Properties

Label 322.2.e.a.93.1
Level $322$
Weight $2$
Character 322.93
Analytic conductor $2.571$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 322.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.57118294509\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.310217769.2
Defining polynomial: \(x^{8} + 4 x^{6} - 2 x^{5} + 15 x^{4} - 4 x^{3} + 5 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 93.1
Root \(-1.03075 - 1.78531i\) of defining polynomial
Character \(\chi\) \(=\) 322.93
Dual form 322.2.e.a.277.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.28821 - 2.23124i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.663319 + 1.14890i) q^{5} +2.57641 q^{6} +(-1.46157 + 2.20541i) q^{7} +1.00000 q^{8} +(-1.81896 + 3.15053i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.28821 - 2.23124i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.663319 + 1.14890i) q^{5} +2.57641 q^{6} +(-1.46157 + 2.20541i) q^{7} +1.00000 q^{8} +(-1.81896 + 3.15053i) q^{9} +(-0.663319 - 1.14890i) q^{10} +(-1.04567 - 1.81115i) q^{11} +(-1.28821 + 2.23124i) q^{12} +3.11142 q^{13} +(-1.17915 - 2.36846i) q^{14} +3.41797 q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.47460 + 6.01818i) q^{17} +(-1.81896 - 3.15053i) q^{18} +(-3.88326 + 6.72601i) q^{19} +1.32664 q^{20} +(6.80360 + 0.420095i) q^{21} +2.09133 q^{22} +(0.500000 - 0.866025i) q^{23} +(-1.28821 - 2.23124i) q^{24} +(1.62002 + 2.80595i) q^{25} +(-1.55571 + 2.69457i) q^{26} +1.64353 q^{27} +(2.64072 + 0.163054i) q^{28} +1.15845 q^{29} +(-1.70898 + 2.96005i) q^{30} +(4.35694 + 7.54644i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-2.69407 + 4.66626i) q^{33} -6.94919 q^{34} +(-1.56431 - 3.14209i) q^{35} +3.63791 q^{36} +(1.65472 - 2.86606i) q^{37} +(-3.88326 - 6.72601i) q^{38} +(-4.00815 - 6.94232i) q^{39} +(-0.663319 + 1.14890i) q^{40} -4.26425 q^{41} +(-3.76561 + 5.68204i) q^{42} -8.36716 q^{43} +(-1.04567 + 1.81115i) q^{44} +(-2.41310 - 4.17961i) q^{45} +(0.500000 + 0.866025i) q^{46} +(1.74065 - 3.01490i) q^{47} +2.57641 q^{48} +(-2.72763 - 6.44671i) q^{49} -3.24003 q^{50} +(8.95200 - 15.5053i) q^{51} +(-1.55571 - 2.69457i) q^{52} +(-2.12002 - 3.67198i) q^{53} +(-0.821765 + 1.42334i) q^{54} +2.77444 q^{55} +(-1.46157 + 2.20541i) q^{56} +20.0098 q^{57} +(-0.579223 + 1.00324i) q^{58} +(-4.59225 - 7.95401i) q^{59} +(-1.70898 - 2.96005i) q^{60} +(-6.01934 + 10.4258i) q^{61} -8.71388 q^{62} +(-4.28965 - 8.61625i) q^{63} +1.00000 q^{64} +(-2.06386 + 3.57471i) q^{65} +(-2.69407 - 4.66626i) q^{66} +(3.63160 + 6.29011i) q^{67} +(3.47460 - 6.01818i) q^{68} -2.57641 q^{69} +(3.50328 + 0.216314i) q^{70} -7.41708 q^{71} +(-1.81896 + 3.15053i) q^{72} +(2.18402 + 3.78284i) q^{73} +(1.65472 + 2.86606i) q^{74} +(4.17383 - 7.22929i) q^{75} +7.76653 q^{76} +(5.52262 + 0.341000i) q^{77} +8.01631 q^{78} +(0.398625 - 0.690439i) q^{79} +(-0.663319 - 1.14890i) q^{80} +(3.33966 + 5.78446i) q^{81} +(2.13212 - 3.69295i) q^{82} +10.3746 q^{83} +(-3.03798 - 6.10213i) q^{84} -9.21906 q^{85} +(4.18358 - 7.24617i) q^{86} +(-1.49232 - 2.58477i) q^{87} +(-1.04567 - 1.81115i) q^{88} +(-8.32132 + 14.4129i) q^{89} +4.82619 q^{90} +(-4.54756 + 6.86194i) q^{91} -1.00000 q^{92} +(11.2253 - 19.4428i) q^{93} +(1.74065 + 3.01490i) q^{94} +(-5.15168 - 8.92298i) q^{95} +(-1.28821 + 2.23124i) q^{96} +6.65800 q^{97} +(6.94683 + 0.861161i) q^{98} +7.60808 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 4q^{2} - 3q^{3} - 4q^{4} - 7q^{5} + 6q^{6} - q^{7} + 8q^{8} + q^{9} + O(q^{10}) \) \( 8q - 4q^{2} - 3q^{3} - 4q^{4} - 7q^{5} + 6q^{6} - q^{7} + 8q^{8} + q^{9} - 7q^{10} - 2q^{11} - 3q^{12} + 2q^{13} - q^{14} + 18q^{15} - 4q^{16} - 5q^{17} + q^{18} - 11q^{19} + 14q^{20} + q^{21} + 4q^{22} + 4q^{23} - 3q^{24} - 3q^{25} - q^{26} + 6q^{27} + 2q^{28} + 4q^{29} - 9q^{30} - 6q^{31} - 4q^{32} - 15q^{33} + 10q^{34} - 8q^{35} - 2q^{36} + 8q^{37} - 11q^{38} - 3q^{39} - 7q^{40} + 18q^{41} - 2q^{42} + 8q^{43} - 2q^{44} - 3q^{45} + 4q^{46} - 11q^{47} + 6q^{48} - 19q^{49} + 6q^{50} + 18q^{51} - q^{52} - q^{53} - 3q^{54} + 20q^{55} - q^{56} + 6q^{57} - 2q^{58} - 12q^{59} - 9q^{60} - 21q^{61} + 12q^{62} - 15q^{63} + 8q^{64} + 24q^{65} - 15q^{66} + 3q^{67} - 5q^{68} - 6q^{69} - 8q^{70} + 22q^{71} + q^{72} + 16q^{73} + 8q^{74} - 18q^{75} + 22q^{76} - 19q^{77} + 6q^{78} + 21q^{79} - 7q^{80} + 8q^{81} - 9q^{82} + 8q^{83} + q^{84} + 20q^{85} - 4q^{86} + 7q^{87} - 2q^{88} - 27q^{89} + 6q^{90} - 54q^{91} - 8q^{92} + 27q^{93} - 11q^{94} - 5q^{95} - 3q^{96} + 12q^{97} + 14q^{98} + 26q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.28821 2.23124i −0.743747 1.28821i −0.950778 0.309873i \(-0.899713\pi\)
0.207031 0.978334i \(-0.433620\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.663319 + 1.14890i −0.296645 + 0.513804i −0.975366 0.220592i \(-0.929201\pi\)
0.678721 + 0.734396i \(0.262535\pi\)
\(6\) 2.57641 1.05182
\(7\) −1.46157 + 2.20541i −0.552422 + 0.833565i
\(8\) 1.00000 0.353553
\(9\) −1.81896 + 3.15053i −0.606319 + 1.05018i
\(10\) −0.663319 1.14890i −0.209760 0.363315i
\(11\) −1.04567 1.81115i −0.315280 0.546081i 0.664217 0.747540i \(-0.268765\pi\)
−0.979497 + 0.201459i \(0.935432\pi\)
\(12\) −1.28821 + 2.23124i −0.371873 + 0.644104i
\(13\) 3.11142 0.862952 0.431476 0.902124i \(-0.357993\pi\)
0.431476 + 0.902124i \(0.357993\pi\)
\(14\) −1.17915 2.36846i −0.315142 0.632997i
\(15\) 3.41797 0.882516
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.47460 + 6.01818i 0.842713 + 1.45962i 0.887593 + 0.460629i \(0.152376\pi\)
−0.0448794 + 0.998992i \(0.514290\pi\)
\(18\) −1.81896 3.15053i −0.428732 0.742586i
\(19\) −3.88326 + 6.72601i −0.890882 + 1.54305i −0.0520619 + 0.998644i \(0.516579\pi\)
−0.838820 + 0.544409i \(0.816754\pi\)
\(20\) 1.32664 0.296645
\(21\) 6.80360 + 0.420095i 1.48467 + 0.0916722i
\(22\) 2.09133 0.445873
\(23\) 0.500000 0.866025i 0.104257 0.180579i
\(24\) −1.28821 2.23124i −0.262954 0.455450i
\(25\) 1.62002 + 2.80595i 0.324003 + 0.561190i
\(26\) −1.55571 + 2.69457i −0.305100 + 0.528448i
\(27\) 1.64353 0.316298
\(28\) 2.64072 + 0.163054i 0.499050 + 0.0308143i
\(29\) 1.15845 0.215118 0.107559 0.994199i \(-0.465697\pi\)
0.107559 + 0.994199i \(0.465697\pi\)
\(30\) −1.70898 + 2.96005i −0.312016 + 0.540428i
\(31\) 4.35694 + 7.54644i 0.782530 + 1.35538i 0.930464 + 0.366384i \(0.119404\pi\)
−0.147934 + 0.988997i \(0.547262\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −2.69407 + 4.66626i −0.468977 + 0.812292i
\(34\) −6.94919 −1.19178
\(35\) −1.56431 3.14209i −0.264416 0.531110i
\(36\) 3.63791 0.606319
\(37\) 1.65472 2.86606i 0.272034 0.471177i −0.697348 0.716732i \(-0.745637\pi\)
0.969383 + 0.245555i \(0.0789702\pi\)
\(38\) −3.88326 6.72601i −0.629949 1.09110i
\(39\) −4.00815 6.94232i −0.641818 1.11166i
\(40\) −0.663319 + 1.14890i −0.104880 + 0.181657i
\(41\) −4.26425 −0.665964 −0.332982 0.942933i \(-0.608055\pi\)
−0.332982 + 0.942933i \(0.608055\pi\)
\(42\) −3.76561 + 5.68204i −0.581046 + 0.876758i
\(43\) −8.36716 −1.27598 −0.637990 0.770045i \(-0.720234\pi\)
−0.637990 + 0.770045i \(0.720234\pi\)
\(44\) −1.04567 + 1.81115i −0.157640 + 0.273040i
\(45\) −2.41310 4.17961i −0.359723 0.623059i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) 1.74065 3.01490i 0.253900 0.439768i −0.710696 0.703499i \(-0.751620\pi\)
0.964596 + 0.263731i \(0.0849532\pi\)
\(48\) 2.57641 0.371873
\(49\) −2.72763 6.44671i −0.389661 0.920958i
\(50\) −3.24003 −0.458210
\(51\) 8.95200 15.5053i 1.25353 2.17118i
\(52\) −1.55571 2.69457i −0.215738 0.373669i
\(53\) −2.12002 3.67198i −0.291207 0.504385i 0.682889 0.730522i \(-0.260723\pi\)
−0.974095 + 0.226138i \(0.927390\pi\)
\(54\) −0.821765 + 1.42334i −0.111828 + 0.193692i
\(55\) 2.77444 0.374105
\(56\) −1.46157 + 2.20541i −0.195311 + 0.294710i
\(57\) 20.0098 2.65036
\(58\) −0.579223 + 1.00324i −0.0760557 + 0.131732i
\(59\) −4.59225 7.95401i −0.597860 1.03552i −0.993136 0.116961i \(-0.962685\pi\)
0.395277 0.918562i \(-0.370649\pi\)
\(60\) −1.70898 2.96005i −0.220629 0.382140i
\(61\) −6.01934 + 10.4258i −0.770698 + 1.33489i 0.166483 + 0.986044i \(0.446759\pi\)
−0.937181 + 0.348844i \(0.886574\pi\)
\(62\) −8.71388 −1.10666
\(63\) −4.28965 8.61625i −0.540446 1.08555i
\(64\) 1.00000 0.125000
\(65\) −2.06386 + 3.57471i −0.255991 + 0.443389i
\(66\) −2.69407 4.66626i −0.331617 0.574377i
\(67\) 3.63160 + 6.29011i 0.443670 + 0.768459i 0.997959 0.0638656i \(-0.0203429\pi\)
−0.554288 + 0.832325i \(0.687010\pi\)
\(68\) 3.47460 6.01818i 0.421357 0.729811i
\(69\) −2.57641 −0.310164
\(70\) 3.50328 + 0.216314i 0.418722 + 0.0258544i
\(71\) −7.41708 −0.880245 −0.440123 0.897938i \(-0.645065\pi\)
−0.440123 + 0.897938i \(0.645065\pi\)
\(72\) −1.81896 + 3.15053i −0.214366 + 0.371293i
\(73\) 2.18402 + 3.78284i 0.255621 + 0.442748i 0.965064 0.262015i \(-0.0843868\pi\)
−0.709443 + 0.704763i \(0.751054\pi\)
\(74\) 1.65472 + 2.86606i 0.192357 + 0.333173i
\(75\) 4.17383 7.22929i 0.481953 0.834767i
\(76\) 7.76653 0.890882
\(77\) 5.52262 + 0.341000i 0.629361 + 0.0388606i
\(78\) 8.01631 0.907668
\(79\) 0.398625 0.690439i 0.0448488 0.0776805i −0.842730 0.538337i \(-0.819053\pi\)
0.887578 + 0.460657i \(0.152386\pi\)
\(80\) −0.663319 1.14890i −0.0741613 0.128451i
\(81\) 3.33966 + 5.78446i 0.371074 + 0.642718i
\(82\) 2.13212 3.69295i 0.235454 0.407818i
\(83\) 10.3746 1.13876 0.569381 0.822074i \(-0.307183\pi\)
0.569381 + 0.822074i \(0.307183\pi\)
\(84\) −3.03798 6.10213i −0.331471 0.665797i
\(85\) −9.21906 −0.999947
\(86\) 4.18358 7.24617i 0.451127 0.781375i
\(87\) −1.49232 2.58477i −0.159993 0.277117i
\(88\) −1.04567 1.81115i −0.111468 0.193069i
\(89\) −8.32132 + 14.4129i −0.882058 + 1.52777i −0.0330095 + 0.999455i \(0.510509\pi\)
−0.849049 + 0.528315i \(0.822824\pi\)
\(90\) 4.82619 0.508725
\(91\) −4.54756 + 6.86194i −0.476713 + 0.719327i
\(92\) −1.00000 −0.104257
\(93\) 11.2253 19.4428i 1.16401 2.01612i
\(94\) 1.74065 + 3.01490i 0.179534 + 0.310963i
\(95\) −5.15168 8.92298i −0.528552 0.915478i
\(96\) −1.28821 + 2.23124i −0.131477 + 0.227725i
\(97\) 6.65800 0.676018 0.338009 0.941143i \(-0.390247\pi\)
0.338009 + 0.941143i \(0.390247\pi\)
\(98\) 6.94683 + 0.861161i 0.701735 + 0.0869904i
\(99\) 7.60808 0.764641
\(100\) 1.62002 2.80595i 0.162002 0.280595i
\(101\) −4.57940 7.93175i −0.455667 0.789238i 0.543059 0.839694i \(-0.317266\pi\)
−0.998726 + 0.0504560i \(0.983933\pi\)
\(102\) 8.95200 + 15.5053i 0.886380 + 1.53526i
\(103\) −2.26606 + 3.92492i −0.223281 + 0.386734i −0.955802 0.294010i \(-0.905010\pi\)
0.732521 + 0.680744i \(0.238343\pi\)
\(104\) 3.11142 0.305100
\(105\) −4.99560 + 7.53801i −0.487521 + 0.735634i
\(106\) 4.24003 0.411828
\(107\) 6.16722 10.6819i 0.596207 1.03266i −0.397168 0.917746i \(-0.630007\pi\)
0.993375 0.114916i \(-0.0366597\pi\)
\(108\) −0.821765 1.42334i −0.0790744 0.136961i
\(109\) 0.549920 + 0.952489i 0.0526728 + 0.0912319i 0.891160 0.453690i \(-0.149893\pi\)
−0.838487 + 0.544922i \(0.816559\pi\)
\(110\) −1.38722 + 2.40273i −0.132266 + 0.229092i
\(111\) −8.52649 −0.809299
\(112\) −1.17915 2.36846i −0.111419 0.223798i
\(113\) 4.44278 0.417942 0.208971 0.977922i \(-0.432989\pi\)
0.208971 + 0.977922i \(0.432989\pi\)
\(114\) −10.0049 + 17.3290i −0.937045 + 1.62301i
\(115\) 0.663319 + 1.14890i 0.0618548 + 0.107136i
\(116\) −0.579223 1.00324i −0.0537795 0.0931489i
\(117\) −5.65954 + 9.80260i −0.523224 + 0.906251i
\(118\) 9.18450 0.845501
\(119\) −18.3509 1.13309i −1.68222 0.103871i
\(120\) 3.41797 0.312016
\(121\) 3.31317 5.73857i 0.301197 0.521689i
\(122\) −6.01934 10.4258i −0.544966 0.943908i
\(123\) 5.49324 + 9.51457i 0.495308 + 0.857899i
\(124\) 4.35694 7.54644i 0.391265 0.677691i
\(125\) −10.9315 −0.977746
\(126\) 9.60672 + 0.593177i 0.855835 + 0.0528444i
\(127\) 2.41201 0.214031 0.107015 0.994257i \(-0.465871\pi\)
0.107015 + 0.994257i \(0.465871\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 10.7786 + 18.6691i 0.949006 + 1.64373i
\(130\) −2.06386 3.57471i −0.181013 0.313523i
\(131\) −0.761712 + 1.31932i −0.0665511 + 0.115270i −0.897381 0.441257i \(-0.854533\pi\)
0.830830 + 0.556526i \(0.187866\pi\)
\(132\) 5.38814 0.468977
\(133\) −9.15792 18.3947i −0.794092 1.59502i
\(134\) −7.26319 −0.627444
\(135\) −1.09018 + 1.88825i −0.0938281 + 0.162515i
\(136\) 3.47460 + 6.01818i 0.297944 + 0.516054i
\(137\) −4.81334 8.33695i −0.411231 0.712274i 0.583793 0.811902i \(-0.301568\pi\)
−0.995025 + 0.0996287i \(0.968235\pi\)
\(138\) 1.28821 2.23124i 0.109660 0.189936i
\(139\) 8.57676 0.727471 0.363736 0.931502i \(-0.381501\pi\)
0.363736 + 0.931502i \(0.381501\pi\)
\(140\) −1.93897 + 2.92577i −0.163873 + 0.247273i
\(141\) −8.96928 −0.755349
\(142\) 3.70854 6.42338i 0.311214 0.539038i
\(143\) −3.25350 5.63523i −0.272072 0.471242i
\(144\) −1.81896 3.15053i −0.151580 0.262544i
\(145\) −0.768419 + 1.33094i −0.0638137 + 0.110529i
\(146\) −4.36805 −0.361502
\(147\) −10.8704 + 14.3907i −0.896576 + 1.18692i
\(148\) −3.30944 −0.272034
\(149\) −8.01069 + 13.8749i −0.656261 + 1.13668i 0.325315 + 0.945606i \(0.394530\pi\)
−0.981576 + 0.191072i \(0.938804\pi\)
\(150\) 4.17383 + 7.22929i 0.340792 + 0.590269i
\(151\) 6.96789 + 12.0687i 0.567039 + 0.982140i 0.996857 + 0.0792244i \(0.0252443\pi\)
−0.429818 + 0.902915i \(0.641422\pi\)
\(152\) −3.88326 + 6.72601i −0.314974 + 0.545552i
\(153\) −25.2806 −2.04381
\(154\) −3.05663 + 4.61223i −0.246310 + 0.371664i
\(155\) −11.5602 −0.928535
\(156\) −4.00815 + 6.94232i −0.320909 + 0.555831i
\(157\) 7.71135 + 13.3564i 0.615433 + 1.06596i 0.990308 + 0.138885i \(0.0443520\pi\)
−0.374876 + 0.927075i \(0.622315\pi\)
\(158\) 0.398625 + 0.690439i 0.0317129 + 0.0549284i
\(159\) −5.46204 + 9.46053i −0.433168 + 0.750269i
\(160\) 1.32664 0.104880
\(161\) 1.17915 + 2.36846i 0.0929302 + 0.186661i
\(162\) −6.67932 −0.524777
\(163\) 4.30693 7.45983i 0.337345 0.584299i −0.646587 0.762840i \(-0.723804\pi\)
0.983932 + 0.178541i \(0.0571378\pi\)
\(164\) 2.13212 + 3.69295i 0.166491 + 0.288371i
\(165\) −3.57405 6.19044i −0.278240 0.481925i
\(166\) −5.18730 + 8.98468i −0.402613 + 0.697346i
\(167\) 11.9693 0.926211 0.463105 0.886303i \(-0.346735\pi\)
0.463105 + 0.886303i \(0.346735\pi\)
\(168\) 6.80360 + 0.420095i 0.524909 + 0.0324110i
\(169\) −3.31907 −0.255313
\(170\) 4.60953 7.98394i 0.353535 0.612340i
\(171\) −14.1270 24.4686i −1.08032 1.87116i
\(172\) 4.18358 + 7.24617i 0.318995 + 0.552515i
\(173\) 9.90984 17.1644i 0.753431 1.30498i −0.192719 0.981254i \(-0.561731\pi\)
0.946150 0.323727i \(-0.104936\pi\)
\(174\) 2.98464 0.226265
\(175\) −8.55603 0.528301i −0.646775 0.0399358i
\(176\) 2.09133 0.157640
\(177\) −11.8315 + 20.4928i −0.889313 + 1.54033i
\(178\) −8.32132 14.4129i −0.623709 1.08030i
\(179\) 8.20481 + 14.2112i 0.613257 + 1.06219i 0.990688 + 0.136154i \(0.0434742\pi\)
−0.377431 + 0.926038i \(0.623193\pi\)
\(180\) −2.41310 + 4.17961i −0.179862 + 0.311529i
\(181\) −11.2306 −0.834766 −0.417383 0.908731i \(-0.637053\pi\)
−0.417383 + 0.908731i \(0.637053\pi\)
\(182\) −3.66884 7.36927i −0.271952 0.546247i
\(183\) 31.0167 2.29282
\(184\) 0.500000 0.866025i 0.0368605 0.0638442i
\(185\) 2.19521 + 3.80222i 0.161395 + 0.279545i
\(186\) 11.2253 + 19.4428i 0.823078 + 1.42561i
\(187\) 7.26653 12.5860i 0.531381 0.920379i
\(188\) −3.48130 −0.253900
\(189\) −2.40213 + 3.62465i −0.174730 + 0.263655i
\(190\) 10.3034 0.747485
\(191\) −3.18402 + 5.51489i −0.230388 + 0.399044i −0.957922 0.287028i \(-0.907333\pi\)
0.727534 + 0.686071i \(0.240666\pi\)
\(192\) −1.28821 2.23124i −0.0929684 0.161026i
\(193\) 7.02750 + 12.1720i 0.505850 + 0.876158i 0.999977 + 0.00676850i \(0.00215450\pi\)
−0.494127 + 0.869390i \(0.664512\pi\)
\(194\) −3.32900 + 5.76600i −0.239008 + 0.413975i
\(195\) 10.6347 0.761569
\(196\) −4.21920 + 5.58555i −0.301371 + 0.398968i
\(197\) −6.95570 −0.495573 −0.247786 0.968815i \(-0.579703\pi\)
−0.247786 + 0.968815i \(0.579703\pi\)
\(198\) −3.80404 + 6.58879i −0.270341 + 0.468245i
\(199\) −10.5449 18.2642i −0.747506 1.29472i −0.949015 0.315231i \(-0.897918\pi\)
0.201509 0.979487i \(-0.435415\pi\)
\(200\) 1.62002 + 2.80595i 0.114552 + 0.198411i
\(201\) 9.35650 16.2059i 0.659956 1.14308i
\(202\) 9.15879 0.644410
\(203\) −1.69315 + 2.55484i −0.118836 + 0.179315i
\(204\) −17.9040 −1.25353
\(205\) 2.82856 4.89920i 0.197555 0.342175i
\(206\) −2.26606 3.92492i −0.157884 0.273462i
\(207\) 1.81896 + 3.15053i 0.126426 + 0.218977i
\(208\) −1.55571 + 2.69457i −0.107869 + 0.186835i
\(209\) 16.2424 1.12351
\(210\) −4.03030 8.09532i −0.278117 0.558630i
\(211\) 26.5036 1.82458 0.912290 0.409544i \(-0.134312\pi\)
0.912290 + 0.409544i \(0.134312\pi\)
\(212\) −2.12002 + 3.67198i −0.145603 + 0.252192i
\(213\) 9.55474 + 16.5493i 0.654680 + 1.13394i
\(214\) 6.16722 + 10.6819i 0.421582 + 0.730202i
\(215\) 5.55009 9.61304i 0.378513 0.655604i
\(216\) 1.64353 0.111828
\(217\) −23.0109 1.42083i −1.56208 0.0964525i
\(218\) −1.09984 −0.0744906
\(219\) 5.62695 9.74617i 0.380234 0.658585i
\(220\) −1.38722 2.40273i −0.0935263 0.161992i
\(221\) 10.8109 + 18.7251i 0.727221 + 1.25958i
\(222\) 4.26325 7.38416i 0.286130 0.495592i
\(223\) −9.80109 −0.656329 −0.328165 0.944621i \(-0.606430\pi\)
−0.328165 + 0.944621i \(0.606430\pi\)
\(224\) 2.64072 + 0.163054i 0.176441 + 0.0108945i
\(225\) −11.7870 −0.785797
\(226\) −2.22139 + 3.84756i −0.147765 + 0.255936i
\(227\) 14.2481 + 24.6784i 0.945679 + 1.63796i 0.754387 + 0.656430i \(0.227934\pi\)
0.191292 + 0.981533i \(0.438732\pi\)
\(228\) −10.0049 17.3290i −0.662591 1.14764i
\(229\) 12.5957 21.8164i 0.832347 1.44167i −0.0638246 0.997961i \(-0.520330\pi\)
0.896172 0.443707i \(-0.146337\pi\)
\(230\) −1.32664 −0.0874759
\(231\) −6.35343 12.7616i −0.418025 0.839650i
\(232\) 1.15845 0.0760557
\(233\) 6.58123 11.3990i 0.431151 0.746775i −0.565822 0.824527i \(-0.691441\pi\)
0.996973 + 0.0777524i \(0.0247744\pi\)
\(234\) −5.65954 9.80260i −0.369975 0.640816i
\(235\) 2.30921 + 3.99967i 0.150636 + 0.260910i
\(236\) −4.59225 + 7.95401i −0.298930 + 0.517762i
\(237\) −2.05405 −0.133425
\(238\) 10.1567 15.3258i 0.658363 0.993423i
\(239\) −8.78283 −0.568114 −0.284057 0.958807i \(-0.591681\pi\)
−0.284057 + 0.958807i \(0.591681\pi\)
\(240\) −1.70898 + 2.96005i −0.110314 + 0.191070i
\(241\) −0.763776 1.32290i −0.0491992 0.0852154i 0.840377 0.542002i \(-0.182334\pi\)
−0.889576 + 0.456787i \(0.849000\pi\)
\(242\) 3.31317 + 5.73857i 0.212978 + 0.368890i
\(243\) 11.0697 19.1732i 0.710118 1.22996i
\(244\) 12.0387 0.770698
\(245\) 9.21592 + 1.14245i 0.588784 + 0.0729884i
\(246\) −10.9865 −0.700472
\(247\) −12.0825 + 20.9274i −0.768789 + 1.33158i
\(248\) 4.35694 + 7.54644i 0.276666 + 0.479200i
\(249\) −13.3646 23.1483i −0.846950 1.46696i
\(250\) 5.46577 9.46699i 0.345686 0.598745i
\(251\) 1.04230 0.0657895 0.0328947 0.999459i \(-0.489527\pi\)
0.0328947 + 0.999459i \(0.489527\pi\)
\(252\) −5.31707 + 8.02307i −0.334944 + 0.505406i
\(253\) −2.09133 −0.131481
\(254\) −1.20600 + 2.08886i −0.0756714 + 0.131067i
\(255\) 11.8761 + 20.5699i 0.743707 + 1.28814i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.38705 5.86654i 0.211278 0.365944i −0.740837 0.671685i \(-0.765571\pi\)
0.952115 + 0.305741i \(0.0989041\pi\)
\(258\) −21.5573 −1.34210
\(259\) 3.90234 + 7.83828i 0.242479 + 0.487047i
\(260\) 4.12772 0.255991
\(261\) −2.10716 + 3.64972i −0.130430 + 0.225912i
\(262\) −0.761712 1.31932i −0.0470588 0.0815082i
\(263\) −0.228543 0.395849i −0.0140926 0.0244091i 0.858893 0.512155i \(-0.171153\pi\)
−0.872986 + 0.487746i \(0.837819\pi\)
\(264\) −2.69407 + 4.66626i −0.165808 + 0.287189i
\(265\) 5.62499 0.345540
\(266\) 20.5092 + 1.26636i 1.25750 + 0.0776458i
\(267\) 42.8783 2.62411
\(268\) 3.63160 6.29011i 0.221835 0.384229i
\(269\) −9.27674 16.0678i −0.565613 0.979671i −0.996992 0.0775000i \(-0.975306\pi\)
0.431379 0.902171i \(-0.358027\pi\)
\(270\) −1.09018 1.88825i −0.0663465 0.114916i
\(271\) −9.14545 + 15.8404i −0.555546 + 0.962235i 0.442314 + 0.896860i \(0.354158\pi\)
−0.997861 + 0.0653746i \(0.979176\pi\)
\(272\) −6.94919 −0.421357
\(273\) 21.1688 + 1.30709i 1.28120 + 0.0791088i
\(274\) 9.62668 0.581569
\(275\) 3.38799 5.86817i 0.204304 0.353864i
\(276\) 1.28821 + 2.23124i 0.0775410 + 0.134305i
\(277\) −10.0783 17.4562i −0.605548 1.04884i −0.991965 0.126516i \(-0.959620\pi\)
0.386416 0.922325i \(-0.373713\pi\)
\(278\) −4.28838 + 7.42769i −0.257200 + 0.445483i
\(279\) −31.7004 −1.89785
\(280\) −1.56431 3.14209i −0.0934852 0.187776i
\(281\) −7.27365 −0.433909 −0.216955 0.976182i \(-0.569612\pi\)
−0.216955 + 0.976182i \(0.569612\pi\)
\(282\) 4.48464 7.76762i 0.267056 0.462555i
\(283\) 1.38120 + 2.39231i 0.0821038 + 0.142208i 0.904153 0.427208i \(-0.140503\pi\)
−0.822050 + 0.569416i \(0.807169\pi\)
\(284\) 3.70854 + 6.42338i 0.220061 + 0.381157i
\(285\) −13.2729 + 22.9893i −0.786217 + 1.36177i
\(286\) 6.50701 0.384767
\(287\) 6.23250 9.40440i 0.367893 0.555124i
\(288\) 3.63791 0.214366
\(289\) −15.6456 + 27.0990i −0.920331 + 1.59406i
\(290\) −0.768419 1.33094i −0.0451231 0.0781556i
\(291\) −8.57689 14.8556i −0.502786 0.870851i
\(292\) 2.18402 3.78284i 0.127810 0.221374i
\(293\) 25.3756 1.48246 0.741228 0.671253i \(-0.234244\pi\)
0.741228 + 0.671253i \(0.234244\pi\)
\(294\) −7.02750 16.6094i −0.409852 0.968680i
\(295\) 12.1845 0.709409
\(296\) 1.65472 2.86606i 0.0961787 0.166586i
\(297\) −1.71858 2.97667i −0.0997223 0.172724i
\(298\) −8.01069 13.8749i −0.464047 0.803753i
\(299\) 1.55571 2.69457i 0.0899690 0.155831i
\(300\) −8.34767 −0.481953
\(301\) 12.2292 18.4530i 0.704879 1.06361i
\(302\) −13.9358 −0.801914
\(303\) −11.7984 + 20.4355i −0.677802 + 1.17399i
\(304\) −3.88326 6.72601i −0.222720 0.385763i
\(305\) −7.98549 13.8313i −0.457248 0.791976i
\(306\) 12.6403 21.8936i 0.722597 1.25157i
\(307\) −29.2469 −1.66921 −0.834606 0.550848i \(-0.814304\pi\)
−0.834606 + 0.550848i \(0.814304\pi\)
\(308\) −2.46600 4.95323i −0.140513 0.282237i
\(309\) 11.6766 0.664259
\(310\) 5.78008 10.0114i 0.328287 0.568609i
\(311\) −13.6414 23.6276i −0.773534 1.33980i −0.935615 0.353023i \(-0.885154\pi\)
0.162081 0.986778i \(-0.448180\pi\)
\(312\) −4.00815 6.94232i −0.226917 0.393032i
\(313\) −1.28838 + 2.23154i −0.0728236 + 0.126134i −0.900138 0.435605i \(-0.856534\pi\)
0.827314 + 0.561739i \(0.189868\pi\)
\(314\) −15.4227 −0.870353
\(315\) 12.7446 + 0.786930i 0.718079 + 0.0443385i
\(316\) −0.797250 −0.0448488
\(317\) 6.25323 10.8309i 0.351216 0.608325i −0.635246 0.772310i \(-0.719101\pi\)
0.986463 + 0.163985i \(0.0524348\pi\)
\(318\) −5.46204 9.46053i −0.306296 0.530520i
\(319\) −1.21135 2.09812i −0.0678224 0.117472i
\(320\) −0.663319 + 1.14890i −0.0370806 + 0.0642256i
\(321\) −31.7786 −1.77371
\(322\) −2.64072 0.163054i −0.147162 0.00908665i
\(323\) −53.9711 −3.00303
\(324\) 3.33966 5.78446i 0.185537 0.321359i
\(325\) 5.04055 + 8.73049i 0.279599 + 0.484280i
\(326\) 4.30693 + 7.45983i 0.238539 + 0.413162i
\(327\) 1.41682 2.45401i 0.0783504 0.135707i
\(328\) −4.26425 −0.235454
\(329\) 4.10498 + 8.24532i 0.226315 + 0.454579i
\(330\) 7.14810 0.393490
\(331\) −1.36699 + 2.36769i −0.0751363 + 0.130140i −0.901146 0.433517i \(-0.857273\pi\)
0.826009 + 0.563657i \(0.190606\pi\)
\(332\) −5.18730 8.98468i −0.284690 0.493098i
\(333\) 6.01973 + 10.4265i 0.329879 + 0.571368i
\(334\) −5.98464 + 10.3657i −0.327465 + 0.567186i
\(335\) −9.63562 −0.526450
\(336\) −3.76561 + 5.68204i −0.205431 + 0.309981i
\(337\) 12.4355 0.677405 0.338703 0.940893i \(-0.390012\pi\)
0.338703 + 0.940893i \(0.390012\pi\)
\(338\) 1.65954 2.87440i 0.0902669 0.156347i
\(339\) −5.72323 9.91292i −0.310843 0.538396i
\(340\) 4.60953 + 7.98394i 0.249987 + 0.432990i
\(341\) 9.11181 15.7821i 0.493432 0.854649i
\(342\) 28.2540 1.52780
\(343\) 18.2042 + 3.40680i 0.982936 + 0.183950i
\(344\) −8.36716 −0.451127
\(345\) 1.70898 2.96005i 0.0920086 0.159364i
\(346\) 9.90984 + 17.1644i 0.532756 + 0.922761i
\(347\) −1.10374 1.91173i −0.0592518 0.102627i 0.834878 0.550435i \(-0.185538\pi\)
−0.894130 + 0.447808i \(0.852205\pi\)
\(348\) −1.49232 + 2.58477i −0.0799967 + 0.138558i
\(349\) 10.7710 0.576558 0.288279 0.957546i \(-0.406917\pi\)
0.288279 + 0.957546i \(0.406917\pi\)
\(350\) 4.73554 7.14559i 0.253125 0.381948i
\(351\) 5.11371 0.272950
\(352\) −1.04567 + 1.81115i −0.0557342 + 0.0965344i
\(353\) 6.94849 + 12.0351i 0.369831 + 0.640566i 0.989539 0.144267i \(-0.0460823\pi\)
−0.619708 + 0.784832i \(0.712749\pi\)
\(354\) −11.8315 20.4928i −0.628839 1.08918i
\(355\) 4.91989 8.52149i 0.261120 0.452274i
\(356\) 16.6426 0.882058
\(357\) 21.1115 + 42.4049i 1.11734 + 2.24430i
\(358\) −16.4096 −0.867276
\(359\) 9.73350 16.8589i 0.513714 0.889780i −0.486159 0.873870i \(-0.661602\pi\)
0.999873 0.0159091i \(-0.00506425\pi\)
\(360\) −2.41310 4.17961i −0.127181 0.220285i
\(361\) −20.6595 35.7833i −1.08734 1.88333i
\(362\) 5.61532 9.72601i 0.295135 0.511188i
\(363\) −17.0722 −0.896057
\(364\) 8.21639 + 0.507330i 0.430656 + 0.0265913i
\(365\) −5.79482 −0.303315
\(366\) −15.5083 + 26.8612i −0.810633 + 1.40406i
\(367\) −8.59369 14.8847i −0.448587 0.776976i 0.549707 0.835357i \(-0.314739\pi\)
−0.998294 + 0.0583816i \(0.981406\pi\)
\(368\) 0.500000 + 0.866025i 0.0260643 + 0.0451447i
\(369\) 7.75648 13.4346i 0.403786 0.699379i
\(370\) −4.39043 −0.228248
\(371\) 11.1967 + 0.691355i 0.581306 + 0.0358934i
\(372\) −22.4506 −1.16401
\(373\) 4.71828 8.17231i 0.244303 0.423146i −0.717632 0.696422i \(-0.754774\pi\)
0.961936 + 0.273276i \(0.0881074\pi\)
\(374\) 7.26653 + 12.5860i 0.375743 + 0.650806i
\(375\) 14.0821 + 24.3909i 0.727196 + 1.25954i
\(376\) 1.74065 3.01490i 0.0897672 0.155481i
\(377\) 3.60441 0.185637
\(378\) −1.93797 3.89264i −0.0996785 0.200216i
\(379\) 6.99131 0.359120 0.179560 0.983747i \(-0.442533\pi\)
0.179560 + 0.983747i \(0.442533\pi\)
\(380\) −5.15168 + 8.92298i −0.264276 + 0.457739i
\(381\) −3.10716 5.38177i −0.159185 0.275716i
\(382\) −3.18402 5.51489i −0.162909 0.282166i
\(383\) −13.7705 + 23.8512i −0.703640 + 1.21874i 0.263540 + 0.964649i \(0.415110\pi\)
−0.967180 + 0.254092i \(0.918223\pi\)
\(384\) 2.57641 0.131477
\(385\) −4.05504 + 6.11876i −0.206664 + 0.311841i
\(386\) −14.0550 −0.715380
\(387\) 15.2195 26.3609i 0.773651 1.34000i
\(388\) −3.32900 5.76600i −0.169004 0.292724i
\(389\) −3.35222 5.80621i −0.169964 0.294386i 0.768443 0.639918i \(-0.221032\pi\)
−0.938407 + 0.345532i \(0.887698\pi\)
\(390\) −5.31737 + 9.20995i −0.269255 + 0.466364i
\(391\) 6.94919 0.351436
\(392\) −2.72763 6.44671i −0.137766 0.325608i
\(393\) 3.92497 0.197989
\(394\) 3.47785 6.02381i 0.175211 0.303475i
\(395\) 0.528831 + 0.915962i 0.0266084 + 0.0460871i
\(396\) −3.80404 6.58879i −0.191160 0.331099i
\(397\) −11.3026 + 19.5767i −0.567262 + 0.982527i 0.429573 + 0.903032i \(0.358664\pi\)
−0.996835 + 0.0794950i \(0.974669\pi\)
\(398\) 21.0897 1.05713
\(399\) −29.2457 + 44.1297i −1.46412 + 2.20925i
\(400\) −3.24003 −0.162002
\(401\) 4.85413 8.40761i 0.242404 0.419856i −0.718995 0.695016i \(-0.755397\pi\)
0.961398 + 0.275160i \(0.0887308\pi\)
\(402\) 9.35650 + 16.2059i 0.466660 + 0.808278i
\(403\) 13.5563 + 23.4801i 0.675286 + 1.16963i
\(404\) −4.57940 + 7.93175i −0.227833 + 0.394619i
\(405\) −8.86104 −0.440309
\(406\) −1.36598 2.74373i −0.0677927 0.136169i
\(407\) −6.92114 −0.343068
\(408\) 8.95200 15.5053i 0.443190 0.767628i
\(409\) 18.1680 + 31.4679i 0.898350 + 1.55599i 0.829603 + 0.558354i \(0.188567\pi\)
0.0687468 + 0.997634i \(0.478100\pi\)
\(410\) 2.82856 + 4.89920i 0.139692 + 0.241954i
\(411\) −12.4012 + 21.4794i −0.611704 + 1.05950i
\(412\) 4.53211 0.223281
\(413\) 24.2537 + 1.49757i 1.19345 + 0.0736906i
\(414\) −3.63791 −0.178794
\(415\) −6.88167 + 11.9194i −0.337808 + 0.585101i
\(416\) −1.55571 2.69457i −0.0762749 0.132112i
\(417\) −11.0486 19.1368i −0.541055 0.937134i
\(418\) −8.12119 + 14.0663i −0.397220 + 0.688006i
\(419\) 9.98642 0.487868 0.243934 0.969792i \(-0.421562\pi\)
0.243934 + 0.969792i \(0.421562\pi\)
\(420\) 9.02590 + 0.557314i 0.440419 + 0.0271941i
\(421\) 14.1053 0.687448 0.343724 0.939071i \(-0.388312\pi\)
0.343724 + 0.939071i \(0.388312\pi\)
\(422\) −13.2518 + 22.9528i −0.645087 + 1.11732i
\(423\) 6.33234 + 10.9679i 0.307889 + 0.533279i
\(424\) −2.12002 3.67198i −0.102957 0.178327i
\(425\) −11.2578 + 19.4991i −0.546084 + 0.945845i
\(426\) −19.1095 −0.925857
\(427\) −14.1954 28.5131i −0.686966 1.37985i
\(428\) −12.3344 −0.596207
\(429\) −8.38237 + 14.5187i −0.404705 + 0.700969i
\(430\) 5.55009 + 9.61304i 0.267649 + 0.463582i
\(431\) 1.77185 + 3.06893i 0.0853468 + 0.147825i 0.905539 0.424263i \(-0.139467\pi\)
−0.820192 + 0.572088i \(0.806134\pi\)
\(432\) −0.821765 + 1.42334i −0.0395372 + 0.0684804i
\(433\) −16.2680 −0.781792 −0.390896 0.920435i \(-0.627835\pi\)
−0.390896 + 0.920435i \(0.627835\pi\)
\(434\) 12.7360 19.2176i 0.611345 0.922477i
\(435\) 3.95953 0.189845
\(436\) 0.549920 0.952489i 0.0263364 0.0456160i
\(437\) 3.88326 + 6.72601i 0.185762 + 0.321749i
\(438\) 5.62695 + 9.74617i 0.268866 + 0.465690i
\(439\) −0.585013 + 1.01327i −0.0279211 + 0.0483608i −0.879648 0.475625i \(-0.842222\pi\)
0.851727 + 0.523985i \(0.175555\pi\)
\(440\) 2.77444 0.132266
\(441\) 25.2720 + 3.13283i 1.20343 + 0.149182i
\(442\) −21.6218 −1.02845
\(443\) −19.5037 + 33.7813i −0.926647 + 1.60500i −0.137755 + 0.990466i \(0.543989\pi\)
−0.788891 + 0.614533i \(0.789345\pi\)
\(444\) 4.26325 + 7.38416i 0.202325 + 0.350437i
\(445\) −11.0394 19.1208i −0.523317 0.906411i
\(446\) 4.90054 8.48799i 0.232047 0.401918i
\(447\) 41.2777 1.95237
\(448\) −1.46157 + 2.20541i −0.0690527 + 0.104196i
\(449\) 32.1714 1.51826 0.759130 0.650939i \(-0.225624\pi\)
0.759130 + 0.650939i \(0.225624\pi\)
\(450\) 5.89348 10.2078i 0.277821 0.481201i
\(451\) 4.45898 + 7.72318i 0.209965 + 0.363670i
\(452\) −2.22139 3.84756i −0.104485 0.180974i
\(453\) 17.9522 31.0941i 0.843467 1.46093i
\(454\) −28.4962 −1.33739
\(455\) −4.86721 9.77635i −0.228179 0.458322i
\(456\) 20.0098 0.937045
\(457\) 17.1774 29.7521i 0.803524 1.39174i −0.113759 0.993508i \(-0.536289\pi\)
0.917283 0.398236i \(-0.130377\pi\)
\(458\) 12.5957 + 21.8164i 0.588558 + 1.01941i
\(459\) 5.71060 + 9.89105i 0.266548 + 0.461675i
\(460\) 0.663319 1.14890i 0.0309274 0.0535678i
\(461\) 10.5155 0.489756 0.244878 0.969554i \(-0.421252\pi\)
0.244878 + 0.969554i \(0.421252\pi\)
\(462\) 14.2286 + 0.878558i 0.661973 + 0.0408742i
\(463\) −19.9943 −0.929213 −0.464606 0.885517i \(-0.653804\pi\)
−0.464606 + 0.885517i \(0.653804\pi\)
\(464\) −0.579223 + 1.00324i −0.0268898 + 0.0465744i
\(465\) 14.8919 + 25.7935i 0.690595 + 1.19615i
\(466\) 6.58123 + 11.3990i 0.304870 + 0.528050i
\(467\) 13.7321 23.7848i 0.635448 1.10063i −0.350973 0.936386i \(-0.614149\pi\)
0.986420 0.164242i \(-0.0525177\pi\)
\(468\) 11.3191 0.523224
\(469\) −19.1801 1.18429i −0.885653 0.0546856i
\(470\) −4.61843 −0.213032
\(471\) 19.8676 34.4117i 0.915452 1.58561i
\(472\) −4.59225 7.95401i −0.211375 0.366113i
\(473\) 8.74925 + 15.1541i 0.402291 + 0.696788i
\(474\) 1.02702 1.77886i 0.0471728 0.0817056i
\(475\) −25.1638 −1.15459
\(476\) 8.19415 + 16.4589i 0.375578 + 0.754391i
\(477\) 15.4249 0.706257
\(478\) 4.39142 7.60616i 0.200859 0.347898i
\(479\) 4.22275 + 7.31402i 0.192943 + 0.334186i 0.946224 0.323512i \(-0.104864\pi\)
−0.753282 + 0.657698i \(0.771530\pi\)
\(480\) −1.70898 2.96005i −0.0780041 0.135107i
\(481\) 5.14853 8.91751i 0.234753 0.406604i
\(482\) 1.52755 0.0695781
\(483\) 3.76561 5.68204i 0.171341 0.258542i
\(484\) −6.62633 −0.301197
\(485\) −4.41638 + 7.64939i −0.200537 + 0.347341i
\(486\) 11.0697 + 19.1732i 0.502130 + 0.869714i
\(487\) −16.6395 28.8205i −0.754009 1.30598i −0.945865 0.324559i \(-0.894784\pi\)
0.191856 0.981423i \(-0.438549\pi\)
\(488\) −6.01934 + 10.4258i −0.272483 + 0.471954i
\(489\) −22.1929 −1.00360
\(490\) −5.59735 + 7.41000i −0.252862 + 0.334750i
\(491\) 15.8532 0.715444 0.357722 0.933828i \(-0.383553\pi\)
0.357722 + 0.933828i \(0.383553\pi\)
\(492\) 5.49324 9.51457i 0.247654 0.428950i
\(493\) 4.02513 + 6.97173i 0.181283 + 0.313991i
\(494\) −12.0825 20.9274i −0.543616 0.941570i
\(495\) −5.04658 + 8.74094i −0.226827 + 0.392876i
\(496\) −8.71388 −0.391265
\(497\) 10.8406 16.3577i 0.486266 0.733742i
\(498\) 26.7293 1.19777
\(499\) 9.66615 16.7423i 0.432717 0.749487i −0.564390 0.825509i \(-0.690888\pi\)
0.997106 + 0.0760215i \(0.0242218\pi\)
\(500\) 5.46577 + 9.46699i 0.244437 + 0.423377i
\(501\) −15.4189 26.7063i −0.688866 1.19315i
\(502\) −0.521150 + 0.902659i −0.0232601 + 0.0402876i
\(503\) 40.9220 1.82462 0.912310 0.409500i \(-0.134297\pi\)
0.912310 + 0.409500i \(0.134297\pi\)
\(504\) −4.28965 8.61625i −0.191076 0.383798i
\(505\) 12.1504 0.540686
\(506\) 1.04567 1.81115i 0.0464855 0.0805152i
\(507\) 4.27565 + 7.40565i 0.189888 + 0.328897i
\(508\) −1.20600 2.08886i −0.0535077 0.0926781i
\(509\) −0.260911 + 0.451912i −0.0115647 + 0.0200306i −0.871750 0.489951i \(-0.837015\pi\)
0.860185 + 0.509982i \(0.170348\pi\)
\(510\) −23.7521 −1.05176
\(511\) −11.5348 0.712228i −0.510270 0.0315071i
\(512\) 1.00000 0.0441942
\(513\) −6.38226 + 11.0544i −0.281784 + 0.488064i
\(514\) 3.38705 + 5.86654i 0.149396 + 0.258762i
\(515\) −3.00623 5.20695i −0.132471 0.229446i
\(516\) 10.7786 18.6691i 0.474503 0.821863i
\(517\) −7.28055 −0.320198
\(518\) −8.73932 0.539618i −0.383983 0.0237095i
\(519\) −51.0637 −2.24145
\(520\) −2.06386 + 3.57471i −0.0905063 + 0.156762i
\(521\) −6.14887 10.6502i −0.269387 0.466592i 0.699317 0.714812i \(-0.253488\pi\)
−0.968704 + 0.248220i \(0.920154\pi\)
\(522\) −2.10716 3.64972i −0.0922281 0.159744i
\(523\) −15.6891 + 27.1742i −0.686034 + 1.18825i 0.287076 + 0.957908i \(0.407317\pi\)
−0.973111 + 0.230339i \(0.926017\pi\)
\(524\) 1.52342 0.0665511
\(525\) 9.84317 + 19.7711i 0.429591 + 0.862882i
\(526\) 0.457086 0.0199299
\(527\) −30.2772 + 52.4417i −1.31890 + 2.28440i
\(528\) −2.69407 4.66626i −0.117244 0.203073i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) −2.81249 + 4.87138i −0.122167 + 0.211599i
\(531\) 33.4124 1.44997
\(532\) −11.3513 + 17.1283i −0.492142 + 0.742608i
\(533\) −13.2679 −0.574695
\(534\) −21.4392 + 37.1337i −0.927764 + 1.60693i
\(535\) 8.18166 + 14.1711i 0.353724 + 0.612668i
\(536\) 3.63160 + 6.29011i 0.156861 + 0.271691i
\(537\) 21.1390 36.6138i 0.912215 1.58000i
\(538\) 18.5535 0.799898
\(539\) −8.82375 + 11.6812i −0.380066 + 0.503146i
\(540\) 2.18037 0.0938281
\(541\) −0.375985 + 0.651226i −0.0161649 + 0.0279984i −0.873995 0.485935i \(-0.838479\pi\)
0.857830 + 0.513934i \(0.171812\pi\)
\(542\) −9.14545 15.8404i −0.392831 0.680403i
\(543\) 14.4674 + 25.0582i 0.620855 + 1.07535i
\(544\) 3.47460 6.01818i 0.148972 0.258027i
\(545\) −1.45909 −0.0625005
\(546\) −11.7164 + 17.6792i −0.501415 + 0.756600i
\(547\) −27.3113 −1.16775 −0.583874 0.811844i \(-0.698464\pi\)
−0.583874 + 0.811844i \(0.698464\pi\)
\(548\) −4.81334 + 8.33695i −0.205616 + 0.356137i
\(549\) −21.8979 37.9282i −0.934578 1.61874i
\(550\) 3.38799 + 5.86817i 0.144464 + 0.250220i
\(551\) −4.49855 + 7.79172i −0.191645 + 0.331939i
\(552\) −2.57641 −0.109660
\(553\) 0.940079 + 1.88825i 0.0399762 + 0.0802968i
\(554\) 20.1567 0.856375
\(555\) 5.65578 9.79610i 0.240075 0.415821i
\(556\) −4.28838 7.42769i −0.181868 0.315004i
\(557\) −14.6243 25.3300i −0.619650 1.07327i −0.989549 0.144194i \(-0.953941\pi\)
0.369899 0.929072i \(-0.379392\pi\)
\(558\) 15.8502 27.4533i 0.670992 1.16219i
\(559\) −26.0337 −1.10111
\(560\) 3.50328 + 0.216314i 0.148041 + 0.00914092i
\(561\) −37.4432 −1.58085
\(562\) 3.63682 6.29916i 0.153410 0.265714i
\(563\) −0.257258 0.445584i −0.0108421 0.0187791i 0.860553 0.509360i \(-0.170118\pi\)
−0.871396 + 0.490581i \(0.836785\pi\)
\(564\) 4.48464 + 7.76762i 0.188837 + 0.327076i
\(565\) −2.94698 + 5.10432i −0.123980 + 0.214740i
\(566\) −2.76240 −0.116112
\(567\) −17.6382 1.08909i −0.740736 0.0457375i
\(568\) −7.41708 −0.311214
\(569\) −16.9002 + 29.2720i −0.708493 + 1.22715i 0.256923 + 0.966432i \(0.417291\pi\)
−0.965416 + 0.260714i \(0.916042\pi\)
\(570\) −13.2729 22.9893i −0.555940 0.962915i
\(571\) 6.69143 + 11.5899i 0.280028 + 0.485022i 0.971391 0.237485i \(-0.0763230\pi\)
−0.691364 + 0.722507i \(0.742990\pi\)
\(572\) −3.25350 + 5.63523i −0.136036 + 0.235621i
\(573\) 16.4067 0.685401
\(574\) 5.02820 + 10.0997i 0.209873 + 0.421553i
\(575\) 3.24003 0.135119
\(576\) −1.81896 + 3.15053i −0.0757899 + 0.131272i
\(577\) 18.3241 + 31.7382i 0.762842 + 1.32128i 0.941380 + 0.337348i \(0.109530\pi\)
−0.178538 + 0.983933i \(0.557137\pi\)
\(578\) −15.6456 27.0990i −0.650772 1.12717i
\(579\) 18.1057 31.3601i 0.752449 1.30328i
\(580\) 1.53684 0.0638137
\(581\) −15.1632 + 22.8802i −0.629076 + 0.949231i
\(582\) 17.1538 0.711047
\(583\) −4.43366 + 7.67932i −0.183623 + 0.318045i
\(584\) 2.18402 + 3.78284i 0.0903756 + 0.156535i
\(585\) −7.50815 13.0045i −0.310424 0.537670i
\(586\) −12.6878 + 21.9759i −0.524127 + 0.907815i
\(587\) −10.8300 −0.447003 −0.223502 0.974704i \(-0.571749\pi\)
−0.223502 + 0.974704i \(0.571749\pi\)
\(588\) 17.8979 + 2.21871i 0.738097 + 0.0914980i
\(589\) −67.6766 −2.78857
\(590\) −6.09225 + 10.5521i −0.250814 + 0.434422i
\(591\) 8.96038 + 15.5198i 0.368581 + 0.638401i
\(592\) 1.65472 + 2.86606i 0.0680086 + 0.117794i
\(593\) 3.90397 6.76187i 0.160317 0.277677i −0.774665 0.632371i \(-0.782082\pi\)
0.934982 + 0.354694i \(0.115415\pi\)
\(594\) 3.43717 0.141029
\(595\) 13.4743 20.3318i 0.552392 0.833521i
\(596\) 16.0214 0.656261
\(597\) −27.1679 + 47.0563i −1.11191 + 1.92588i
\(598\) 1.55571 + 2.69457i 0.0636177 + 0.110189i
\(599\) 17.3699 + 30.0856i 0.709715 + 1.22926i 0.964963 + 0.262387i \(0.0845097\pi\)
−0.255248 + 0.966876i \(0.582157\pi\)
\(600\) 4.17383 7.22929i 0.170396 0.295135i
\(601\) −33.4939 −1.36625 −0.683123 0.730303i \(-0.739379\pi\)
−0.683123 + 0.730303i \(0.739379\pi\)
\(602\) 9.86615 + 19.8173i 0.402114 + 0.807692i
\(603\) −26.4229 −1.07602
\(604\) 6.96789 12.0687i 0.283519 0.491070i
\(605\) 4.39537 + 7.61301i 0.178697 + 0.309513i
\(606\) −11.7984 20.4355i −0.479278 0.830134i
\(607\) 16.5199 28.6134i 0.670523 1.16138i −0.307233 0.951634i \(-0.599403\pi\)
0.977756 0.209746i \(-0.0672637\pi\)
\(608\) 7.76653 0.314974
\(609\) 7.88160 + 0.486658i 0.319379 + 0.0197204i
\(610\) 15.9710 0.646646
\(611\) 5.41589 9.38060i 0.219104 0.379499i
\(612\) 12.6403 + 21.8936i 0.510953 + 0.884996i
\(613\) −0.172305 0.298441i −0.00695934 0.0120539i 0.862525 0.506015i \(-0.168882\pi\)
−0.869484 + 0.493961i \(0.835549\pi\)
\(614\) 14.6235 25.3286i 0.590155 1.02218i
\(615\) −14.5751 −0.587723
\(616\) 5.52262 + 0.341000i 0.222513 + 0.0137393i
\(617\) 18.8997 0.760872 0.380436 0.924807i \(-0.375774\pi\)
0.380436 + 0.924807i \(0.375774\pi\)
\(618\) −5.83830 + 10.1122i −0.234851 + 0.406774i
\(619\) −11.2136 19.4225i −0.450712 0.780656i 0.547718 0.836663i \(-0.315497\pi\)
−0.998430 + 0.0560067i \(0.982163\pi\)
\(620\) 5.78008 + 10.0114i 0.232134 + 0.402067i
\(621\) 0.821765 1.42334i 0.0329763 0.0571166i
\(622\) 27.2828 1.09394
\(623\) −19.6242 39.4174i −0.786227 1.57923i
\(624\) 8.01631 0.320909
\(625\) −0.848991 + 1.47050i −0.0339596 + 0.0588198i
\(626\) −1.28838 2.23154i −0.0514940 0.0891903i
\(627\) −20.9236 36.2407i −0.835606 1.44731i
\(628\) 7.71135 13.3564i 0.307716 0.532980i
\(629\) 22.9979 0.916988
\(630\) −7.05382 + 10.6437i −0.281031 + 0.424056i
\(631\) 45.9749 1.83023 0.915117 0.403189i \(-0.132098\pi\)
0.915117 + 0.403189i \(0.132098\pi\)
\(632\) 0.398625 0.690439i 0.0158565 0.0274642i
\(633\) −34.1421 59.1358i −1.35703 2.35044i
\(634\) 6.25323 + 10.8309i 0.248348 + 0.430151i
\(635\) −1.59993 + 2.77116i −0.0634912 + 0.109970i
\(636\) 10.9241 0.433168
\(637\) −8.48679 20.0584i −0.336259 0.794743i
\(638\) 2.42270 0.0959154
\(639\) 13.4913 23.3677i 0.533709 0.924412i
\(640\) −0.663319 1.14890i −0.0262200 0.0454143i
\(641\) 5.92284 + 10.2587i 0.233938 + 0.405193i 0.958964 0.283529i \(-0.0915053\pi\)
−0.725025 + 0.688722i \(0.758172\pi\)
\(642\) 15.8893 27.5211i 0.627101 1.08617i
\(643\) 40.7199 1.60584 0.802918 0.596089i \(-0.203280\pi\)
0.802918 + 0.596089i \(0.203280\pi\)
\(644\) 1.46157 2.20541i 0.0575939 0.0869051i
\(645\) −28.5987 −1.12607
\(646\) 26.9855 46.7403i 1.06173 1.83897i
\(647\) −0.360840 0.624994i −0.0141861 0.0245710i 0.858845 0.512235i \(-0.171182\pi\)
−0.873031 + 0.487664i \(0.837849\pi\)
\(648\) 3.33966 + 5.78446i 0.131194 + 0.227235i
\(649\) −9.60391 + 16.6345i −0.376986 + 0.652960i
\(650\) −10.0811 −0.395413
\(651\) 26.4726 + 53.1733i 1.03754 + 2.08403i
\(652\) −8.61387 −0.337345
\(653\) 0.373131 0.646282i 0.0146018 0.0252910i −0.858632 0.512592i \(-0.828685\pi\)
0.873234 + 0.487301i \(0.162019\pi\)
\(654\) 1.41682 + 2.45401i 0.0554021 + 0.0959593i
\(655\) −1.01052 1.75027i −0.0394841 0.0683885i
\(656\) 2.13212 3.69295i 0.0832455 0.144185i
\(657\) −15.8906 −0.619951
\(658\) −9.19315 0.567641i −0.358386 0.0221289i
\(659\) 6.85325 0.266965 0.133482 0.991051i \(-0.457384\pi\)
0.133482 + 0.991051i \(0.457384\pi\)
\(660\) −3.57405 + 6.19044i −0.139120 + 0.240963i
\(661\) −16.8918 29.2575i −0.657016 1.13798i −0.981384 0.192054i \(-0.938485\pi\)
0.324369 0.945931i \(-0.394848\pi\)
\(662\) −1.36699 2.36769i −0.0531294 0.0920228i
\(663\) 27.8534 48.2435i 1.08174 1.87362i
\(664\) 10.3746 0.402613
\(665\) 27.2083 + 1.68001i 1.05509 + 0.0651478i
\(666\) −12.0395 −0.466520
\(667\) 0.579223 1.00324i 0.0224276 0.0388458i
\(668\) −5.98464 10.3657i −0.231553 0.401061i
\(669\) 12.6258 + 21.8686i 0.488143 + 0.845488i
\(670\) 4.81781 8.34469i 0.186128 0.322384i
\(671\) 25.1769 0.971943
\(672\) −3.03798 6.10213i −0.117193 0.235395i
\(673\) 32.6054 1.25684 0.628422 0.777873i \(-0.283701\pi\)
0.628422 + 0.777873i \(0.283701\pi\)
\(674\) −6.21775 + 10.7695i −0.239499 + 0.414824i
\(675\) 2.66255 + 4.61167i 0.102481 + 0.177503i
\(676\) 1.65954 + 2.87440i 0.0638283 + 0.110554i
\(677\) −12.5764 + 21.7829i −0.483349 + 0.837184i −0.999817 0.0191219i \(-0.993913\pi\)
0.516469 + 0.856306i \(0.327246\pi\)
\(678\) 11.4465 0.439598
\(679\) −9.73114 + 14.6836i −0.373447 + 0.563505i
\(680\) −9.21906 −0.353535
\(681\) 36.7090 63.5818i 1.40669 2.43646i
\(682\) 9.11181 + 15.7821i 0.348909 + 0.604328i
\(683\) 16.8507 + 29.1863i 0.644776 + 1.11678i 0.984353 + 0.176206i \(0.0563825\pi\)
−0.339578 + 0.940578i \(0.610284\pi\)
\(684\) −14.1270 + 24.4686i −0.540159 + 0.935582i
\(685\) 12.7711 0.487959
\(686\) −12.0525 + 14.0619i −0.460166 + 0.536887i
\(687\) −64.9035 −2.47622
\(688\) 4.18358 7.24617i 0.159497 0.276258i
\(689\) −6.59626 11.4251i −0.251297 0.435260i
\(690\) 1.70898 + 2.96005i 0.0650599 + 0.112687i
\(691\) −12.5502 + 21.7376i −0.477431 + 0.826935i −0.999665 0.0258668i \(-0.991765\pi\)
0.522234 + 0.852802i \(0.325099\pi\)
\(692\) −19.8197 −0.753431
\(693\) −11.1197 + 16.7789i −0.422404 + 0.637378i
\(694\) 2.20748 0.0837947
\(695\) −5.68913 + 9.85385i −0.215801 + 0.373778i
\(696\) −1.49232 2.58477i −0.0565662 0.0979756i
\(697\) −14.8165 25.6630i −0.561216 0.972055i
\(698\) −5.38550 + 9.32796i −0.203844 + 0.353069i
\(699\) −33.9120 −1.28267
\(700\) 3.82049 + 7.67389i 0.144401 + 0.290046i
\(701\) −32.8099 −1.23921 −0.619607 0.784912i \(-0.712708\pi\)
−0.619607 + 0.784912i \(0.712708\pi\)
\(702\) −2.55686 + 4.42860i −0.0965023 + 0.167147i
\(703\) 12.8514 + 22.2593i 0.484701 + 0.839527i
\(704\) −1.04567 1.81115i −0.0394100 0.0682601i
\(705\) 5.94949 10.3048i 0.224071 0.388102i
\(706\) −13.8970 −0.523020
\(707\) 24.1858 + 1.49338i 0.909602 + 0.0561643i
\(708\) 23.6631 0.889313
\(709\) 9.54605 16.5343i 0.358510 0.620957i −0.629202 0.777241i \(-0.716618\pi\)
0.987712 + 0.156285i \(0.0499517\pi\)
\(710\) 4.91989 + 8.52149i 0.184640 + 0.319806i
\(711\) 1.45016 + 2.51176i 0.0543854 + 0.0941983i
\(712\) −8.32132 + 14.4129i −0.311855 + 0.540148i
\(713\) 8.71388 0.326338
\(714\) −47.2795 2.91932i −1.76939 0.109253i
\(715\) 8.63244 0.322835
\(716\) 8.20481 14.2112i 0.306628 0.531096i
\(717\) 11.3141 + 19.5966i 0.422533 + 0.731849i
\(718\) 9.73350 + 16.8589i 0.363251 + 0.629169i
\(719\) −10.5225 + 18.2254i −0.392421 + 0.679693i −0.992768 0.120046i \(-0.961696\pi\)
0.600347 + 0.799740i \(0.295029\pi\)
\(720\) 4.82619 0.179862
\(721\) −5.34405 10.7341i −0.199023 0.399760i
\(722\) 41.3190 1.53773
\(723\) −1.96780 + 3.40834i −0.0731834 + 0.126757i
\(724\) 5.61532 + 9.72601i 0.208692 + 0.361464i
\(725\) 1.87670 + 3.25054i 0.0696990 + 0.120722i
\(726\) 8.53609 14.7849i 0.316804 0.548721i
\(727\) 11.6826 0.433282 0.216641 0.976251i \(-0.430490\pi\)
0.216641 + 0.976251i \(0.430490\pi\)
\(728\) −4.54756 + 6.86194i −0.168544 + 0.254320i
\(729\) −37.0021 −1.37045
\(730\) 2.89741 5.01846i 0.107238 0.185741i
\(731\) −29.0725 50.3550i −1.07528 1.86245i
\(732\) −15.5083 26.8612i −0.573204 0.992819i
\(733\) 12.1238 20.9990i 0.447802 0.775615i −0.550441 0.834874i \(-0.685540\pi\)
0.998243 + 0.0592589i \(0.0188737\pi\)
\(734\) 17.1874 0.634398
\(735\) −9.32294 22.0346i −0.343882 0.812760i
\(736\) −1.00000 −0.0368605
\(737\) 7.59487 13.1547i 0.279761 0.484560i
\(738\) 7.75648 + 13.4346i 0.285520 + 0.494535i
\(739\) 13.5595 + 23.4857i 0.498793 + 0.863935i 0.999999 0.00139329i \(-0.000443498\pi\)
−0.501206 + 0.865328i \(0.667110\pi\)
\(740\) 2.19521 3.80222i 0.0806977 0.139773i
\(741\) 62.2589 2.28714
\(742\) −6.19711 + 9.35099i −0.227503 + 0.343286i
\(743\) −10.3281 −0.378902 −0.189451 0.981890i \(-0.560671\pi\)
−0.189451 + 0.981890i \(0.560671\pi\)
\(744\) 11.2253 19.4428i 0.411539 0.712807i
\(745\) −10.6273 18.4070i −0.389353 0.674380i
\(746\) 4.71828 + 8.17231i 0.172749 + 0.299209i
\(747\) −18.8710 + 32.6855i −0.690453 + 1.19590i
\(748\) −14.5331 −0.531381
\(749\) 14.5442 + 29.2136i 0.531433 + 1.06744i
\(750\) −28.1642 −1.02841
\(751\) 5.15333 8.92583i 0.188048 0.325708i −0.756552 0.653934i \(-0.773117\pi\)
0.944599 + 0.328226i \(0.106451\pi\)
\(752\) 1.74065 + 3.01490i 0.0634750 + 0.109942i
\(753\) −1.34270 2.32562i −0.0489307 0.0847505i
\(754\) −1.80221 + 3.12151i −0.0656325 + 0.113679i
\(755\) −18.4877 −0.672837
\(756\) 4.34011 + 0.267984i 0.157848 + 0.00974650i
\(757\) −39.6243 −1.44017 −0.720084 0.693887i \(-0.755897\pi\)
−0.720084 + 0.693887i \(0.755897\pi\)
\(758\) −3.49566 + 6.05465i −0.126968 + 0.219915i
\(759\) 2.69407 + 4.66626i 0.0977885 + 0.169375i
\(760\) −5.15168 8.92298i −0.186871 0.323670i
\(761\) 26.7319 46.3010i 0.969031 1.67841i 0.270658 0.962676i \(-0.412759\pi\)
0.698372 0.715735i \(-0.253908\pi\)
\(762\) 6.21433 0.225121
\(763\) −2.90437 0.179333i −0.105145 0.00649231i
\(764\) 6.36805 0.230388
\(765\) 16.7691 29.0449i 0.606287 1.05012i
\(766\) −13.7705 23.8512i −0.497549 0.861780i
\(767\) −14.2884 24.7482i −0.515924 0.893607i
\(768\) −1.28821 + 2.23124i −0.0464842 + 0.0805130i
\(769\) 8.56383 0.308820 0.154410 0.988007i \(-0.450652\pi\)
0.154410 + 0.988007i \(0.450652\pi\)
\(770\) −3.27148 6.57114i −0.117896 0.236808i
\(771\) −17.4529 −0.628550
\(772\) 7.02750 12.1720i 0.252925 0.438079i
\(773\) 15.8946 + 27.5302i 0.571688 + 0.990193i 0.996393 + 0.0848607i \(0.0270445\pi\)
−0.424705 + 0.905332i \(0.639622\pi\)
\(774\) 15.2195 + 26.3609i 0.547054 + 0.947525i
\(775\) −14.1166 + 24.4507i −0.507085 + 0.878296i
\(776\) 6.65800 0.239008
\(777\) 12.4621