717638i
\(466\) −12.7090 22.0127i −0.588734 1.01972i
\(467\) 15.0234 26.0213i 0.695201 1.20412i −0.274912 0.961469i \(-0.588649\pi\)
0.970113 0.242654i \(-0.0780181\pi\)
\(468\) −18.6445 −0.861842
\(469\) −11.3809 + 31.7393i −0.525520 + 1.46559i
\(470\) −3.62455 −0.167188
\(471\) −1.34481 + 2.32927i −0.0619655 + 0.107327i
\(472\) 1.14602 + 1.98497i 0.0527500 + 0.0913656i
\(473\) −1.21144 2.09827i −0.0557020 0.0964786i
\(474\) 0.0656578 0.113723i 0.00301576 0.00522345i
\(475\) 1.73099 0.0794233
\(476\) 12.0102 2.17689i 0.550488 0.0997778i
\(477\) −17.4843 −0.800553
\(478\) −4.29706 + 7.44272i −0.196543 + 0.340422i
\(479\) 4.04609 + 7.00803i 0.184871 + 0.320205i 0.943533 0.331279i \(-0.107480\pi\)
−0.758662 + 0.651484i \(0.774147\pi\)
\(480\) −0.0304437 0.0527300i −0.00138956 0.00240678i
\(481\) 20.0833 34.7853i 0.915719 1.58607i
\(482\) 9.38884 0.427650
\(483\) −0.337147 0.397923i −0.0153407 0.0181061i
\(484\) −10.8633 −0.493785
\(485\) 0.766857 1.32823i 0.0348212 0.0603120i
\(486\) 2.61539 + 4.52999i 0.118637 + 0.205485i
\(487\) −3.29781 5.71198i −0.149438 0.258834i 0.781582 0.623803i \(-0.214413\pi\)
−0.931020 + 0.364968i \(0.881080\pi\)
\(488\) −3.39396 + 5.87851i −0.153637 + 0.266108i
\(489\) 3.77195 0.170573
\(490\) −2.02458 + 0.758854i −0.0914612 + 0.0342815i
\(491\) −12.7040 −0.573323 −0.286661 0.958032i \(-0.592545\pi\)
−0.286661 + 0.958032i \(0.592545\pi\)
\(492\) −0.187480 + 0.324726i −0.00845227 + 0.0146398i
\(493\) −4.01825 6.95981i −0.180973 0.313454i
\(494\) 1.11110 + 1.92448i 0.0499907 + 0.0865864i
\(495\) −0.169096 + 0.292884i −0.00760032 + 0.0131641i
\(496\) 2.93477 0.131775
\(497\) −0.841675 0.993400i −0.0377543 0.0445601i
\(498\) 1.27104 0.0569567
\(499\) 3.34489 5.79352i 0.149738 0.259354i −0.781393 0.624040i \(-0.785490\pi\)
0.931131 + 0.364686i \(0.118824\pi\)
\(500\) −1.52964 2.64942i −0.0684076 0.118485i
\(501\) 0.523687 + 0.907053i 0.0233966 + 0.0405242i
\(502\) 1.56882 2.71727i 0.0700197 0.121278i
\(503\) 42.8269 1.90956 0.954779 0.297316i \(-0.0960913\pi\)
0.954779 + 0.297316i \(0.0960913\pi\)
\(504\) −7.70884 + 1.39725i −0.343379 + 0.0622385i
\(505\) 4.12500 0.183560
\(506\) 0.184881 0.320224i 0.00821897 0.0142357i
\(507\) 2.62616 + 4.54865i 0.116632 + 0.202013i
\(508\) −8.01077 13.8751i −0.355421 0.615606i
\(509\) 13.9892 24.2300i 0.620059 1.07397i −0.369415 0.929264i \(-0.620442\pi\)
0.989474 0.144709i \(-0.0462247\pi\)
\(510\) 0.280898 0.0124384
\(511\) −5.35770 + 14.9417i −0.237011 + 0.660982i
\(512\) 1.00000 0.0441942
\(513\) 0.207365 0.359167i 0.00915538 0.0158576i
\(514\) 13.4913 + 23.3677i 0.595078 + 1.03070i
\(515\) 0.135706 + 0.235049i 0.00597991 + 0.0103575i
\(516\) 0.645837 1.11862i 0.0284314 0.0492446i
\(517\) 4.33905 0.190831
\(518\) 5.69686 15.8876i 0.250306 0.698059i
\(519\) 1.03006 0.0452146
\(520\) 0.972398 1.68424i 0.0426425 0.0738589i
\(521\) 2.01361 + 3.48768i 0.0882180 + 0.152798i 0.906758 0.421652i \(-0.138549\pi\)
−0.818540 + 0.574450i \(0.805216\pi\)
\(522\) 2.57913 + 4.46719i 0.112886 + 0.195524i
\(523\) −17.3396 + 30.0331i −0.758209 + 1.31326i 0.185554 + 0.982634i \(0.440592\pi\)
−0.943763 + 0.330623i \(0.892741\pi\)
\(524\) 18.3179 0.800223
\(525\) 2.51697 0.456209i 0.109849 0.0199106i
\(526\) −10.7322 −0.467948
\(527\) −6.76965 + 11.7254i −0.294890 + 0.510765i
\(528\) 0.0364449 + 0.0631245i 0.00158606 + 0.00274714i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) 0.911891 1.57944i 0.0396100 0.0686066i
\(531\) 6.78707 0.294534
\(532\) 0.603624 + 0.712436i 0.0261704 + 0.0308880i
\(533\) −11.9766 −0.518763
\(534\) 1.14551 1.98408i 0.0495711 0.0858596i
\(535\) 2.20863 + 3.82545i 0.0954872 + 0.165389i
\(536\) −6.37212 11.0368i −0.275234 0.476719i
\(537\) −1.02537 + 1.77600i −0.0442481 + 0.0766400i
\(538\) −15.8761 −0.684469
\(539\) 2.42368 0.908444i 0.104395 0.0391294i
\(540\) −0.362958 −0.0156192
\(541\) 13.3296 23.0875i 0.573084 0.992610i −0.423163 0.906053i \(-0.639080\pi\)
0.996247 0.0865564i \(-0.0275863\pi\)
\(542\) −7.19021 12.4538i −0.308846 0.534937i
\(543\) 0.729313 + 1.26321i 0.0312978 + 0.0542094i
\(544\) −2.30670 + 3.99533i −0.0988991 + 0.171298i
\(545\) 4.67044 0.200060
\(546\) 2.12281 + 2.50548i 0.0908479 + 0.107225i
\(547\) −5.21015 −0.222770 −0.111385 0.993777i \(-0.535529\pi\)
−0.111385 + 0.993777i \(0.535529\pi\)
\(548\) 4.61681 7.99655i 0.197220 0.341596i
\(549\) 10.0500 + 17.4071i 0.428924 + 0.742917i
\(550\) 0.906767 + 1.57057i 0.0386647 + 0.0669692i
\(551\) 0.307401 0.532435i 0.0130957 0.0226825i
\(552\) 0.197126 0.00839025
\(553\) 1.73421 0.314331i 0.0737461 0.0133667i
\(554\) 11.6360 0.494365
\(555\) 0.194210 0.336381i 0.00824373 0.0142786i
\(556\) 8.64701 + 14.9771i 0.366715 + 0.635169i
\(557\) −23.3278 40.4050i −0.988431 1.71201i −0.625564 0.780172i \(-0.715131\pi\)
−0.362867 0.931841i \(-0.618202\pi\)
\(558\) 4.34513 7.52599i 0.183944 0.318601i
\(559\) 41.2572 1.74499
\(560\) 0.275832 0.769248i 0.0116560 0.0325067i
\(561\) −0.336271 −0.0141974
\(562\) 12.6031 21.8292i 0.531629 0.920809i
\(563\) −20.9007 36.2010i −0.880859 1.52569i −0.850388 0.526156i \(-0.823633\pi\)
−0.0304709 0.999536i \(-0.509701\pi\)
\(564\) 1.15661 + 2.00331i 0.0487020 + 0.0843544i
\(565\) 1.16921 2.02513i 0.0491889 0.0851977i
\(566\) −3.57615 −0.150317
\(567\) −7.72623 + 21.5471i −0.324471 + 0.904894i
\(568\) 0.492118 0.0206488
\(569\) 5.68959 9.85467i 0.238520 0.413129i −0.721770 0.692133i \(-0.756671\pi\)
0.960290 + 0.279004i \(0.0900043\pi\)
\(570\) 0.0107446 + 0.0186101i 0.000450040 + 0.000779492i
\(571\) −10.6530 18.4516i −0.445815 0.772174i 0.552294 0.833649i \(-0.313753\pi\)
−0.998109 + 0.0614758i \(0.980419\pi\)
\(572\) −1.16408 + 2.01625i −0.0486728 + 0.0843037i
\(573\) 0.788410 0.0329363
\(574\) −4.95189 + 0.897546i −0.206688 + 0.0374629i
\(575\) 4.90460 0.204536
\(576\) 1.48057 2.56442i 0.0616904 0.106851i
\(577\) 8.62124 + 14.9324i 0.358907 + 0.621645i 0.987779 0.155864i \(-0.0498162\pi\)
−0.628872 + 0.777509i \(0.716483\pi\)
\(578\) −2.14176 3.70964i −0.0890857 0.154301i
\(579\) 0.0446747 0.0773788i 0.00185662 0.00321575i
\(580\) −0.538056 −0.0223416
\(581\) 11.0278 + 13.0158i 0.457512 + 0.539985i
\(582\) −0.978827 −0.0405737
\(583\) −1.09165 + 1.89079i −0.0452115 + 0.0783086i
\(584\) −2.99976 5.19573i −0.124131 0.215001i
\(585\) −2.87941 4.98728i −0.119049 0.206199i
\(586\) 2.01621 3.49218i 0.0832890 0.144261i
\(587\) −3.94485 −0.162821 −0.0814107 0.996681i \(-0.525943\pi\)
−0.0814107 + 0.996681i \(0.525943\pi\)
\(588\) 1.06547 + 0.876840i 0.0439393 + 0.0361603i
\(589\) −1.03577 −0.0426784
\(590\) −0.353978 + 0.613107i −0.0145730 + 0.0252412i
\(591\) −0.598854 1.03724i −0.0246335 0.0426666i
\(592\) 3.18965 + 5.52464i 0.131094 + 0.227061i
\(593\) −4.52179 + 7.83196i −0.185687 + 0.321620i −0.943808 0.330494i \(-0.892785\pi\)
0.758120 + 0.652115i \(0.226118\pi\)
\(594\) 0.434507 0.0178280
\(595\) 2.43714 + 2.87647i 0.0999128 + 0.117924i
\(596\) −14.7548 −0.604382
\(597\) −2.55540 + 4.42608i −0.104585 + 0.181147i
\(598\) 3.14819 + 5.45283i 0.128739 + 0.222983i
\(599\) 15.0419 + 26.0534i 0.614597 + 1.06451i 0.990455 + 0.137836i \(0.0440147\pi\)
−0.375858 + 0.926677i \(0.622652\pi\)
\(600\) −0.483412 + 0.837295i −0.0197352 + 0.0341824i
\(601\) −25.0873 −1.02333 −0.511665 0.859185i \(-0.670971\pi\)
−0.511665 + 0.859185i \(0.670971\pi\)
\(602\) 17.0584 3.09189i 0.695248 0.126016i
\(603\) −37.7375 −1.53679
\(604\) 10.6213 18.3966i 0.432174 0.748548i
\(605\) −1.67770 2.90586i −0.0682081 0.118140i
\(606\) −1.31630 2.27990i −0.0534711 0.0926147i
\(607\) −19.0622 + 33.0168i −0.773713 + 1.34011i 0.161802 + 0.986823i \(0.448269\pi\)
−0.935515 + 0.353287i \(0.885064\pi\)
\(608\) −0.352932 −0.0143133
\(609\) 0.306656 0.855211i 0.0124263 0.0346549i
\(610\) −2.09662 −0.0848897
\(611\) −36.9431 + 63.9873i −1.49456 + 2.58865i
\(612\) 6.83048 + 11.8307i 0.276106 + 0.478229i
\(613\) 15.8375 + 27.4314i 0.639670 + 1.10794i 0.985505 + 0.169646i \(0.0542625\pi\)
−0.345835 + 0.938296i \(0.612404\pi\)
\(614\) 0.679683 1.17725i 0.0274298 0.0475097i
\(615\) −0.115816 −0.00467015
\(616\) −0.330206 + 0.920887i −0.0133044 + 0.0371036i
\(617\) −39.9083 −1.60665 −0.803324 0.595543i \(-0.796937\pi\)
−0.803324 + 0.595543i \(0.796937\pi\)
\(618\) 0.0866085 0.150010i 0.00348390 0.00603430i
\(619\) 5.69093 + 9.85698i 0.228738 + 0.396185i 0.957434 0.288651i \(-0.0932068\pi\)
−0.728696 + 0.684837i \(0.759873\pi\)
\(620\) 0.453239 + 0.785032i 0.0182025 + 0.0315276i
\(621\) 0.587549 1.01766i 0.0235775 0.0408375i
\(622\) 14.7634 0.591960
\(623\) 30.2562 5.48403i 1.21219 0.219713i
\(624\) −1.24118 −0.0496871
\(625\) −11.7890 + 20.4192i −0.471561 + 0.816767i
\(626\) 11.6470 + 20.1732i 0.465508 + 0.806284i
\(627\) −0.0128626 0.0222787i −0.000513682 0.000889724i
\(628\) 6.82206 11.8162i 0.272230 0.471516i
\(629\) −29.4303 −1.17346
\(630\) −1.56429 1.84628i −0.0623228 0.0735574i
\(631\) 28.3119 1.12708 0.563539 0.826089i \(-0.309439\pi\)
0.563539 + 0.826089i \(0.309439\pi\)
\(632\) −0.333075 + 0.576902i −0.0132490 + 0.0229479i
\(633\) −1.47219 2.54991i −0.0585144 0.101350i
\(634\) −9.66087 16.7331i −0.383682 0.664557i
\(635\) 2.47433 4.28566i 0.0981907 0.170071i
\(636\) −1.16395 −0.0461537
\(637\) −7.23875 + 43.4762i −0.286810 + 1.72259i
\(638\) 0.644121 0.0255010
\(639\) 0.728615 1.26200i 0.0288236 0.0499239i
\(640\) 0.154437 + 0.267494i 0.00610468 + 0.0105736i
\(641\) 1.16446 + 2.01691i 0.0459935 + 0.0796632i 0.888106 0.459639i \(-0.152021\pi\)
−0.842112 + 0.539302i \(0.818688\pi\)
\(642\) 1.40956 2.44143i 0.0556310 0.0963556i
\(643\) −5.03301 −0.198482 −0.0992412 0.995063i \(-0.531642\pi\)
−0.0992412 + 0.995063i \(0.531642\pi\)
\(644\) 1.71031 + 2.01862i 0.0673957 + 0.0795448i
\(645\) 0.398966 0.0157093
\(646\) 0.814110 1.41008i 0.0320307 0.0554788i
\(647\) 17.9635 + 31.1137i 0.706218 + 1.22321i 0.966250 + 0.257605i \(0.0829335\pi\)
−0.260032 + 0.965600i \(0.583733\pi\)
\(648\) −4.32589 7.49266i −0.169937 0.294340i
\(649\) 0.423756 0.733967i 0.0166339 0.0288107i
\(650\) −30.8812 −1.21126
\(651\) −1.50608 + 0.272982i −0.0590280 + 0.0106990i
\(652\) −19.1347 −0.749372
\(653\) 11.9554 20.7073i 0.467849 0.810338i −0.531476 0.847073i \(-0.678362\pi\)
0.999325 + 0.0367350i \(0.0116957\pi\)
\(654\) −1.49035 2.58137i −0.0582775 0.100940i
\(655\) 2.82897 + 4.89993i 0.110537 + 0.191456i
\(656\) 0.951067 1.64730i 0.0371329 0.0643161i
\(657\) −17.7654 −0.693095
\(658\) −10.4793 + 29.2251i −0.408527 + 1.13931i
\(659\) 25.6645 0.999749 0.499874 0.866098i \(-0.333380\pi\)
0.499874 + 0.866098i \(0.333380\pi\)
\(660\) −0.0112569 + 0.0194976i −0.000438175 + 0.000758942i
\(661\) −0.221521 0.383685i −0.00861616 0.0149236i 0.861685 0.507443i \(-0.169409\pi\)
−0.870301 + 0.492520i \(0.836076\pi\)
\(662\) 2.00407 + 3.47116i 0.0778905 + 0.134910i
\(663\) 2.86304 4.95894i 0.111191 0.192589i
\(664\) −6.44785 −0.250225
\(665\) −0.0973500 + 0.271492i −0.00377507 + 0.0105280i
\(666\) 18.8900 0.731973
\(667\) 0.870993 1.50860i 0.0337250 0.0584134i
\(668\) −2.65661 4.60138i −0.102787 0.178033i
\(669\) −0.528700 0.915736i −0.0204407 0.0354044i
\(670\) 1.96819 3.40900i 0.0760377 0.131701i
\(671\) 2.50992 0.0968943
\(672\) −0.513186 + 0.0930165i −0.0197966 + 0.00358819i
\(673\) 27.3836 1.05556 0.527781 0.849381i \(-0.323024\pi\)
0.527781 + 0.849381i \(0.323024\pi\)
\(674\) 9.36209 16.2156i 0.360614 0.624602i
\(675\) 2.88169 + 4.99123i 0.110916 + 0.192113i
\(676\) −13.3222 23.0748i −0.512394 0.887493i
\(677\) −19.3292 + 33.4792i −0.742882 + 1.28671i 0.208296 + 0.978066i \(0.433208\pi\)
−0.951178 + 0.308644i \(0.900125\pi\)
\(678\) −1.49239 −0.0573150
\(679\) −8.49253 10.0234i −0.325913 0.384664i
\(680\) −1.42497 −0.0546450
\(681\) 2.77739 4.81058i 0.106430 0.184342i
\(682\) −0.542584 0.939783i −0.0207766 0.0359861i
\(683\) −19.0423 32.9822i −0.728633 1.26203i −0.957461 0.288562i \(-0.906823\pi\)
0.228828 0.973467i \(-0.426511\pi\)
\(684\) −0.522541 + 0.905068i −0.0199799 + 0.0346061i
\(685\) 2.85203 0.108971
\(686\) 0.265219 + 18.5184i 0.0101261 + 0.707034i
\(687\) −3.12194 −0.119110
\(688\) −3.27626 + 5.67465i −0.124906 + 0.216344i
\(689\) −18.5888 32.1968i −0.708177 1.22660i
\(690\) 0.0304437 + 0.0527300i 0.00115897 + 0.00200740i
\(691\) 10.0832 17.4646i 0.383582 0.664384i −0.607989 0.793945i \(-0.708024\pi\)
0.991571 + 0.129562i \(0.0413570\pi\)
\(692\) −5.22538 −0.198639
\(693\) 1.87265 + 2.21023i 0.0711362 + 0.0839596i
\(694\) 5.24938 0.199264
\(695\) −2.67084 + 4.62604i −0.101311 + 0.175476i
\(696\) 0.171696 + 0.297386i 0.00650811 + 0.0112724i
\(697\) 4.38766 + 7.59965i 0.166195 + 0.287857i
\(698\) 14.6895 25.4429i 0.556004 0.963027i
\(699\) −5.01057 −0.189517
\(700\) −12.7683 + 2.31430i −0.482596 + 0.0874722i
\(701\) −21.0182 −0.793847 −0.396924 0.917852i \(-0.629922\pi\)
−0.396924 + 0.917852i \(0.629922\pi\)
\(702\) −3.69944 + 6.40761i −0.139626 + 0.241840i
\(703\) −1.12573 1.94982i −0.0424577 0.0735390i
\(704\) −0.184881 0.320224i −0.00696797 0.0120689i
\(705\) −0.357247 + 0.618771i −0.0134547 + 0.0233043i
\(706\) 3.77629 0.142123
\(707\) 11.9262 33.2602i 0.448532 1.25088i
\(708\) 0.451822 0.0169805
\(709\) −4.15409 + 7.19509i −0.156010 + 0.270217i −0.933426 0.358769i \(-0.883197\pi\)
0.777416 + 0.628986i \(0.216530\pi\)
\(710\) 0.0760015 + 0.131638i 0.00285228 + 0.00494030i
\(711\) 0.986281 + 1.70829i 0.0369884 + 0.0640659i
\(712\) −5.81105 + 10.0650i −0.217778 + 0.377203i
\(713\) −2.93477 −0.109908
\(714\) 0.812135 2.26491i 0.0303934 0.0847620i
\(715\) −0.719112 −0.0268933
\(716\) 5.20161 9.00945i 0.194393 0.336699i
\(717\) 0.847063 + 1.46716i 0.0316342 + 0.0547920i
\(718\) 9.28414 + 16.0806i 0.346481 + 0.600123i
\(719\) −16.2182 + 28.0908i −0.604838 + 1.04761i 0.387239 + 0.921980i \(0.373429\pi\)
−0.992077 + 0.125631i \(0.959904\pi\)
\(720\) 0.914622 0.0340860
\(721\) 2.28758 0.414631i 0.0851938 0.0154417i
\(722\) −18.8754 −0.702471
\(723\) 0.925394 1.60283i 0.0344158 0.0596099i
\(724\) −3.69973 6.40811i −0.137499 0.238156i
\(725\) 4.27187 + 7.39910i 0.158653 + 0.274796i
\(726\) −1.07072 + 1.85454i −0.0397381 + 0.0688284i
\(727\) −17.1339 −0.635460 −0.317730 0.948181i \(-0.602921\pi\)
−0.317730 + 0.948181i \(0.602921\pi\)
\(728\) −10.7688 12.7100i −0.399118 0.471065i
\(729\) −24.9242 −0.923119
\(730\) 0.926550 1.60483i 0.0342932 0.0593975i
\(731\) −15.1147 26.1795i −0.559038 0.968283i
\(732\) 0.669039 + 1.15881i 0.0247284 + 0.0428308i
\(733\) 3.43584 5.95105i 0.126906 0.219807i −0.795571 0.605861i \(-0.792829\pi\)
0.922476 + 0.386054i \(0.126162\pi\)
\(734\) 15.3228 0.565573
\(735\) −0.0700002 + 0.420424i −0.00258200 + 0.0155076i
\(736\) −1.00000 −0.0368605
\(737\) −2.35617 + 4.08101i −0.0867906 + 0.150326i
\(738\) −2.81624 4.87788i −0.103667 0.179557i
\(739\) 5.63174 + 9.75446i 0.207167 + 0.358823i 0.950821 0.309741i \(-0.100242\pi\)
−0.743654 + 0.668565i \(0.766909\pi\)
\(740\) −0.985203 + 1.70642i −0.0362168 + 0.0627293i
\(741\) 0.438054 0.0160923
\(742\) −10.0987 11.9191i −0.370735 0.437566i
\(743\) −23.7565 −0.871540 −0.435770 0.900058i \(-0.643524\pi\)
−0.435770 + 0.900058i \(0.643524\pi\)
\(744\) 0.289260 0.501013i 0.0106048 0.0183680i
\(745\) −2.27870 3.94683i −0.0834851 0.144601i
\(746\) −2.03891 3.53149i −0.0746497 0.129297i
\(747\) −9.54650 + 16.5350i −0.349288 + 0.604985i
\(748\) 1.70586 0.0623726
\(749\) 37.2305 6.74815i 1.36037 0.246572i
\(750\) −0.603065 −0.0220208
\(751\) 16.9977 29.4409i 0.620256 1.07431i −0.369182 0.929357i \(-0.620362\pi\)
0.989438 0.144957i \(-0.0463045\pi\)
\(752\) −5.86735 10.1625i −0.213960 0.370590i
\(753\) −0.309255 0.535646i −0.0112699 0.0195200i
\(754\) −5.48411 + 9.49876i −0.199720 + 0.345924i
\(755\) 6.56130 0.238790
\(756\) −1.04939 + 2.92656i −0.0381659 + 0.106438i
\(757\) −40.7166 −1.47987 −0.739935 0.672679i \(-0.765144\pi\)
−0.739935 + 0.672679i \(0.765144\pi\)
\(758\) −13.7196 + 23.7631i −0.498319 + 0.863113i
\(759\) −0.0364449 0.0631245i −0.00132287 0.00229127i
\(760\) −0.0545060 0.0944071i −0.00197714 0.00342450i
\(761\) −19.0121 + 32.9300i −0.689189 + 1.19371i 0.282911 + 0.959146i \(0.408700\pi\)
−0.972101 + 0.234565i \(0.924634\pi\)
\(762\) −3.15827 −0.114412
\(763\) 13.5032 37.6581i 0.488849 1.36332i
\(764\) −3.99951 −0.144697
\(765\) −2.10976 + 3.65422i −0.0762786 + 0.132118i
\(766\) 0.302361 + 0.523705i 0.0109248 + 0.0189222i
\(767\) 7.21580 + 12.4981i 0.260547 + 0.451281i
\(768\) 0.0985631 0.170716i 0.00355659 0.00616020i
\(769\) −18.1567 −0.654746 −0.327373 0.944895i \(-0.606163\pi\)
−0.327373 + 0.944895i \(0.606163\pi\)
\(770\) −0.297328 + 0.0538916i −0.0107149 + 0.00194212i
\(771\) 5.31900 0.191559
\(772\) −0.226630 + 0.392534i −0.00815658 + 0.0141276i
\(773\) −12.8258 22.2150i −0.461313 0.799018i 0.537714 0.843128i \(-0.319288\pi\)
−0.999027 + 0.0441098i \(0.985955\pi\)
\(774\) 9.70147 + 16.8034i 0.348712 + 0.603987i
\(775\) 7.19693 12.4655i 0.258521 0.447772i
\(776\)